Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorKleint, Lucia (Thesis advisor)
dc.contributor.advisorCalvo-Mozo, Benjamín (Thesis advisor)
dc.contributor.authorCastellanos Durán, Juan Sebastián
dc.date.accessioned2019-07-02T13:59:16Z
dc.date.available2019-07-02T13:59:16Z
dc.date.issued2016
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/58310
dc.description.abstractAbstract. Large amounts of energy are released when magnetic field lines reconnect in the corona during solar flares. Observations have found both transient and irreversible changes in the photospheric magnetic fields during flares, but their origins and mechanisms are yet unclear. To investigate the properties of magnetic field changes during flares, e.g. their size, area, and timing, we performed a statistical analysis of 75 solar flares. We analyzed the line-of-sight (LOS) and vector magnetic field measurements obtained by the Solar Dynamics Observatory. We derived the locations of permanent magnetic field changes of these flares that were selected based on a wide energy range from small to extreme flares (18 X-class, 37 M-class, 19 C-class and 1 B-class flares), and a wide range of heliographic longitudes (disk center to limb). We identified kernels of permanent magnetic field changes in 80% of the flares. 36 events showed more positive changes, while during 23 flares more negative irreversible variations were observed. We found two decreasing exponential relations for: (i) the observed step-size values, (ii) the number of the permanent changes found with respect to the distance measured from the polarity inversion line (PIL). An enhancement in white-light (WL) emission was observed in 74% of the events. The WL emission and the permanent changes do not have a one-to-one spatial relationship, but they are near each other and often overlap. The energy emitted during each event in the soft X-ray band correlates with the total photospheric area where permanent changes are located following a power-law. We also studied the evolution of the three components of the magnetic field in the same places where permanent changes in the LOS component were found, as well as a region of few arcsecs width measured from the PIL. We concluded that the flares that show irreversible changes in azimuth and inclination do not vary with the location of the flare, although the correlation with the field strength decreases for flares that were located near the limb. Permanent changes in the field strength, and inclination are found more often than changes in azimuth with ~19% difference. The strength field irreversibly increased near the PIL in 29 flares. We observed that the field becomes tilted after 20 flares. This agrees with the implosion model (Hudson et al. 2000) that predicts the field becoming more horizontal after the flare. However, during 13 flares, the radial field showed positive and larger changes than the horizontal field. This implies another scenario when the flare-loop is untwisted after flares (Kleint 2016)
dc.description.abstractResumen. Grandes cantidades de energía se liberan cuando se vuelven las líneas de campo magnético se reconectan en la corona durante fulguraciones solares. Observaciones se han encontrado cambios transitorios e irreversibles en los campos magnéticos fotosféricos durante fulguraciones, pero sus orígenes y mecanismos son desconocidos. Investigamos las propiedades de los cambios de campo magnético durante 75 fulguraciones, por ejemplo, su tamaño, área y tiempo. Analizamos lacomponente en la línea de la visual (LOS) y mediciones de campo magnético vectoriales obtenidas por el Solar Dynamics Observatory. Las fulguraciones fueron seleccionados sobre la base de una amplia gama de energía desde fulguraciones pequeñas hasta extremas (18 clase X, 19 clase M, 37 clase C y 1 clase B), y una amplia gama de longitudes heliográficas (desde el centro del disco al limbo). Se identificaron núcleos de cambios en el campo magnético permanente en el 80% de los fulguraciones. 36 eventos mostraron más cambios positivos, mientras que durante 23 fulguraciones se observaron más cambios negativos. Se encontraron dos relaciones exponenciales decrecientes para: (i) los tamaños de los cambios observados, (ii) el número de los cambios permanentes que se encuentran con respecto a la distancia medida desde la línea de inversión de polaridad (PIL). Se observó un aumento en la emisión de luz blanca (WL) en el 74% de los eventos. La emisión WL y los cambios permanentes no tienen una relación espacial de uno a uno, pero están cerca unos de otros, y a menudo se superponen. La energía emitida durante cada evento en la banda de rayos X blandos se correlaciona con el área total de fotosférica donde se encuentran los cambios permanentes siguiendo una ley de potencias. También se estudió la evolución de las tres componentes del campo magnético en los mismos lugares donde se encontraron cambios permanentes en el componente de LOS, así como en una región de unos pocos segundos de arco de ancho medido desde la PIL. Las fulguraciones que muestran cambios irreversibles en azimut e inclinación no varían con la ubicación de la llamarada, aunque la correlación con la intensidad del campo disminuye en fulguraciones que se encontraban cerca al limbo. Los cambios permanentes en la intensidad de campo, y la inclinación se encuentran con más frecuencia que los cambios en azimut con 19% de diferencia. La intensidad de campo aumenta de forma irreversible cerca de la PIL en 29 fulguraciones. Observamos que el campo se inclinó después de 20 fulguraciones. Esto está de acuerdo con el modelo de implosión (Hudson 2000) que predice que el campo es cada vez más horizontal después de la llamarada. Sin embargo, durante 13 fulguraciones, el campo radial mostró cambios positivos y mayores que el campo horizontal. Esto implica otro escenario cuando los bucles de la fulguraciones pierden su torsión después de la fulguración Kleint (2016).
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Observatorio Astronómico
dc.relation.ispartofObservatorio Astronómico
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc52 Astronomía y ciencias afines / Astronomy
dc.titleA Study of Photospheric Vector Magnetic Field Changes During Solar Flares
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.eprintshttp://bdigital.unal.edu.co/55042/
dc.description.degreelevelMaestría
dc.relation.referencesCastellanos Durán, Juan Sebastián (2016) A Study of Photospheric Vector Magnetic Field Changes During Solar Flares. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalEl Sol
dc.subject.proposalFulguraciones Solares
dc.subject.proposalCampos Magnéticos Fotosféricos
dc.subject.proposalThe Sun
dc.subject.proposalSolar flares
dc.subject.proposalPhotospheric Magnetic fields
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito