Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributorAcuna Herrera, Rodrigo
dc.contributor.advisorVan Stryland, Eric W. (Thesis advisor)
dc.contributor.advisorHagan, David J. (Thesis advisor)
dc.contributor.authorMúnera Ortiz, Natalia
dc.date.accessioned2019-07-03T10:17:30Z
dc.date.available2019-07-03T10:17:30Z
dc.date.issued2019-01-25
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/69169
dc.description.abstractThe supercontinuum (SC) has attracted attention as an ideal tunable ultrafast white-light laser source. Frequency broadening has had a great deal of research interest since its appearance in early 1970's in condensed media. A large number of experiments and new theories have been developed to explain the mechanism of supercontinuum, also called white light continuum (WLC). Supercontinuum generation occurs when narrow-band incident pulses propagate inside a material. In gases, nonlinear effects such as self-focusing and self-phase modulation (SPM) balance with plasma nonlinearities via multi-photon ionization to create a filament. In case of waveguides, the propagation in anomalous regime, gives place to soliton formation. This happen when the phase accumulated by group velocity dispersion (GVD) and phase collected by the Kerr effect compensates each other. High order solitons can break into a series of fundamental solitons due to perturbation over the propagation. This effect is called soliton fission, and it is the main mechanism for supercontinuum generation (SCG) in waveguides. In this dissertation, an explanation of the nonlinear effects involved in WLC generation in gases and waveguides is made as an effort to derive a pulse propagation equation for each case. Our end goal is to use a single high power broadband source that can replace conventional tunable sources of radiation as optical parametric generators/amplifiers (OPGs/OPAs) in Z-scan applications. We show that gases are ideal for higher energy WLC generation due to their higher optical damage threshold than for condensed media. In this dissertation we demonstrate infrared (IR) SCG in a range of 800 - 1600 nm by pumping a Krypton (Kr) gas chamber at 1800 nm. The WLC generated in this work had high enough quality beam pro_les to perform closed and open aperture WLC Z-scans in the infrared from 1000 nm to 1550 nm. Its capability of measuring nonlinear absorption (NLA) and nonlinear refraction (NLR) coeffcients was proven measuring Gallium Arsenide (GaAs), Silicon (Si), and Carbon disulfide (CS2). Nonlinear characterization is important when it is necessary to predict a material behavior for an specific application. As an example, materials with high two photon absorption (2PA) can be used in micro-fabrication applications, optical data storage, bio-imaging and optical power limiting. Materials with high nonlinear refractive index can be used as optical switches or for soliton generation. Techniques such as Z-scan has been used world wide for nonlinear characterization. Thus, we performed conventional Z-scan using a Clark laser and a TOPAS-C to characterize the nonlinear behavior of a thin-film highly-doped semiconductor. Specifically, this Indium Tin oxide (ITO) semiconductor was analyzed at a particular region of wavelength which presents enhanced nonlinearities. The enhancement region turns out to be where the real part of the permittivity becomes zero, hence was denominated epsilon-near-zero (ENZ) region. In particular for ITO, the ENZ wavelength happen at near infrared. This kind of materials have recently become a popular topic because the change in the refractive index is larger than 380 %. Some application was developed in this field, for example, nanoantennas which have a recovery time less than picoseconds, beside of the intensity and wavelength dependence. Another effort of this dissertation is to perform simulation in some applications using nonlinearities in highly nonlinear fibers called photonic crystal fiber (PCF). PCF consist in a narrow core surrounded by a cladding made by large number of air holes. The geometry involved in this type of fibers, can highly confine the light and also the refractive index contrast between the core and cladding enhance the nonlinearities. The purpose of the last chapter of this dissertation is to show SCG after propagation of few centimeters inside a CS2 liquid-core PCF (LCPCF). The CS2-LCPCF is a PCF infiltrated with CS2 as an effort to further enhance the nonlinear properties of the PCFs. Additionally, it is shown a nonlinear switch made by the coupling between two infiltrated holes next to the silica core in a PCF. This at the same time uses less power than conventional switches.
dc.description.abstractResumen: La generación de supercontinuo (SC) ha llamado la atención como una fuente laser de luz blanca idealmente sintonizable. El ensanchamiento de frecuencias ha despertado gran interés en investigación desde su primera aparición en un medio condensado a principios de la década de 1970. Un gran número de experimentos y nuevas teorías se han venido desarrollando con la idea de explicar el mecanismo de supe continuo, también llamado continuo de luz blanca (WLC). La generación de supe continuo (SCG) ocurre cuando un pulso de ancho de banda estrecha se propaga dentro de un material. En gases, efectos no lineales como auto-enfoque (SF: self-focusing) y auto-modulación de fase (SPM: self-phase modulation) se compensan con las no linealidades debidas a la generación de plasma a través de la absorción de múltiples fotones para dar paso a la creación de un filamento. En el caso de las guías de onda, xi la propagación de un pulso en el régimen anómalo, da lugar a la formación de un solito. Esto sucede cuando la fase acumulada debido a la dispersión de velocidad de grupo (GVD: Group velocity dispersión) y la fase acumulada debido al efecto Kerr se compensan entre s´ı. Solitones de alto orden pueden dividirse en una serie de solitones fundamentales debido a perturbaciones en el medio a lo largo de la propagación. Este efecto es conocido como fisión de solitones, es el principal mecanismo para la generación de supe continuo en guías de onda. En esta tesis se hace una explicación de los efectos no lineales envueltos en la generación de continuo de luz blanca en gases y en guías de onda como un esfuerzo para derivar la ecuaci´on de propagaci´on de pulsos para cada caso. Nuestra meta es usar una ´única fuente de luz l´aser que contenga un espectro amplio con suficiente potencia que pueda reemplazar las fuentes de luz sintonizables convencionales como los generadores/amplificadores paramétricos ´ópticos (OPGs/OPAs: optical parametric generators/amplifiers) en aplicaciones como Z-scan. Fue mostrado que los gases son ideales para generación de SC debido a su alto umbral de da˜no en comparación con materiales en estado condensado. En esta tesis de doctorado fue demostrado SCG en el infrarrojo (IR) en un rango de 800 nm - 1600 nm, bombeando una cámara de gas Kripton (Kr) a 1800 nm. El SC de luz blanca (WLC) generado en esta tesis tiene la calidad suficiente, en sus perfiles de haz, para realizar Z-scan de aperture abierta y cerrada en el IR desde 1000 nm a 1550 nm. Su aplicabilidad se probó midiendo el coeficiente de absorción y refracción no lineal (NLA) en arseniuro de Galio (GaAs), Silicio (Si) y disulfuro de carbono (CS2). La caracterización no lineal es importante cuando se necesita predecir el comportamiento de un material para una aplicación específica. Por ejemplo, materiales que presentan una alta absorción de dos fotones (2PA) pueden ser usados en aplicaciones como micro-fabricación, almacenamiento de datos ´ópticos, formación de imágenes biológicas y limitadores en potencia ´óptica. Materiales con alto ´índice de refracción no lineal pueden ser usados como interruptores ´ópticos o como generadores de solitones. Técnicas como Z-scan han sido usadas alrededor del mundo para caracterización no lineal. Se implementó la técnica de Z-scan convencional usando un láser de femto segundos Clark y un TOPAS-C para caracterizar el comportamiento no lineal de una película delgada hecha de un semiconductor altamente dopado. Específicamente, este semiconductor de ´oxido de Estaño e indio (ITO: Indium Tin Oxide) fue analizado a una longitud de onda particular donde presenta mejoramiento de las no linealidades. El incremento en las no linealidades resulta ser donde la parte real de la permitividad se hace cero, por lo tanto, esta región se denomina región de epsilon cercana a cero (ENZ: Epsilon near zero). En particular para el ITO, la longitud de onda de ENZ se ubica en el infrarrojo cercano. Este tipo de materiales recientemente se ha vuelto popular debido a que presenta cambios en el ´índice de refracción mayores al 380 %. Algunas aplicaciones se han desarrollado en este campo, por ejemplo, nano antenas donde han logrado tiempos de respuesta menores que picosegundos, además de la dependencia en la intensidad y la logitud xii de onda. Otro esfuerzo de esta tesis es hacer simulaciones de algunas aplicaciones usando las no linealidades en fibras altamente no lineales llamadas fibras de cristal totonaco (PCF: Photnic crystal fiber). Las PCF consisten en un núcleo pequeño rodeado de pequeños agujeros en el revestimiento. La geometría involucrada en este tipo de fibras ha logrado un mayor confinamiento del haz de luz además del alto contraste de ´índices que aumentan la respuesta no lineal. El propósito del ´último capítulo de esta tesis de doctorado es mostrar la SCG en pocos centímetros de PCF de núcleo liquido usando CS2 (CS2-LCPCF). La CS2-LCPCF es una PCF infiltrada con CS2 en un esfuerzo por aumentar aún más las propiedades no lineales de las PCF. Adicionalmente, se muestra un interruptor no lineal hecho por el acople entre dos agujeros infiltrados junto al núcleo de sílica (SiO2) en una PCF. Este a su vez usa menos potencia a la entrada en comparación con los acopladores no lineales convencionales
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Física
dc.relation.ispartofEscuela de Física
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc53 Física / Physics
dc.titleOptimization of broadband white light continuum in gases for Z-scan and other nonlinear applications
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.eprintshttp://bdigital.unal.edu.co/70706/
dc.description.degreelevelDoctorado
dc.relation.referencesMúnera Ortiz, Natalia (2019) Optimization of broadband white light continuum in gases for Z-scan and other nonlinear applications. Doctorado thesis, Universidad Nacional de Colombia - Sede Medellín.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalwhite-light continuum generation
dc.subject.proposalsupercontinuum generation
dc.subject.proposalnonlinear Spectroscopy
dc.subject.proposalZ-scan technique
dc.subject.proposalnonlinear characterization of materials
dc.subject.proposalphotonic crystal fibers
dc.subject.proposalliquid-core photonic crystal fibers
dc.subject.proposalSupercontinuo de luz blanca
dc.subject.proposalGeneraciión de supercontinuo
dc.subject.proposalEspectroscopía no lineal
dc.subject.proposalTécnica de Z-scan
dc.subject.proposalFibra de cristal fotónico de núcleo líquido
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito