Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorBenitez Hernández, Luis Eduardo
dc.contributor.authorMiranda Suaza, Carlos Andrés
dc.date.accessioned2020-01-22T16:49:10Z
dc.date.available2020-01-22T16:49:10Z
dc.date.issued2019-07-19
dc.date.issued2019-07-19
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75508
dc.description.abstractLas normas ISO 6336 y ANSI/AGMA 2001-D04 especi can los metodos de calculo de la capacidad de carga para engranajes cilindricos con perfi l de evolvente contra la fractura por fatiga a flexion en la raiz del diente y picado por fatiga super cial (pitting), y junto con la norma DIN 3990 son las mas utilizadas en la industria gobal. Se ha desarrollado el programa UNGEAR que permite el calculo de los factores de seguridad contra fractura en el diente y picado super ficial siguiendo las metodologias de ISO y AGMA. Utilizando UNGEAR para calcular nueve casos de estudio (tres transmisiones por engranajes con distancias entre centros diferentes, cada una con tres relaciones de transmision) se ha encontrado que los factores de seguridad ISO y AGMA di fieren, a excepcion del caso con la menor distancia entre centros, en el cual los factores de seguridad contra pitting ISO y AGMA son equivalentes sin importar la relacion de transmision. Como resultado de la evaluacion de los factores de seguridad obtenidos se ha demostrado que para los casos de estudio con las caracteristicas propuestas, la norma ANSI/AGMA 2001-D04 es mas conservadora que la norma ISO 6336.
dc.description.abstractThe ISO 6336 and ANSI/AGMA 2001-D04 standards specify the calculation methods of the load capacity for involute cylindrical gears against pitting and bending tooth breakage, and in addition with the DIN 3990 standard, are the most used in the global industry. It has been developed the UNGEAR software which allows the safety factors calculation against tooth breakage and pitting following the ISO and AGMA methodologies. By using the UNGEAR software to calculate nine study cases (three gear transmissions with different centre distances, each one with three gear ratios) it has been found that the ISO and AGMA safety factors differ, with the exception of the case study with less centre distance, in which the pitting safety factors ISO and AGMA are equivalent irrespective of the gear ratio. As a result of evaluating the safety factors it has been demonstrated that for the case studies with the proposed characteristics, the ANSI/AGMA 2001-D04 standard is more conservative than the ISO 6336 standard.
dc.format.extent176
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcIngeniería y operaciones afines::Otras ramas de la ingeniería
dc.titleEstudio comparativo de las normas ISO 6336 y ANSI/AGMA 2001-D04 para el calculo de la capacidad de carga de engranajes cilindricos con perfil de evolvente
dc.title.alternativeA comparative study of the ISO 6336 and ANSI/AGMA 2001-D04 standards for the load capacity calculation for involute cylindrical gears
dc.typeOtro
dc.rights.spaAcceso abierto
dc.coverage.sucursalUniversidad Nacional de Colombia - Sede Bogotá
dc.description.additionalMagíster en Ingeniería Mecánica. Línea de Investigación: Diseño de Elementos de Máquinas.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.corporatenameMiranda-Suaza, Carlos Andres
dc.contributor.researchgroupGIDMAQ
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] ANSI/AGMA, \American Gear Manufacturers Association ANSI/AGMA 2001-D04," Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth, Alexandria, 2004. [2] ISO, \International Organization for Standards ISO 6336 partes 1 a 6 (excepto 4)," Calculation of load capacity of spur and helical gears, Switzerland, 2006. [3] J. Rinaldo, \A Comparison of Current AGMA, ISO and API Gear Rating Methods," Gear Technology, 2018. [4] DIN, \Deutsches Institut f ur Normung 3990 partes 1 a 5," Tragf ahigkeitsberechnung von Stirnr adern, Berlin, 1987. [5] V. Dobrovolski, J. Puig Torres, et al., Elementos de m aquinas. Editorial MIR, 1970. [6] G. Niemann, Elementos de m aquinas (Vol. 2). Editorial Labor, 1973. [7] J. Hlebanja and G. Hlebanja, \An Overview of the Development of Gears," Power Transmissions, pp. 55{81, 2013. [8] L. E. Ben tez Hern andez, Engranajes: dise~no, lubricaci on, an alisis de fallas y mantenimiento. Universidad Nacional de Colombia, Facultad de Ingenier a, Departamento de Ingenier a mec anica y mecatr onica, 2011. [9] AGMA, \American Gear Manufacturers Association AGMA 913-A98," Method for Specifying the Geometry of Spur and Helical Gears, Virginia, 1998. [10] AGMA, \American Gear Manufacturers Association AGMA 933-B03," Basic Gear Geometry, 2003. [11] ISO, \International Organization for Standards ISO 21771:2007," Gears cylindrical involute gears and gear pairs | Concepts and geometry, Switzerland, 2007. [12] DIN, \Deutsches Institut f ur Normung 3960," De nitions, parameters and equations for involute cylindrical gears and gear pairs, Berlin, 1987. [13] ANSI/AGMA, \American Gear Manufacturers Association ANSI/AGMA 2101-D04," Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth (Metric Edition of ANSI/AGMA 2001-D04), Alexandria, 2004. [14] G. G. Rey and M. G. Dom nguez, \Evaluaci on de las cargas din amicas internas en engranajes cil ndricos de contacto exterior - Calculation of internal dynamic load on cylindrical gears with external contact," Ingenier a Mec anica, vol. 4, no. 2, pp. 57{68, 2001. [15] V. Roda-Casanova, F. T. Sanchez-Marin, I. Gonzalez-Perez, J. L. Iserte, and A. Fuentes, \Determination of the ISO face load factor in spur gear drives by the nite element modeling of gears and shafts," Mechanism and Machine Theory, vol. 65, pp. 1{13, 2013. [16] S. Tavares and P. de Castro, \Calculation of Load Capacity of Cylindrical Gears: Review of Di erent Approaches and Calculation Tools," in New Trends in Mechanism and Machine Science, pp. 779{787, Springer, 2015. [17] S. Jyothirmai, R. Ramesh, T. Swarnalatha, and D. Renuka, \A Finite Element Approach to Bending, Contact and Fatigue Stress Distribution in Helical Gear Systems," Procedia Materials Science, vol. 6, no. Icmpc, pp. 907{918, 2014. [18] D. Walton, Y. Shi, and S. Taylor, \AGMA, ISO, and BS Gear Standards. Part I. Pitting Resistance Ratings," Gear Technology, vol. 7, no. 6, pp. 10{12, 1990. [19] D.Walton, Y. Shi, and S. Taylor, \Review of Gear Standards. Part II," Gear Technology, 1991. [20] U. Kissling and D. M. Ing, \Festigkeitsberechnung von Stirnr adern{Unterschiede zwischen ISO 6336, DIN 3990 und AGMA 2001," Z urich: Kissoft, 2011. [21] S. P. Radzevich, Dudley ' s Handbook of Practical Gear Design and Manufacture. CRC Press, 2012. [22] D. McVittie, \Introduction to ISO 6336, What Gear Manufacturers Need to Know," Gear Technology, 1998. [23] D. Mcvittie, \Comparing Standards - Part II," Gear Technology, 1998. [24] D. Mcvittie, \Calculating Spur and Helical Gear Capacity with ISO 6336," Gear Technology, 1998. [25] D. McVittie, \ISO 6336-5 Strength and Quality of Materials," Gear Technology, 1999. [26] G. Cahala, \ISO 6336 vs AGMA 2001 gear rating comparison for industrial gear applications," in 1999 IEEE/-IAS/PCA Cement Industry Technical Conference. Conference Record (Cat. No. 99CH36335), pp. 19{22, IEEE, 1999. [27] K. Beckman and V. Patel, \Review of API Versus AGMA Gear Standards/Rating, Data Sheet Completion, and Gear Selection Guidelines," Proceedings of the Twenty- Ninth Turbomachinery Symposium, pp. 191{204, 2000. [28] O. A. Labath, D. Richter, M. Street, and D. Richter, \Comparison of Rating Trends in AGMA Versus ISO," Gear Technology, no. June, 2004. [29] A. Kawalec, J. Wiktor, and D. Ceglarek, \Comparative Analysis of Tooth-Root Strength Using ISO and AGMA Standards in Spur and Helical Gears With FEM-based Veri cation," Journal of Mechanical Design, vol. 128, no. 5, p. 1141, 2006. [30] A. S. Ivanov, M. V. Fomin, M. M. Ermolaev, and A. V. Chirkin, \Pro les of gear teeth," Russian Engineering Research, vol. 35, no. 3, pp. 167{170, 2015. [31] R. Norton, Dise~no de maquinas Un enfoque integrado. Prentice Hall, 2011. [32] AGMA, \American Gear Manufacturers Association AGMA 908-B89," Information Sheet - Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur, Helical and Herringbone Gear Teeth, Alexandria, 1989. [33] ISO, \International Organization for Standards TR ISO 6336-30," Technical Report: Calculation of load capacity of spur and helical gears { Part 30: Calculation examples for the application of ISO 6336 parts 1,2,3,5, Switzerland, 2017. [34] SEW-EURODRIVE, \Catalogue M1..N Series," Industrial Gears, 2013. [35] C. Wu and Y. Lu, \Comparison of iso and agma involute cylindrical gear strength calculation standards," China Mechanical Engineering, vol. 22, no. 12, pp. 1418{1423, 2011.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalgears, pitting, tooth root bending, safety factor, gear ratio, centre distance.
dc.subject.proposalEngranajes ; Picado por fatiga superficial ; Flexión en la raiz de diente ; Factor de seguridad ; Relación de transmisión ; Distancia entre centros
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito