Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDelgado Murcia, Lucy Gabriela
dc.contributor.advisorFranco Cortés, Manuel Antonio
dc.contributor.authorGil Perdomo, José Angel
dc.date.accessioned2020-02-07T15:52:28Z
dc.date.available2020-02-07T15:52:28Z
dc.date.issued2019-12-01
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75562
dc.description.abstractEl Factor de Crecimiento Transformante β (TGFβ) es una citocina que, dependiendo del medio al que es expuesta, puede tener funciones pro o antinflamatorias. En el ambiente intestinal, esta citocina favorece un ambiente tolerogénico frente a los alimentos y microorganismos comensales. Se ha visto, en estudios in vitro, que el rotavirus induce esta citocina y que la función reguladora de la citocina podría ser usada por el rotavirus, en su sitio de replicación en el intestino, como un mecanismo de evasión de la respuesta inmunitaria. Usando un modelo múrido neonatal de infección por rotavirus heterólogo de simio (RRV), se demostró que una dosis de 107UFF/mL y, en menor medida, una dosis de 106UFF/mL del virus indujo el ARNm de tgfβ1 en el intestino, pero no a nivel sistémico. Sin embargo, la inhibición del receptor 1 de la citocina con Galunisertib (un nuevo inhibidor con efecto directo en el intestino) no modificó la diarrea inducida por la infección. Se encontró que, en el contexto de una infección por rotavirus, el diluyente del Galunisertib tuvo un efecto sobre la pérdida de la ganancia de peso de los animales. Y que, contrario a lo esperado, la expresión de ARNm de tgfβ1 (y de otros genes modulados por la citocina) parecen disminuir en los animales que recibieron el diluyente. Con el desarrollo de este proyecto se apoya la hipótesis de que el rotavirus induce TGFβ in vivo. Se deben realizar más experimentos, especialmente en los días tempranos posinfección para entender mejor este efecto.
dc.description.abstractTransforming Growth Factor β (TGFβ) is a cytokine that, depending on the medium to which it is exposed, can have pro- or anti-inflammatory functions. In the intestinal environment this cytokine favors a tolerogenic environment to food and commensal microorganisms. In vitro studies, it has been seen that rotavirus induces TGF and have suggested that the regulatory function of the cytokine could be used by the rotavirus, in its site of replication in the intestine, as a mechanism of evasion of the immune response. Using a neonatal mouse model of heterologous Rhesus rotavirus (RRV) infection, it was demonstrated that a dose of 107FFU/mL and to a lower extent a dose of 106 FFU/mL of the virus induced tgfβ1 mRNA in the intestine, but not at a systemic level. However, inhibition of cytokine receptor 1 with Galunisertib (a new inhibitor with direct effect on the intestine) did not modify the diarrhea induced by the infection. It was found that, in the context of a rotavirus infection, the diluent of Galunisertib influenced the loss of weight gain of the animals. And unexpected, mRNA expression of tgfβ1 (and other genes modulated by the cytokine) seems to decrease in the animals that received the diluent. Thus, project supports the hypothesis that rotavirus induces TGFβ in vivo. More experiments must be carried out especially in the early timepoints post-infection days to clarify this effect.
dc.format.extent107
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcMedicina y salud::Farmacología y terapéutica
dc.titleEvaluación del TGF-beta durante la infección por rotavirus heterólogo en un modelo múrido neonatal de inhibición de la citocina con Galunisertib
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ciencias - Farmacología. Línea de Investigación: Inmunogenética e inmunomodulación.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Farmacia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAngel, J., Franco, M. A., & Greenberg, H. B. (2007). Rotavirus vaccines: Recent developments and future considerations. Nature Reviews Microbiology, 5(7), 529– 539. https://doi.org/10.1038/nrmicro1692 Ashland. (2013). PVP K-90 polymer. Retrieved September 27, 2018, from https://www.brenntag.com/media/documents/bsi/product_data_sheets/material_scien ce/ashland_polymers/pvp_k-90_polymer_pds.pdf Baratelli, F., Lin, Y., Zhu, L., Yang, S.-C., Heuze-Vourc’h, N., Zeng, G., Dubinett, S. M. (2005). Prostaglandin E2 Induces FOXP3 Gene Expression and T Regulatory Cell Function in Human CD4+ T Cells. The Journal of Immunology, 175(3), 1483–1490. https://doi.org/10.4049/jimmunol.175.3.1483 Barreto, A., Rodríguez, L.-S., Rojas, O. L., Wolf, M., Greenberg, H. B., Franco, M. A., & Angel, J. (2010). Membrane Vesicles Released by Intestinal Epithelial Cells Infected with Rotavirus Inhibit T-Cell Function. Viral Immunology, 23(6), 595–608. https://doi.org/10.1089/vim.2009.0113 Blutt, S. E., Crawford, S. E., Warfield, K. L., Lewis, D. E., Estes, M. K., & Conner, M. E. (2004). The VP7 Outer Capsid Protein of Rotavirus Induces Polyclonal B-Cell Activation. Journal of Virology, 78(13), 6974–6981. https://doi.org/10.1128/jvi.78.13.6974-6981.2004 Boster Biological Technology. (2019). How to become an ELISA expert in 4 days. Retrieved June 27, 2019, from https://www.bosterbio.com/elisa-troubleshooting-guidedownload- page Brandes, A. A., Carpentier, A. F., Kesari, S., Sepulveda-Sanchez, J. M., Wheeler, H. R., Chinot, O., Wick, W. (2016). A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro-Oncology, 18(8), 1146–1156. https://doi.org/10.1093/neuonc/now009 Burns, J. W., Krishnaney, A. A., Vo, P. T., Rouse, R. V, Anderson, L. J., & Greenberg, H. B. (1995). Analyses of homologous rotavirus infection in the mouse model. Virology, 207(1), 143–153. https://doi.org/S0042-6822(85)71060-4 [pii] 10.1006/viro.1995.1060 Calon, A., Espinet, E., Palomo-Ponce, S., Tauriello, D. V, Iglesias, M., Cespedes, M. V, Batlle, E. (2012). Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell, 22(5), 571–584. https://doi.org/10.1016/j.ccr.2012.08.013 Cerutti, A., & Rescigno, M. (2008). The Biology of Intestinal Immunoglobulin A Responses. Immunity, 28(6), 740–750. https://doi.org/10.1016/j.immuni.2008.05.001 Chakraborty, S., Bhattacharyya, R., & Banerjee, D. (2017). Infections: A Possible Risk Factor for Type 2 Diabetes. Advances in Clinical Chemistry (1st ed., Vol. 80). Elsevier Inc. https://doi.org/10.1016/bs.acc.2016.11.004 Chanda, S., Nandi, S., & Chawla-Sarkar, M. (2016). Rotavirus-induced miR-142-5p elicits proviral milieu by targeting non-canonical transforming growth factor beta signalling and apoptosis in cells. Cellular Microbiology, 18(5), 733–747. https://doi.org/10.1111/cmi.12544 Chemical Book. (2017). Polyvinylpyrrolidone. Retrieved September 27, 2018, from https://www.chemicalbook.com/ChemicalProductProperty_EN_CB4209342.htm Chen, W., Jin, W., Hardegen, N., Lei, K., Li, L., Marinos, N., Wahl, S. M. (2003). Conversion of Peripheral CD4 + CD25 − Naive T Cells to CD4 + CD25 + Regulatory T Cells by TGF- β Induction of Transcription Factor Foxp3. The Journal of Experimental Medicine, 198(12), 1875–1886. https://doi.org/10.1084/jem.20030152 CIR Expert Panel. (1986). Final Report on the Safety Assessment of H ydroxyethylcellulose , H yd roxy pro py Ice1 I u lose , Met h ylcellu lose , H yd roxy pro pyl Methylcellulose , and Cellulose Gum. International Journal of Toxicology, 5(3), 1–59. https://doi.org/10.3109/10915818609141925 Colak, S., & ten Dijke, P. (2017). Targeting TGF-β Signaling in Cancer. Trends in Cancer, 3(1), 56–71. https://doi.org/10.1016/j.trecan.2016.11.008 Cong, L., Xia, Z. K., & Yang, R. Y. (2014). Targeting the TGF-β receptor with kinase inhibitors for scleroderma therapy. Archiv Der Pharmazie, 347(9), 609–615. https://doi.org/10.1002/ardp.201400116 Crawford, S. E., Ramani, S., Tate, J. E., Parashar, U. D., Svensson, L., Hagbom, M., Estes, M. K. (2017). Rotavirus infection. Nature Reviews Disease Primers, 3:17083. https://doi.org/10.1038/nrdp.2017.83 Cutler, M. G., Collings, A. J., Kiss, I. S., & Sharratt, M. (1974). A lifespan study of a polydimethylsiloxane in the mouse. Food and Cosmetics Toxicology, 12(4), 443–450. https://doi.org/10.1016/0015-6264(74)90057-1 Dalby-Payne, J., & Elliott, E. (2002). Acute gastroenteritis in children. Australian Family Physician, 62(7), 35–40. Retrieved from http://www.pntonline.co.za/index.php/PNT/article/viewArticle/453 De Miguel Durán, F., & Perdomo Giraldi, M. (2011). Gastroenteritis aguda. Deshidratación. Pediatria Integral, 15(1), 54–60. De Santis, A., Fabris, L., Fontani, F., Taccani, F., & Zorzetto, C. (1970). Carboxymethylcellulose sodium. Bollettino Chimico Farmaceutico, 109(9), 499–501. https://doi.org/10.1097/PRS.0b013e31822adba3 Denney, L., Branchett, W., Gregory, L. G., Oliver, R. A., & Lloyd, C. M. (2018). Epithelialderived TGF-β1 acts as a pro-viral factor in the lung during influenza A infection. Mucosal Immunology, 11(2), 523–535. https://doi.org/10.1038/mi.2017.77 Feng, N., Burns, J. W., Bracy, L., & Greenberg, H. B. (1994). Comparison of mucosal and systemic humoral immune responses and subsequent protection in mice orally inoculated with a homologous or a heterologous rotavirus. Journal of Virology, 68(12), 7766–7773. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=237238&tool=pmcentrez& rendertype=abstract Feng, N., Yasukawa, L. L., Sen, A., & Greenberg, H. B. (2013). Permissive Replication of Homologous Murine Rotavirus in the Mouse Intestine Is Primarily Regulated by VP4 and NSP1. Journal of Virology, 87(15), 8307–8316. https://doi.org/10.1128/JVI.00619- 13 Franco-Cortés, M. A. (2016). Papel del TGF-β en la inmunidad contra los rotavirus. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 40(154), 18. https://doi.org/10.18257/raccefyn.300 García-Dorado, D., Cuartas, I., Prudkin, L., Baselga, J., Lahn, M. M., Rodón, L., Yingling, J. M. (2010). TGF-β Receptor Inhibitors Target the CD44high/Id1high Glioma-Initiating Cell Population in Human Glioblastoma. Cancer Cell, 18(6), 655–668. https://doi.org/10.1016/j.ccr.2010.10.023 Giannelli, G., Villa, E., & Lahn, M. (2014). Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Research, 74(7), 1890–1894. https://doi.org/10.1158/0008-5472.CAN-14-0243 Gomes-Santos, A. C., Oliveira, R. P. de, Moreira, T. G., Azevedo, V. A. C., Almeida, L. A. de, Rezende, R. M., Faria, A. M. C. (2017). Hsp65-Producing Lactococcus lactis Prevents Inflammatory Intestinal Disease in Mice by IL-10- and TLR2-Dependent Pathways. Frontiers in Immunology, 8, 1–12. https://doi.org/10.3389/fimmu.2017.00030 Gorelik, L., Fields, P. E., & Flavell, R. A. (2000). Cutting Edge: TGF- Inhibits Th Type 2 Development Through Inhibition of GATA-3 Expression. The Journal of Immunology, 165(9), 4773–4777. https://doi.org/10.4049/jimmunol.165.9.4773 Greenberg, H. B., & Estes, M. K. (2009). Rotaviruses: From Pathogenesis to Vaccination. Gastroenterology, 136(6), 1939–1951. https://doi.org/10.1053/j.gastro.2009.02.076 Herbertz, S., Sawyer, J. S., Stauber, A. J., Gueorguieva, I., Driscoll, K. E., Estrem, S. T., … Lahn, M. M. (2015). Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther, 9, 4479–4499. https://doi.org/10.2147/DDDT.S86621 Holmgaard, R. B., Schaer, D. A., Li, Y., Castaneda, S. P., Murphy, M. Y., Xu, X., Driscoll, K. E. (2018). Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. Journal for ImmunoTherapy of Cancer, 6(1), 1–15. https://doi.org/10.1186/s40425-018-0356-4 Hu, L., Crawford, S. E., Hyser, J. M., Estes, M. K., & Prasad, B. V. V. (2012). Rotavirus non-structural proteins: Structure and function. Current Opinion in Virology, 2(4), 380– 388. https://doi.org/10.1016/j.coviro.2012.06.003 Iliev, I. D., Mileti, E., Matteoli, G., Chieppa, M., & Rescigno, M. (2009). Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunology, 2(4), 340–350. https://doi.org/10.1038/mi.2009.13 Jabeen, R., & Kaplan, M. H. (2012). The symphony of the ninth: The development and function of Th9 cells. Current Opinion in Immunology, 24(3), 303–307. https://doi.org/10.1016/j.coi.2012.02.001 Jaimes, M. C., Rojas, O. L., Gonzalez, A. M., Cajiao, I., Charpilienne, A., Pothier, P., … Angel, J. (2002). Frequencies of Virus-Specific CD4+ and CD8+ T Lymphocytes Secreting Gamma Interferon after Acute Natural Rotavirus Infection in Children and Adults. Journal of Virology, 76(10), 4741–4749. https://doi.org/10.1128/jvi.76.10.4741- 4749.2002 Kawahara, T., Makizaki, Y., Oikawa, Y., Tanaka, Y., Maeda, A., Shimakawa, M., Taniguchi, K. (2017). Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors. PLoS ONE, 12(3), 1–22. https://doi.org/10.1371/journal.pone.0173979 Kelly, A., Houston, S. A., Sherwood, E., Casulli, J., & Travis, M. A. (2017). Regulation of Innate and Adaptive Immunity by TGFβ. Advances in Immunology, 134, 137–233. https://doi.org/10.1016/bs.ai.2017.01.001 Kelly M Credill, A. J. S. (2014). Nonclinical Safety Evaluation of a Transforming Growth Factor β Receptor I Kinase Inhibitor in Fischer 344 Rats and Beagle Dogs. Journal of Clinical Toxicology, 04(03). https://doi.org/10.4172/2161-0495.196 Konkel, J. E., Jin, W., Abbatiello, B., Grainger, J. R., & Chen, W. (2014). Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proceedings of the National Academy of Sciences, 111(4), E465–E473. https://doi.org/10.1073/pnas.1320319111 Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (2009). IL-17 and Th17 Cells. Annual Review of Immunology, 27(1), 485–517. https://doi.org/10.1146/annurev.immunol.021908.132710 Laouar, Y., Sutterwala, F. S., Gorelik, L., & Flavell, R. A. (2005). Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nature Immunology, 6(6), 600–607. https://doi.org/10.1038/ni1197 Laping, N. J. (2002). Inhibition of Transforming Growth Factor (TGF)-beta 1-Induced Extracellular Matrix with a Novel Inhibitor of the TGF-beta Type I Receptor Kinase Activity: SB-431542. Molecular Pharmacology, 62(1), 58–64. https://doi.org/10.1124/mol.62.1.58 Lazarevic, V., Glimcher, L. H., & Lord, G. M. (2013). T-bet: A bridge between innate and adaptive immunity. Nature Reviews Immunology, 13(11), 777–789. https://doi.org/10.1038/nri3536 Lin, G. J., Sytwu, H. K., Yu, J. C., Chen, Y. W., Kuo, Y. L., Yu, C. C., Huang, S. H. (2015). Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non obese diabetic mice by inducing differentiation of regulatory T cells. Toxicology and Applied Pharmacology, 282(2), 207–214. https://doi.org/10.1016/j.taap.2014.11.012 Liu, F., Li, G., Wen, K., Wu, S., Zhang, Y., Bui, T., Yuan, L. (2013). Lactobacillus rhamnosus gg on rotavirus-induced injury of ileal epithelium in gnotobiotic pigs. Journal of Pediatric Gastroenterology and Nutrition, 57(6), 750–758. https://doi.org/10.1097/MPG.0b013e3182a356e1 Liu, X., Yu, M., Chen, Y., & Zhang, J. (2016). Galunisertib (LY2157299), a transforming growth factor-beta receptor I kinase inhibitor, attenuates acute pancreatitis in rats. Braz J Med Biol Res, 49(9), e5388. https://doi.org/10.1590/1414-431X20165388 Ludert, J. E., Pujol, F. H., & Arbiza, J. (2017). Human virology in Latin America: From biology to control (Springer I). https://doi.org/10.1007/978-3-319-54567-7 Mackow, E. R., Shaw, R. D., Matsui, S. M., Vo, P. T., Dang, M. N., & Greenberg, H. B. (1988). The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proceedings of the National Academy of Sciences, 85(3), 645–649. https://doi.org/10.1073/pnas.85.3.645 Maizels, R. M., Smits, H. H., & McSorley, H. J. (2018). Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity, 49(5), 801–818. https://doi.org/10.1016/j.immuni.2018.10.016 Mazzoccoli, G., Pazienza, V., Panza, A., Valvano, M. R., Benegiamo, G., Vinciguerra, M., Piepoli, A. (2012). ARNTL2 and SERPINE1: Potential biomarkers for tumor aggressiveness in colorectal cancer. Journal of Cancer Research and Clinical Oncology, 138(3), 501–511. https://doi.org/10.1007/s00432-011-1126-6 McNeal, M. M., & Bernstein, D. I. (2014). Rotaviruses. In Viral Infections of Humans: Epidemiology and Control (pp. 713–732). https://doi.org/10.1007/978-1-4899-7448- 8_30 Medicines Agency, E. (2015). Background review for sodium laurilsulfate used as an excipient. Committee for Human Medicinal Products (CHMP), 44(July). Meliopoulos, V. A., Van de Velde, L. A., Van de Velde, N. C., Karlsson, E. A., Neale, G., Vogel, P., … Schultz-Cherry, S. (2016). An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathogens, 12(8), 1–30. https://doi.org/10.1371/journal.ppat.1005804 Melisi, D., Garcia-Carbonero, R., Macarulla, T., Pezet, D., Deplanque, G., Fuchs, M., … Tabernero, J. (2018). Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. British Journal of Cancer, 119(10), 1208–1214. https://doi.org/10.1038/s41416-018-0246-z Merck. (2003). Sodium dodecyl sulfate Product Information. Retrieved September 27, 2018, from https://www.sigmaaldrich.com/catalog/product/sigma/l3771?lang=en&region=CO Merck. (2018a). Antifoam A concentrate. Retrieved September 27, 2018, from https://www.sigmaaldrich.com/catalog/product/sigma/a6582?lang=en&region=CO Merck. (2018b). Carboxymethylcellulose sodium salt. Retrieved September 27, 2018, from https://www.sigmaaldrich.com/catalog/product/sigma/c5678?lang=en&region=CO Mesa, M. C., Gutiérrez, L., Duarte-Rey, C., Angel, J., & Franco, M. A. (2010). A TGF-β mediated regulatory mechanism modulates the T cell immune response to rotavirus in adults but not in children. Virology, 399(1), 77–86. https://doi.org/10.1016/j.virol.2009.12.016 Midthun, K., Greenberg, H. B., Hoshino, Y., Kapikian, A. Z., Wyatt, R. G., & Chanock, R. M. (1985). Reassortant rotaviruses as potential live rotavirus vaccine candidates. Journal of Virology, 53(3), 949–954. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2983101%0Ahttp://www.pubmedcentral.nih.gov /articlerender.fcgi?artid=PMC254731 Min, J., Jin, C., Piao, H.-R., Zhao, L.-M., Guo, Z., Zhu, W.-J., Li, X.-Y. (2018). Synthesis and Evaluation of 3-Substituted-4-(quinoxalin-6-yl) Pyrazoles as TGF-β Type I Receptor Kinase Inhibitors. Molecules, 23(12), 3369. https://doi.org/10.3390/molecules23123369 Mondal, M. I. H., & Yeasmin, M. S. (2016). Toxicity study of food-grade carboxymethyl cellulose synthesized from maize husk in Swiss albino mice. International Journal of Biological Macromolecules, 92, 965–971. https://doi.org/10.1016/j.ijbiomac.2016.08.012 Moore, A. F. (1983). Final Report on the Safety Assessment of Sodium Lauryl Sulfate and Ammonium Lauryl Sulfate. International Journal of Toxicology, 2(7), 127–181. https://doi.org/https://doi.org/10.3109/10915818309142005 Munger, J. S., Huang, X., Kawakatsu, H., Griffiths, M. J. D., Dalton, S. L., Wu, J., … Sheppard, D. (1999). The integrin αvβ6 binds and activates latent TGFβ1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell, 96(3), 319–328. https://doi.org/10.1016/S0092-8674(00)80545-0 Murphy-Ullrich, J. E., & Suto, M. J. (2018). Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease. Matrix Biology (Vol. 68–69). Elsevier B.V. https://doi.org/10.1016/j.matbio.2017.12.009 Murphy, K. (2012). Janeway’s Immunobiology. (Garland Science, Ed.) (8th Editio). London and New York. Nair, B. (1998). Final Report On the Safety Assessment of Polyvinylpyrrolidone (PVP). International Journal of Toxicology, 17(5_suppl2), 95–130. https://doi.org/10.1177/1091581817716649 Nakanishi, M., & Rosenberg, D. W. (2013). Multifaceted roles of PGE2 in inflammation and cancer. Seminars in Immunopathology, 35(2), 123–137. https://doi.org/10.1007/s00281-012-0342-8 National Toxicology Program. (1992). Toxicology and carcinogenesis studies of polysorbate 80 in F344/N rats and B6C3F1 mice. Journal of Chemical Information and Modeling, 415. https://doi.org/10.1017/CBO9781107415324.004 Owen, J., Punt, J., Stranford, S., & Jones, P. (2015). Kuby Immunology (Seventh Ed). New York: W.H. Freeman and Company. https://doi.org/10.15713/ins.mmj.3 Parra Avila, M. H., Ángel Uribe, J., & Franco, M. A. (2014). Caracterización de los linfocitos T CD4 específicos de rotavirus. Instituto de Genética Humana. Retrieved from http://hdl.handle.net/10554/15425 Parra, M., Herrera, D., Jácome, M. F., Mesa, M. C., Rodríguez, L. S., Guzmán, C., … Franco, M. A. (2014). Circulating rotavirus-specific T cells have a poor functional profile. Virology, 468–470, 340–350. https://doi.org/10.1016/j.virol.2014.08.020 Pathophysiology Vivo. (2014). Villi , Crypts and the Life Cycle of Small Intestinal Enterocytes. Retrieved June 26, 2019, from http://www.vivo.colostate.edu/hbooks/pathphys/digestion/smallgut/lifecycle.html Paul, W. E. (2008). Fundamental Immunology. (Wolters Kluwer, Ed.) (Sixth Edit). Philadelphia. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RTPCR. Nucleic Acids Research, 29(9), e45. https://doi.org/10.1093/nar/29.9.e45 Rey, L. M. (2018). Papel del TGFBeta en la inmunidad contra el rotavirus en el modelo múrido neonatal. Tesis de Maestría, Pontificia Universidad Javeriana, Colombia. Rey, L. M., Gil, J. A., Mateus, J., Rodríguez, L.-S., Rondón, M., Ángel, J., & Franco, M. A. (2019). LAP + cells modulate protection induced by oral vaccination with Rhesus Rotavirus in a neonatal mouse model. Journal of Virology, JVI Accept. https://doi.org/10.1128/JVI.00882-19 Rezende, R. M., & Weiner, H. L. (2018). Cellular Components and Mechanisms of Oral Tolerance Induction. Critical Reviews in Immunology, 38(3), 207–231. https://doi.org/10.1615/critrevimmunol.2018026181 Rimoldi, M., Chieppa, M., Salucci, V., Avogadri, F., Sonzogni, A., Sampietro, G. M., Rescigno, M. (2005). Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nature Immunology, 6(5), 507–514. https://doi.org/10.1038/ni1192 Rodon, J., Carducci, M. A., Sepulveda-Sánchez, J. M., Azaro, A., Calvo, E., Seoane, J., Baselga, J. (2015). First-in-human dose study of the novel transforming growth factor- β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clinical Cancer Research, 21(3), 553–560. https://doi.org/10.1158/1078- 0432.CCR-14-1380 Rodríguez, L.-S., Barreto, A., Franco, M. A., & Angel, J. (2009). Immunomodulators Released During Rotavirus Infection of Polarized Caco-2 Cells. Viral Immunology, 22(3), 163–172. https://doi.org/10.1089/vim.2008.0110 Rodríguez, L. S., Narváez, C. F., Rojas, O. L., Franco, M. A., & Ángel, J. (2012). Human myeloid dendritic cells treated with supernatants of rotavirus infected Caco-2 cells induce a poor Th1 response. Cellular Immunology, 272(2), 154–161. https://doi.org/10.1016/j.cellimm.2011.10.017 Ruiz, M. C., Leon, T., Díaz, Y., & Michelangeli, F. (2009). Molecular Biology of Rotavirus Entry and Replication, 1476–1497. https://doi.org/10.1100/tsw.2009.158 Schmittgen, T. D. (2006). Quantitative gene expression by real-time PCR: a complete protocol. (Taylor & Francis Group, Ed.), Real-time PCR. https://doi.org/10.4016/17251.01 Segawa, S., Goto, D., Yoshiga, Y., Sugihara, M., Hayashi, T., Chino, Y., Sumida, T. (2010). Inhibition of transforming growth factor-β signalling attenuates interleukin (IL)-18 plus IL-2-induced interstitial lung disease in mice. Clinical and Experimental Immunology, 160(3), 394–402. https://doi.org/10.1111/j.1365-2249.2010.04094.x Srinivasan, L., Harris, M. C., & Kilpatrick, L. E. (2016). Cytokines and Inflammatory Response in the Fetus and Neonate. Fetal and Neonatal Physiology (Fifth Edit). Elsevier Inc. https://doi.org/10.1016/b978-0-323-35214-7.00128-1 Swidsinski, A., Ung, V., Sydora, B. C., Loening-Baucke, V., Doerffel, Y., Verstraelen, H., & Fedorak, R. N. (2009). Bacterial overgrowth and inflammation of small intestine after carboxymethylcellulose ingestion in genetically susceptible mice. Inflammatory Bowel Diseases, 15(3), 359–364. https://doi.org/10.1002/ibd.20763 Tauriello, D. V. F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M., Batlle, E. (2018). TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature, 554(7693), 538–543. https://doi.org/10.1038/nature25492 Travis, M. A., & Sheppard, D. (2014). TGF-β Activation and Function in Immunity. Annual Review of Immunology, 32(1), 51–82. https://doi.org/10.1146/annurev-immunol- 032713-120257 Troncone, E., Marafini, I., Stolfi, C., & Monteleone, G. (2018). Transforming growth factor- β1/Smad7 in intestinal immunity, inflammation, and cancer. Frontiers in Immunology, 9(JUN), 4–9. https://doi.org/10.3389/fimmu.2018.01407 Uhnoo, I., Riepenhoff-Talty, M., Dharakul, T., Chegas, P., Fisher, J. E., Greenberg, H. B., & Ogra, P. L. (1990). Extramucosal spread and development of hepatitis in immunodeficient and normal mice infected with rhesus rotavirus. Journal of Virology, 64(1), 361–368. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2152822%0Ahttp://www.pubmedcentral.nih.gov /articlerender.fcgi?artid=PMC249110 Vancott, J. L., Prada, A. E., Mcneal, M. M., Stone, S. C., Basu, M., Huffer, B., Ward, R. L. (2006). Mice Develop Effective but Delayed Protective Immune Responses When Immunized as Neonates either Intranasally with Nonliving VP6 / LT ( R192G ) or Orally with Live Rhesus Rotavirus Vaccine Candidates, 80(10), 4949–4961. https://doi.org/10.1128/JVI.80.10.4949 Villalba, M., Evans, S. R., Vidal-Vanaclocha, F., & Calvo, A. (2017). Role of TGF-β in metastatic colon cancer: it is finally time for targeted therapy. Cell and Tissue Research, 370(1), 29–39. https://doi.org/10.1007/s00441-017-2633-9 Wang, W., Donnelly, B., Bondoc, A., Mohanty, S. K., McNeal, M., Ward, R., Tiao, G. (2011). The Rhesus Rotavirus Gene Encoding VP4 Is a Major Determinant in the Pathogenesis of Biliary Atresia in Newborn Mice. Journal of Virology, 85(17), 9069– 9077. https://doi.org/10.1128/jvi.02436-10 Wilen, C. B., Lee, S., Hsieh, L. L., Orchard, R. C., Desai, C., Hykes, B. L., Virgin, H. W. (2018). Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science, 360(6385), 204–208. https://doi.org/10.1126/science.aar3799 World Health Organization. (2016). Immunization, Vaccines and Biologicals, 241, 1–2. Worthington, J. J., Kelly, A., Smedley, C., Bauché, D., Campbell, S., Marie, J. C., & Travis, M. A. (2015). Integrin αvβ8-Mediated TGF-β Activation by Effector Regulatory T Cells Is Essential for Suppression of T-Cell-Mediated Inflammation. Immunity, 42(5), 903– 915. https://doi.org/10.1016/j.immuni.2015.04.012 Yingling, J. M., McMillen, W. T., Yan, L., Huang, H., Sawyer, J. S., Graff, J., Driscoll, K. E. (2018). Preclinical assessment of galunisertib (LY2157299 monohydrate), a first-inclass transforming growth factor-beta receptor type I inhibitor. Oncotarget, 9(6), 6659– 6677. https://doi.org/10.18632/oncotarget.23795 Zhao, C., Isenberg, J. S., & Popel, A. S. (2018). Human expression patterns: qualitative and quantitative analysis of thrombospondin-1 under physiological and pathological conditions. Journal of Cellular and Molecular Medicine, 22(4), 2086–2097. https://doi.org/10.1111/jcmm.13565 Zhu, J., Motejlek, K., Wang, D., Zang, K., Schmidt, A., & Reichardt, L. F. (2002). Beta8 Integrins Are Required for Vascular Morphogenesis in Mouse Embryos. Development (Cambridge, England), 129(12), 2891–2903. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12050137%5Cnhttp://www.pubmedcentral.nih.g ov/articlerender.fcgi?artid=PMC2710098
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalGalunisertib
dc.subject.proposalGalunisertib
dc.subject.proposalHeterologous rhesus rotavirus
dc.subject.proposalRotavirus heterólogo de simio
dc.subject.proposalNeonatal mice
dc.subject.proposalRatones neonatos
dc.subject.proposalRT-qPCR
dc.subject.proposalRT-qPCR
dc.subject.proposalTGFβ1
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito