Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGómez Vélez, César Augusto
dc.contributor.authorBernal Berrio, Luis Alberto
dc.date.accessioned2020-02-13T20:04:57Z
dc.date.available2020-02-13T20:04:57Z
dc.date.issued2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75596
dc.description.abstractIn this work, the parameters for the default intensity of observable covariates in the presence of an unobservable fragility factor are estimated. The observable information corresponds to the evolution In this work, the parameters for the default intensity of observable covariates in the presence of an unobservable fragility factor are estimated. The observable information corresponds to the evolution of some macroeconomic variables over time, as well as the characteristic information of the individuals of a credit segment in a Colombian financial entity; a small modification to the Cox process proposed for intensity is made in Duffie et al. (2009), in order to include a jump component by means of which it is sought to describe the spontaneous clusters defaults, a program is finally implemented to estimate the parameters associated to the process for intensity by means of the EM algorithm and the Gibbs sampler.
dc.description.abstractEn este trabajo se estiman los parámetros para la intensidad de default de covariables observables en presencia de un factor de fragilidad no observable. La información observable corresponde a la evolución de algunas variables macroeconómicas en el tiempo, así como la información característica de individuos de un segmento de crédito en una entidad financiera colombiana; se realiza una pequeña modificación al proceso de Cox propuesto para la intensidad en Duffie et al. (2009), con el fin de incluir una componente de saltos a partir de la cual se busca describir los agrupamientos espontáneos de defaults, finalmente se implementa un programa para estimar los parámetros asociados al proceso para la intensidad por medio del algoritmo EM y el muestreador de Gibbs
dc.format.extent123
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcMatemáticas::Probabilidades y matemáticas aplicadas
dc.titleModelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltos
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.description.additionalMagister en Ciencias Estadística
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreelevelMaestría
dc.publisher.departmentEscuela de estadística
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAhn, J. J., Oh, K. J., Kim, T. Y., and Kim, D. H. (2011). Usefulness of support vector machine to develop an early warning system for financial crisis. Expert Systems with Applications, 38(4):2966 – 2973
dc.relation.referencesBielecki, T. R., Cousin, A., Crépey, S., and Herbertsson, A. (2014). Dynamic hedging of portfolio credit risk in a markov copula model. Journal of Optimization Theory and Applications, 161(1):90–102.
dc.relation.referencesBingham, N. (2007). Regular variation and probability: The early years. Journal of Computational and Applied Mathematics, 200(1):357 – 363.
dc.relation.referencesBlack, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637–54.
dc.relation.referencesCompany, M. G. T. (1996). Riskmetrics technical document. Technical Report 2, JP Morgan and Reuters, ttps://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2- 3449d5c7e95ar. An optional note.
dc.relation.referencesDempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38.
dc.relation.referencesDuffie, D. (2010). Dynamic Asset Pricing Theory. Princeton Series in Finance. Princeton University Press.
dc.relation.referencesDuffie, D., Eckner, A., Horel, G., and Saita, L. (2009). Frailty correlated default. Journal of Finance, 64(5):2089–2123
dc.relation.referencesEdwin O. Fischer, Robert Heinkel, J. Z. (1989). Dynamic capital structure choice: Theory and tests. The Journal of Finance, 44(1):19–40.
dc.relation.referencesGregoriou, G. (2006). Advances in Risk Management. Finance and Capital Markets Series. Palgrave Macmillan UK.
dc.relation.referencesHillegeist, S. A., Keating, E. K., Cram, D. P., and Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1):5–34.
dc.relation.referencesHull, J., Predescu, M., and White, A. (2004). The relationship between credit default swap spreads, bond yields, and credit rating announcements. Journal of Banking & Finance, 28(11):2789 – 2811. Recent Research on Credit Ratings.
dc.relation.referencesKirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598):671–680.
dc.relation.referencesLamberton, D. and Lapeyre, B. (2011). Introduction to Stochastic Calculus Applied to Finance, Second Edition. Chapman and Hall/CRC Financial Mathematics Series. CRC Press.
dc.relation.referencesMcNeil, A. J., Frey, R., and Embrechts, P. (2005). Quantitative risk management : concepts, techniques and tools. Princeton series in finance. Princeton University Press, Princeton (N.J.).
dc.relation.referencesMusiela, M. and Rutkowski, M. (2006). Martingale Methods in Financial Modelling. Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg.
dc.relation.referencesShumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74(1):101–124.
dc.relation.referencesSpiliopoulos, K. (2015). Systemic Risk and Default Clustering for Large Financial Systems, pages 529–557. Springer International Publishing, Cham
dc.relation.referencesTankov, P. (2003). Financial Modelling with Jump Processes. Chapman and Hall/CRC Financial Mathematics Series. CRC Press
dc.relation.referencesWei, G. C. G. and Tanner, M. A. (1990). A monte carlo implementation of the em algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association,85(411):699–704.
dc.relation.referencesZhou, C. (2001). The term structure of credit spreads with jump risk. Journal of Banking & Finance, 25(11):2015–2040
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalIntensidad de default
dc.subject.proposalDefault Intensity
dc.subject.proposalCox Process
dc.subject.proposalProceso de Cox
dc.subject.proposalAlgoritmo EM
dc.subject.proposalEM Algorithm
dc.subject.proposalGibbs Sampler
dc.subject.proposalMuestreador de Gibbs
dc.type.coarhttp://purl.org/coar/resource_type/c_8042
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito