Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRestrepo Baena, Oscar Jaime
dc.contributor.advisorTobón, Jorge iván
dc.contributor.authorBetancur Granados, Natalia
dc.date.accessioned2020-02-11T20:17:44Z
dc.date.available2020-02-11T20:17:44Z
dc.date.available2022-12-10
dc.date.issued2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75580
dc.description.abstractPortland cement is a construction material traditionally obtained by the calcination until partial fusion of limestone, clays and correctors to obtain clinker, which is combine with a source of calcium sulfate to produce cement. Clinker is composed by calcium silicates (Ca3SiO5 and Ca2SiO4) and calcium aluminates (Ca3Al2O6 and Ca4Al2Fe2O10). These calcium silicate phases are responsible of the development of mechanical properties, such as compressive strength; therefore, several research have been developed to understand its features and properties. Understand the properties of nanosized calcium silicates are very important since the possibility to obtain highly-reactive materials which allow the reduction of the energy consumption and negative impacts of production in cement. An important method to manufacture the nanoparticles is by flame spray pyrolysis (FSP), which allows the control of the particles features by controlling the process parameters. In this thesis is presented the study of the effects of some intrinsic and extrinsic conditions of the process and their influence over the particle features and properties, during the production of dicalcium silicate, as one of the main phases of Portland cement. The properties of dicalcium silicates phases were evaluated as phases of interest in the cement industry. During the synthesis processes, metallorganic precursors were dissolved in organic-inorganic mixtures of solvents, obtaining the starting solution. The solution was sprayed in a premixed oxy-acetylene flame, resulting in the evaporation and subsequent reaction of the precursors. Finally, the powders were manually collected in an electrostatic precipitator. The parameters evaluated during the synthesis procedures were the ceramic loading of the starting solution, dispersion gas, pressure of dispersion gas, precursors flow rate and solvent, using an experimental design of two-levels fractional factorial design with resolution III, 25-2III, allowing to study the main effects and their interaction. The responses evaluated were the mineralogical composition obtained by Rietveld refinement, the specific surface area and the heat flow release of the samples during the hydration reaction. The anhydrous samples were characterized by XRD, FT-IR, TGA-DSC/MS-IR, nitrogen adsorption-desorption BET, SEM, TEM and calorimetry, while hydrated samples were characterized by XRD, SEM and TEM. Results show a strong influence of the process conditions over the mineralogy and hydraulic behavior of the samples. The application of experimental designs allowed to observe which parameters have more significance in the features of the products, and a tendency of the intrinsic and extrinsic conditions of the process were obtained. Applying these results was possible to have a methodology to produce nanoparticles of dicalcium silicates with hydraulic properties, developing the hydration reaction in 24 hours after contact with water, which could be scale-up to high volumes of production..
dc.description.abstractEl cemento Portland es un material de construcción tradicionalmente obtenido por la calcinación hasta fusión parcial de piedra caliza, arcillas y correctores para obtener clinker, el cual se combina con una fuente de sulfato de calcio para dar lugar al cemento. El clinker se compone de silicatos de calcio (Ca3SiO5 y Ca2SiO4) y aluminatos de calcio (Ca3Al2O6 y Ca4Al2Fe2O10). Las fases de silicato de calcio son responsables del desarrollo de propiedades mecánicas, como resistencia a la compresión, por lo que varias investigaciones se han desarrollado para comprender sus características y propiedades. Entender las propiedades de los silicatos de calcio de tamaño nanométrico es de gran importancia dada a la posibilidad de obtener materiales altamente reactivos que permitan reducir el consumo energético y los impactos negativos generados durante la producción del cemento. Un método importante para la fabricación de nanopartículas es pirólisis de aerosol en llama (FSP), el cual permite controlar las características de las partículas mediante la manipulación de los parámetros del proceso. En esta tesis se presenta el estudio exploratorio de los efectos de algunas de las condiciones intrínsecas y extrínsecas del proceso pirólisis de aerosol en llama y su influencia sobre las características y propiedades de las partículas, durante la producción de silicato dicálcico como una de las fases principales del cemento Portland. Las propiedades de los silicatos dicálcicos producidos se evaluaron como fases de interés en la industria del cemento. Durante los procesos de síntesis, los precursores metalorgánicos se disolvieron en mezclas de disolventes orgánico-inorgánico, obteniendo la solución de partida. La solución se dirigió hacia una llama de oxi-acetileno, dando como resultado la evaporación y posterior reacción de los precursores. Finalmente, los productos se colectaron en un precipitador electrostático. Los parámetros evaluados durante los procedimientos de síntesis fueron la carga cerámica de la solución, el gas de dispersión, la presión del gas de dispersión, el flujo de los precursores y el disolvente, utilizando un diseño de experimentos tipo factorial fraccionado de dos niveles con resolución III, 25-2III, el cual permite estudiar los efectos principales y su interacción. Las respuestas evaluadas fueron la composición mineralógica obtenida mediante el método de Rietveld, el área superficial específica y la liberación de flujo de calor de las muestras durante la reacción de hidratación. Las muestras anhidras se caracterizaron por difracción de rayos x (XRD), espectroscopia infrarroja con transformada de Fourier (FT-IR), análisis térmico acoplado a espectrometría de masas (TGA-DSC/MS-IR), análisis BET por adsorción-desorción de nitrógeno, microscopia electrónica de barrido (SEM), microscopía electrónica de transmisión (TEM) y calorimetría, mientras que las muestras hidratadas se caracterizaron por XRD, SEM y TEM. Los resultados obtenidos permiten demostrar la influencia de las condiciones del proceso sobre la mineralogía y el comportamiento hidráulico de las muestras. La aplicación de un diseño de experimentos permitió observar cuáles parámetros tienen más importancia en las características de los productos y se obtuvo una tendencia de las condiciones intrínsecas y extrínsecas del proceso. Aplicando estos resultados fue posible tener una metodología para producir nanopartículas de silicatos dicálcicos con propiedades hidráulicas, desarrollando la reacción de hidratación en 24 horas después del contacto con agua, lo cual podría ser escalado a altos volúmenes de producción.
dc.format.extent169 páginas
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcIngeniería y operaciones afines::Minería y operaciones relacionadas
dc.titleSynthesis of calcium silicates by flame spray pyrolysis
dc.typeTrabajo de grado - Doctorado
dc.rights.spaAcceso abierto
dc.description.additionalDoctorado en Ingeniería _ Ciencia de los materiales
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcción
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesD. N. Huntzinger and T. D. Eatmon, “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies,” J. Clean. Prod., vol. 17, no. 7, pp. 668–675, 2009.
dc.relation.referencesA. Hasanbeigi, L. Price, and E. Lin, “Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review,” Renew. Sustain. Energy Rev., vol. 16, no. 8, pp. 6220–6238, 2012
dc.relation.referencesG. Voicu, C. D. Ghiţulică, and E. Andronescu, “Modified Pechini synthesis of tricalcium aluminate powder,” Mater. Charact., vol. 73, pp. 89–95, Nov. 2012.
dc.relation.referencesD. M. Roy and S. O. Oyefesobi, “Preparation of Very Reactive Ca2SiO4 Powder,” J. Am. Ceram. Soc., vol. 60, no. 3–4, pp. 178–180, 1977
dc.relation.referencesA. Meiszterics and K. Sinkó, “Sol-gel derived calcium silicate ceramics,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 319, no. 1–3, pp. 143–148, 2008.
dc.relation.referencesR. Chrysafi, T. Perraki, and G. Kakali, “Sol-gel preparation of 2CaO.SiO2,” J. Eur. Ceram. Soc., vol. 27, no. 2–3, pp. 1707–1710, 2007
dc.relation.referencesS. H. Hong and J. F. Young, “Hydration kinetics and phase stability of dicalcium silicate synthesized by the Pechini process,” J. Am. Ceram. Soc., vol. 82, no. 7, pp. 1681–1686, 1999.
dc.relation.referencesX.-H. Huang and J. Chang, “Low-temperature synthesis of nanocrystalline β-dicalcium silicate with high specific surface area,” J. Nanoparticle Res., vol. 9, pp. 1195–1200, 2007
dc.relation.referencesW. Y. Teoh, R. Amal, and L. Mädler, “Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication.,” Nanoscale, vol. 2, no. 8, pp. 1324–1347, 2010.
dc.relation.referencesS. C. Halim, T. J. Brunner, R. N. Grass, M. Bohner, and W. J. Stark, “Preparation of an ultra fast binding cement from calcium silicate-based mixed oxide nanoparticles.,” Nanotechnology, vol. 18, no. 39, p. 395701, 2007
dc.relation.referencesL. Nicoleau, A. Nonat, and D. Perrey, “The di- and tricalcium silicate dissolutions,” Cem. Concr. Res., vol. 47, pp. 14–30, 2013.
dc.relation.referencesY. P. Arías Jaramillo, “Incidencia de la temperatura ambiente en la formación de compuestos cementantes mediante la activación alcalina de ceniza de carbón,” Universidad Nacional de Colombia, 2013.
dc.relation.referencesX. Li, X. Shen, M. Tang, and X. Li, “Stability of tricalcium silicate and other primary phases in portland cement clinker,” Ind. Eng. Chem. Res., vol. 53, no. 5, pp. 1954–1964, 2014.
dc.relation.referencesH.-M. Ludwig and W. Zhang, “Research review of cement clinker chemistry,” Cem. Concr. Res., vol. 78, pp. 24–37, 2015.
dc.relation.referencesA. Bazzoni, S. Ma, Q. Wang, X. Shen, M. Cantoni, and K. L. Scrivener, “The effect of Magnesium and Zinc Ions on the Hydration kinetics of C3S,” J. Am. Ceram. Soc., vol. 97, no. 11, pp. 3684–3693, 2014.
dc.relation.referencesM.-N. de Noirfontaine, F. Dunstetter, M. Courtial, G. Gasecki, and M. Signes-Frehel, “Polymorphism of tricalcium silicate, the major compound of Portland cement clinker,” Cem. Concr. Res., vol. 36, no. 1, pp. 54–64, 2006.
dc.relation.referencesF. Dunstetter, M. N. De Noirfontaine, and M. Courtial, “Polymorphism of tricalcium silicate, the major compound of Portland cement clinker: 1. Structural data: Review and unified analysis,” Cem. Concr. Res., vol. 36, no. 1, pp. 39–53, 2006.
dc.relation.referencesÁ. ́ G. De la Torre, R. N. De Vera, a. J. M. Cuberos, and M. a G. Aranda, “Crystal structure of low magnesium-content alite: Application to Rietveld quantitative phase analysis,” Cem. Concr. Res., vol. 38, no. 11, pp. 1261–1269, 2008
dc.relation.referencesV. K. Peterson, B. a Hunter, and A. Ray, “Tricalcium Silicate T1 and T2 Polymorphic Investigations: Rietveld Refinement at Various Temperatures Using Synchrotron Powder Diffraction,” J. Am. Ceram. Soc., vol. 87, no. 9, pp. 1625–1634, 2004.
dc.relation.referencesN. B. Singh, S. Rai, and N. Singh, “Highly Reactive B-Dicalcium Silicate,” J. Am. Ceram. Soc., vol. 85, no. 9, pp. 2171–2176, 2002.
dc.relation.referencesJ. C. Restrepo, A. A. Chavarriaga, O. J. Restrepo, J. I. Tobón, J. I. Tobon, and J. I. Tobón, “Synthesis of Hydraulically Active Calcium Silicates Produced by Combustion Methods,” MRS Proc., vol. 1768, pp. imrc2014-6d – 008, Mar. 2015
dc.relation.referencesC. H. Bamford and C. F. H. Tipper, “Reactions in the Solid State - Google Books,” in Comprehensive chemical kinetics, Elsevier, 1980, p. 339.
dc.relation.referencesB. Phillips and A. Muan, “Phase Equilibria in the System CaO-Iron Oxide-SiO2, in Air,” J. Am. Ceram. Soc., vol. 42, no. 9, pp. 413–423, 1959.
dc.relation.referencesL. QUÉMÉNEUR, J. CHOISNET, B. RAVEAU, J. M. THIEBAUT, and G. ROUSSY, “Microwave Clinkering with a Grooved Resonant Applicator,” J. Am. Ceram. Soc., vol. 66, no. 12, pp. 855–859, 1983.
dc.relation.referencesH. Li, D. K. Agrawal, J. Cheng, and M. R. Silsbee, “Formation and hydration of C3S prepared by microwave and conventional sintering,” Cem. Concr. Res., vol. 29, no. 814, pp. 1611–1617, 1999
dc.relation.referencesD. a. Fumo, M. R. Morelli, and A. M. Segadães, “Combustion synthesis of calcium aluminates,” Mater. Res. Bull., vol. 31, no. 10, pp. 1243–1255, 1996.
dc.relation.referencesZ. Gou and J. Chang, “Synthesis and in vitro bioactivity of dicalcium silicate powders,” J. Eur. Ceram. Soc., vol. 24, no. 1, pp. 93–99, 2004
dc.relation.referencesW. Zhao and J. Chang, “Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powders,” Mater. Lett., vol. 58, no. 19, pp. 2350–2353, 2004.
dc.relation.referencesM. P. Pechini, “Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor,” 1967.
dc.relation.referencesA. C. Tas, “Chemical Preparation of the Binary Compounds in the Calcia–Alumina System by Self-Propagating Combustion Synthesis,” J. Am. Ceram. Soc., vol. 81, no. 11, pp. 2853–2863, 1998
dc.relation.referencesJ. C. Restrepo, A. Chavarriaga, O. J. Restrepo, and J. I. Tobón, “Synthesis of Hydraulically Active Calcium Silicates Produced by Combustion Methods,” MRS Proc., vol. 1768, pp. imrc2014-6d – 008, Mar. 2015.
dc.relation.referencesR. Strobel, A. Alfons, and S. E. Pratsinis, “Aerosol flame synthesis of catalysts,” Adv. Powder Technol., vol. 17, no. 5, pp. 457–480, 2006
dc.relation.referencesA. J. Gröhn, S. E. Pratsinis, and K. Wegner, “Fluid-particle dynamics during combustion spray aerosol synthesis of ZrO2,” Chem. Eng. J., vol. 191, pp. 491–502, 2012
dc.relation.referencesT. J. Brunner, R. N. Grass, M. Bohner, and W. J. Stark, “Effect of particle size, crystal phase and crystallinityon the reactivity of tricalcium phosphate cements for bone reconstruction,” J. Mater. Chem., vol. 17, no. 38, p. 4072, 2007.
dc.relation.referencesN. Betancur-Granados, J. I. Tobón, and O. J. Restrepo-Baena, “Alternative Production Processes of Calcium Silicate Phases of Portland Alternative Production Processes of Calcium Silicate Phases of Portland Cement : A Review,” Civ. Eng. Res. J., vol. 5, no. 3, pp. 1–6, 2018.
dc.relation.referencesT. Sahm, L. Mädler, A. Gurlo, N. Barsan, S. E. Pratsinis, and U. Weimar, “Flame spray synthesis of tin dioxide nanoparticles for gas sensing,” Sensors Actuators B Chem., vol. 98, no. 2–3, pp. 148–153, Mar. 2004.
dc.relation.referencesV. S. Buddhiraju and V. Runkana, “Simulation of nanoparticle synthesis in an aerosol flame reactor using a coupled flame dynamics–monodisperse population balance model,” J. Aerosol Sci., vol. 43, no. 1, pp. 1–13, Jan. 2012.
dc.relation.referencesM. Kim, S. Lai, and R. M. Laine, “Combinatorial Nanopowder Synthesis Along the ZnO-Al2O3 Tie Line Using Liquid-Feed Flame Spray Pyrolysis,” J. Am. Ceram. Soc., vol. 94, no. 10, pp. 3308–3318, Oct. 2011.
dc.relation.referencesA. K. Rai, K. . Mandal, D. Kumar, and O. Parkash, “Characterization of nickel doped CCTO: CaCu2.9Ni0.1Ti4O12 and CaCu3Ti3.9Ni0.1O12 synthesized by semi-wet route,” J. Alloys Compd., vol. 491, no. 1–2, pp. 507–512, Feb. 2010
dc.relation.referencesA. C. Sutorik, R. M. Laine, J. Marchal, T. Johns, and T. Hinklin, “Mixed-metal oxide particles by Liquid Feed Flame Spray Pyrolysis of oxide precursors in oxigenated solvents,” 7220398, 200
dc.relation.referencesT. Hinklin et al., “Liquid-Feed Flame Spray Pyrolysis of Metalloorganic and Inorganic Alumina Sources in the Production of Nanoalumina Powders,” Chem. Mater, vol. 16, no. 12, pp. 21–30, 2004
dc.relation.referencesJ. Azurdia et al., “Liquid-Feed Flame Spray Pyrolysis as a Method of Producing Mixed-Metal Oxide Nanopowders of Potential Interest as Catalytic Materials . Nanopowders along the NiO-Al 2 O 3 Tie Line Including,” Chem. Mater., no. 6, pp. 731–739, 2006.
dc.relation.referencesS. Li, Y. Ren, P. Biswas, and S. D. Tse, “Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics,” Prog. Energy Combust. Sci., vol. 55, pp. 1–59, 2016.
dc.relation.referencesR. Jossen, S. E. Pratsinis, W. J. Stark, and L. Mädler, “Criteria for flame-spray synthesis of hollow, shell-like, or inhomogeneous oxides,” J. Am. Ceram. Soc., vol. 88, no. 6, pp. 1388–1393, 2005.
dc.relation.referencesO. Waser, A. J. Groehn, M. L. Eggersdorfer, and S. E. Pratsinis, “Air Entrainment During Flame Aerosol Synthesis of Nanoparticles,” Aerosol Sci. Technol., vol. 48, no. 11, pp. 1195–1206, 2014.
dc.relation.referencesF. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How ‘flat’ is the rich premixed flame produced by your McKenna burner?,” Combust. Flame, vol. 153, no. 3, pp. 384–393, 2008
dc.relation.referencesN. Betancur-Granados, J. C. Restrepo, J. I. Tobón, and O. J. Restrepo-Baena, “Dicalcium silicate (2CaO·SiO2) synthesized through flame spray pyrolysis and solution combustion synthesis methods (CB-6:IL10),” Ceram. Int., vol. 45, no. July, pp. 9589–9595, 2019.
dc.relation.referencesW. Encyclopedia, “Encyclopedia | Upgrade your welding supplies knowledge -Oxyacetylene flame.” [Online]. Available: https://www.weldcor.ca/encyclopedia.html?alpha=O&per_page=2.
dc.relation.referencesD. Patiño, B. Crespo, J. Porteiro, E. Villaravid, and E. Granada, “Experimental study of a tubular-type ESP for small-scale biomass boilers: Preliminary results in a diesel engine,” Powder Technol., vol. 288, no. November 2015, pp. 164–175, 2016.
dc.relation.referencesR. Mueller, L. Mädler, and S. E. Pratsinis, “Nanoparticle synthesis at high production rates by flame spray pyrolysis,” Chem. Eng. Sci., vol. 58, no. 10, pp. 1969–1976, May 2003
dc.relation.referencesA. J. Gröhn, M. L. Eggersdorfer, S. E. Pratsinis, and K. Wegner, “On-line monitoring of primary and agglomerate particle dynamics,” J. Aerosol Sci., vol. 73, pp. 1–13, 2014.
dc.relation.referencesE. Lovell, J. Scott, and R. Amal, “Ni-SiO2 Catalysts for the Carbon Dioxide Reforming of Methane: Varying Support Properties by Flame Spray Pyrolysis,” Molecules, vol. 20, no. 3, pp. 4594–4609, 2015.
dc.relation.referencesS. Processing and O. F. Liquid, “J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King and H. Herman Department of Materials Science & Engineering, SUNY Stony Brook, Stony Brook, NY,” Science (80-. )., vol. 9, pp. 137–140, 1997.
dc.relation.referencesG. D. Ulrich, “Theory of Particle Formation and Growth in Oxide Synthesis Flames Theory of Particle Formation and Growth in Oxide Synthesis Flames,” Combust. Sci. Technol., vol. 4, no. 1, pp. 47–57, 1971.
dc.relation.referencesF. E. Kruis, K. a. Kusters, S. E. Pratsinis, and B. Scarlett, “A Simple Model for the Evolution of the Characteristics of Aggregate Particles Undergoing Coagulation and Sintering,” Aerosol Sci. Technol., vol. 19, no. 4, pp. 514–526, 1993
dc.relation.referencesS. L. Niu, K. H. Han, and C. M. Lu, “Kinetic calculations for the thermal decomposition of calcium propionate under non-isothermal conditions,” Chinese Sci. Bull., vol. 56, no. 12, pp. 1278–1284, 2011.
dc.relation.referencesK. Garbev, B. Gasharova, G. Beuchle, S. Kreisz, and P. Stemmermann, “First Observation of α-Ca2[SiO3(OH)](OH)-Ca6[Si2O7][SiO4](OH)2 Phase Transformation upon Thermal Treatment in Air,” J. Am. Ceram. Soc., vol. 91, no. 1, pp. 263–271, 2007.
dc.relation.referencesV. Morales-Flórez, A. Santos, I. Romero-Hermida, and L. Esquivias, “Hydration and carbonation reactions of calcium oxide by weathering: Kinetics and changes in the nanostructure,” Chem. Eng. J., vol. 265, pp. 194–200, 2015.
dc.relation.referencesH. Torabmostaedi, T. Zhang, P. Foot, S. Dembele, and C. Fernandez, “Process control for the synthesis of ZrO2 nanoparticles using FSP at high production rate,” Powder Technol., vol. 246, pp. 419–433, 2013.
dc.relation.referencesC. A. O’Connell and D. Dollimore, “A study of the decomposition of calcium propionate, using simultaneous TG-DTA,” Thermochim. Acta, vol. 357–358, pp. 79–87, 2000.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalClinker
dc.subject.proposalpropiedades mecánicas
dc.subject.proposalSilicatos de calcio
dc.subject.proposalPirólisis de aerosol
dc.subject.proposalSilicato dicálcico
dc.subject.proposalMétodo de Rietveld
dc.type.coarhttp://purl.org/coar/resource_type/c_8042
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_16ec


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito