Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGuerrero Fonseca, Carlos Arturo
dc.contributor.authorGutierrez Castañeda, Luz Dary
dc.date.accessioned2020-02-25T15:20:52Z
dc.date.available2020-02-25T15:20:52Z
dc.date.issued2019-11-30
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75725
dc.description.abstractDurante las últimas décadas la terapia viral oncolítica ha sido reconocida como una nueva opción para el tratamiento del cáncer. Los virus oncolíticos (VO) son agentes terapéuticos que selectivamente pueden infectar, replicar e inducir muerte de la célula tumoral con mínimo impacto en la célula no tumoral. Este tropismo por células tumorales es dependiente de la expresión de receptores en la membrana, lo que le permite al virus la unión, la entrada y la replicación viral. Adicionalmente, los VO utilizan productos génicos virales que facilitan la evasión de la respuesta inmune, permiten el reconocimiento y penetración a la célula, e interactúan con la maquinaria celular para alterar los programas de muerte. Muchas de las vías celulares que los virus alteran son las mismas vías que se encuentran ya desreguladas en la célula tumoral y como consecuencia estas mismas vías son los blancos para el desarrollo de terapia antitumoral basada en virus. Los efectos antitumorales que se generan y las vías de señalización modificadas por el tratamiento con VO son dependientes de la especie del virus, las modificaciones genéticas del virus y el tipo de cáncer a tratar. Actualmente, muchos de los VO que se encuentran en ensayos clínicos tienen un tropismo natural para proteínas de superficie que son sobre expresadas en la célula tumoral o son modificados para que se unan directamente a un único receptor de la superficie celular. En el laboratorio de Biología Molecular del Virus de la Universidad Nacional de Colombia se ha venido trabajando en el estudio del potencial oncolítico de cinco rotavirus generados por evolución dirigida. Previamente, se demostró que estos virus utilizan las proteínas Hsc70, PDI e integrina αvβ3 como receptores en enterocitos y en líneas celulares tumorales y NO tumorales susceptibles. Uno de estos virus es el rotavirus TRUYO, el cual fue generado mediante pases continuos de cinco especies de rotavirus que infectan animales (TRF-cerdo, RRV-mono Rhesus, UK-bovino, YM-porcino y OSU porcino) en varias líneas celulares tumorales de origen humano que sobre expresan proteínas de choque térmico. En este trabajo se evaluó la capacidad oncolítica del rotavirus TRUYO en células de línea celular y cultivo primario obtenidos de tejido tumoral de pacientes con cáncer de ovario, determinando la importancia de las proteínas Hsp90, Hsp70, Hsp60, Hsp40, PDI, Hsc70, β1 β2 y β3 durante el proceso infeccioso. Se encontró que el rotavirus TRUYO tiene la capacidad de infectar la línea celular MES-OV (ATCC), mediante el uso de las proteínas Hsp90, Hsp70, Hsc70, Hsp60, PDI e integrina β1 y β3. La entrada de este virus en las células MES-OV es mediada por endocitosis, posiblemente por macropinosoma. El ciclo de replicación encontrado fue de aproximadamente 8 horas y a las 12 h.p.i desencadena señales relacionadas con muerte por apoptosis. Las proteínas de muerte que se encontraron con mayor expresión fuero la caspasa 3 y caspasa 8. Así mismo, se logró establecer nueve cultivos primarios obtenidos de tejido tumoral de pacientes con cáncer de ovario, principalmente con fenotipo epitelial. Estas células fueron susceptibles y permisivas a la infección por rotavirus TRUYO. Se encontró heterogeneidad en el uso de las proteínas chaperonas, PDI e integrinas durante la entrada. Sin embargo, las proteínas que más con más frecuencia uso el virus para la entrada fueron la Hsp70, PDI, β1 y β3. Durante la infección en cultivo primario el virus indujo muerte celular mediante aumento en la permeabilidad de la membrana, exposición de la fosfatidilserina y aumento en la expresión de caspasa 3 fragmentada, Hsp60 y Hsp27. En conclusión, la susceptibilidad de las células tumorales de ovario a la infección por el rotavirus TRUYO dependen en parte por la presencia de las proteínas Hsps, PDI e integrina en la membrana celular, por lo cual se debe avanzar en la caracterización del potencial oncolítico del rotavirus TRUYO usando modelos in vivo de cáncer de ovario. Además, teniendo en cuenta los hallazgos en cuanto al uso de los receptores durante la entrada y el posible mecanismo por endocitosis, es importante evaluar cual es el mecanismo usado por el rotavirus TRUYO durante los primeros eventos de la infección. Dado la diversidad de interacción entre el rotavirus TRUYO y las proteínas de la membrana celular evaluadas en este trabajo se sugiere que no es necesario la presencia de todas las proteínas para que el virus entre a la célula, sino que es posible que estas proteínas compartan una misma característica, ya sea funcional o estructural.
dc.description.abstractIn latest decades viral oncolytic therapy has been known as the novel cancer treatment. Oncolytic virus (OV) are therapeutic entities that can infect, replicate and induce death by lysis in tumoral cells with no relevant affection in normal cells. This tropism for tumoral cells is dependent on the receptor’s expression in the membrane that allows attachment, entry and viral replication. OVs also use genetic tools that allows them immune response evasion, cell’s recognition and internalization, that also allows it to interact with cell death machinery and disturbs it. Many of the routes that virus disturbs are the same that are already deregulated in tumoral cells, and therefore these routes are target for antitumoral therapy based on OVs. Antitumoral effects generated and signaling routes modified because of OV treatment are dependent of virus specie, genetic modifications and cancer type to treat. Nowadays, many of the OVs that are in clinic trials have a natural tropism for surface proteins already overexpressed in tumor cell or are modified to bounding to a specific receptor. Virus Molecular Biology laboratory of Universidad Nacional de Colombia has been working on oncolytic potential of five rotavirus generated with directed evolution. Previously, it has been shown that these viruses use Hsc70, PDI, and αvβ3 as receptors in enterocytes as well as in tumor and nontumoral susceptible cell lines. One of these viruses is TRUYO rotavirus, that it was generated with continuous passing of five animal infecting rotavirus (TRF-porcine, RRVmono Rhesus, UK-bovine, YM-porcine, and OSU-porcine) in different human tumor cell lines that were overexpressing heat shock proteins. In this job, it was evaluated its oncolytic ability in cell line and primary culture cells coming from tumoral tissue of patients with ovarian cancer, determining the importance of Hsp90, Hsp70, Hsp60, Hsp40, PDI, Hsc70, β1 β2 and β3 proteins during infection process. It was found that TRUYO rotavirus has the ability of infecting MES-OV (ATCC) cell line, through Hsp90, Hsp70, Hsc70, Hsp60, PDI and integrins β1 y β3. Virus entry in MES-OV cells is endocytosis mediated possibly by macropynosome. Replication cycle was found to be Aprox. 8 hours, and at 12 h.p.i cells release apoptosis related signals. Caspase 3 and 8 (death proteins) were found with greater expression. Evaluación del aislamiento Rotaviral TRUY como potencial agente oncolítico en células tumorales de ovario 2019 9 Likewise, it could be stablished primary culture of nine tumoral tissue of patients with ovarian cancer, primarily of epithelial phenotype. These cells were susceptible and permissive to TRUYO rotavirus infection. Heterogeneity use of chaperones proteins, PDI and integrins were found in virus entry. Nevertheless, Hsp70, PDI, β1 and β3 were the most frequent proteins in use. During primary culture infection, virus was capable of inducing death by means of membrane’s permeability, phosphatidylserine exposition and clivated caspase 3, Hsp60 and Hsp27 overexpression. In conclusion, susceptibility of ovarian tumoral cell to TRUYO infection depends on Hsps, PDI and integrins expression on cell membrane, so it will be needed to move on TRUYO rotavirus oncolytic potential characterization using ovarian cancer models in vivo. Also, having in mind the receptors used during virus entry and probably endocytosis mediated entry, it is important to evaluate the mechanism used during early infection events. Given the diversity interaction between rotavirus TRUYO and cell membrane’s proteins evaluated in this job it is suggested that the presence of all proteins is not needed for virus entry, but it is possible that these proteins share a same function or structure characteristic.
dc.format.extent139
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcMedicina y salud
dc.titleEvaluación del aislamiento Rotaviral TRUY como potencial agente oncolítico en células tumorales de ovario
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupBiología Molecular de virus
dc.description.degreelevelDoctorado
dc.publisher.departmentInstituto de Biotecnología
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424. 2. Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Reviews Cancer. 2003;3(7):502. 3. Lengyel E. Ovarian cancer development and metastasis. The American journal of pathology. 2010;177(3):1053-64. 4. Chien J, Kuang R, Landen C, Shridhar V. Platinum-sensitive recurrence in ovarian cancer: the role of tumor microenvironment. Frontiers in oncology. 2013;3:251. 5. Onodera Y, Nam J-M, Sabe H. Intracellular trafficking of integrins in cancer cells. Pharmacology & therapeutics. 2013;140(1):1-9. 6. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer. 2010;10(1):9. 7. Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. Journal of leukocyte biology. 2007;81(1):15-27. 8. Tomala K, Korona R. Molecular chaperones and selection against mutations. Biology direct. 2008;3(1):5. 9. Khalil AA, Kabapy NF, Deraz SF, Smith C. Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2011;1816(2):89-104. 10. Arispe N, Doh M, Simakova O, Kurganov B, De Maio A. Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. The FASEB journal. 2004;18(14):1636-45. 11. Calderwood SK, Mambula SS, Gray PJ, Theriault JR. Extracellular heat shock proteins in cell signaling. FEBS letters. 2007;581(19):3689-94. 12. Tang D, Khaleque MA, Jones EL, Theriault JR, Li C, Wong WH, et al. Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell stress & chaperones. 2005;10(1):46. 13. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell stress & chaperones. 2005;10(2):86. 14. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nature reviews Drug discovery. 2015;14(9):642. 15. Gentschev I, Adelfinger M, Josupeit R, Rudolph S, Ehrig K, Donat U, et al. Preclinical evaluation of oncolytic vaccinia virus for therapy of canine soft tissue sarcoma. PloS one. 2012;7(5):e37239. 16. Gillory LA, Megison ML, Stewart JE, Mroczek-Musulman E, Nabers HC, Waters AM, et al. Preclinical evaluation of engineered oncolytic herpes simplex virus for the treatment of neuroblastoma. PLoS One. 2013;8(10):e77753. 17. Li H, Nakashima H, Decklever T, Nace R, Russell SJ. HSV-NIS, an oncolytic herpes simplex virus type 1 encoding human sodium iodide symporter for preclinical prostate cancer radiovirotherapy. Cancer gene therapy. 2013;20(8):478. 18. Ganesh S, Gonzalez-Edick M, Gibbons D, Ge Y, VanRoey M, Robinson M, et al. Combination therapy with radiation or cisplatin enhances the potency of Ad5/35 chimeric oncolytic adenovirus in a preclinical model of head and neck cancer. Cancer gene therapy. 2009;16(5):383. 19. (NLM) TNLoM. Clinicaltrials 2015 [Available from: https://clinicaltrials.gov/ct2/about-site/link-to. 20. Russell SJ, Federspiel MJ, Peng K-W, Tong C, Dingli D, Morice WG, et al., editors. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clinic proceedings; 2014: Elsevier. 21. Ferguson MS, Lemoine NR, Wang Y. Systemic delivery of oncolytic viruses: hopes and hurdles. Advances in virology. 2012;2012. 22. Choi I, Lee Y, Yoo J, Yoon A, Kim H, Kim D, et al. Effect of decorin on overcoming the extracellular matrix barrier for oncolytic virotherapy. Gene therapy. 2010;17(2):190. 23. Kim W, Seong J, Oh HJ, Koom WS, Choi K-J, Yun C-O. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. journal of radiation research. 2011;52(5):646-54. 24. Smith E, Breznik J, Lichty BD. Strategies to enhance viral penetration of solid tumors. Human gene therapy. 2011;22(9):1053-60. 25. Wojton J, Kaur B. Impact of tumor microenvironment on oncolytic viral therapy. Cytokine & growth factor reviews. 2010;21(2-3):127-34. 26. Pesavento J, Crawford S, Estes M, Prasad BV. Rotavirus proteins: structure and assembly. Reoviruses: Entry, Assembly and Morphogenesis: Springer; 2006. p. 189-219. 27. Stencel-Baerenwald JE, Reiss K, Reiter DM, Stehle T, Dermody TS. The sweet spot: defining virus–sialic acid interactions. Nature Reviews Microbiology. 2014;12(11):739. 28. Trask SD, McDonald SM, Patton JT. Structural insights into the coupling of virion assembly and rotavirus replication. Nature reviews microbiology. 2012;10(3):165. 29. Trejo-Cerro O, Aguilar-Hernández N, Silva-Ayala D, López S, Arias CF. The actin cytoskeleton is important for rotavirus internalization and RNA genome replication. Virus research. 2019;263:27-33. 30. Abdelhakim AH, Salgado EN, Fu X, Pasham M, Nicastro D, Kirchhausen T, et al. Structural correlates of rotavirus cell entry. PLoS pathogens. 2014;10(9):e1004355. 31. Desselberger U. Rotaviruses. Virus research. 2014;190:75-96. 32. Tsai V, Johnson DE, Rahman A, Wen SF, LaFace D, Philopena J, et al. Impact of human neutralizing antibodies on antitumor efficacy of an oncolytic adenovirus in a murine model. Clinical Cancer Research. 2004;10(21):7199-206. 33. Gualtero D, Guzman F, Acosta O, Guerrero C. Amino acid domains 280–297 of VP6 and 531–554 of VP4 are implicated in heat shock cognate protein hsc70-mediated rotavirus infection. Archives of virology. 2007;152(12):2183-96. 34. Guerrero CA, Bouyssounade D, Zárate S, Iša P, López T, Espinosa R, et al. Heat shock cognate protein 70 is involved in rotavirus cell entry. Journal of virology. 2002;76(8):4096-102. 35. Guerrero CA, Méndez E, Zárate S, Isa P, López S, Arias CF. Integrin αvβ3 mediates rotavirus cell entry. Proceedings of the National Academy of Sciences. 2000;97(26):14644-9. 36. Santana AY, Guerrero CA, Acosta O. Implication of Hsc70, PDI and integrin αvβ3 involvement during entry of the murine rotavirus ECwt into small-intestinal villi of suckling mice. Archives of virology. 2013;158(6):1323-36. 37. Guerrero CA, Guerrero RA, Silva E, Acosta O, Barreto E. Experimental adaptation of rotaviruses to tumor cell lines. PloS one. 2016;11(2):e0147666. 38. Castaño Toro C. Identificación de marcadores de muerte celular que produce rotavirus WTEW en líneas tumorales REH y U937: Universidad Nacional de Colombia. 39. Alfonso E, Rodríguez, S. Guerrero C. Interacción de las proteínas de choque termico Hsp90 y Hsp70 con aislamientos de rotavirus en las lineas celulares U937. Universidad Distrital Frnsisco José de Caldas: Universidad Distrital Frnsisco José de Caldas; 2102. 40. Guerrero R, Guerrero C. Determinación del potencial oncolítico del rotavirus en la línea celular de cáncer de mieloma murino sp2/0-ag14. . Universidad Nacional de Colombia: Universidad Nacional de Colombia; 2012. 41. Silva E, Guerrero, C., Acosta O. Potencial oncolitico del rotavirus en la linea celular de linfoma histiocitico humano U937. Universidad Nacional de Colombia: Universidad Nacional de Colombia; 2012. 42. Nguyen A, Ho L, Wan Y. Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. Frontiers in oncology. 2014;4:145. 43. Ottolino-Perry K, Diallo J-S, Lichty BD, Bell JC, McCart JA. Intelligent design: combination therapy with oncolytic viruses. Molecular Therapy. 2010;18(2):251-63. 44. Carew J, Espitia C, Zhao W, Kelly K, Coffey M, Freeman JW, et al. Reolysin is a novel reovirus-based agent that induces endoplasmic reticular stress-mediated apoptosis in pancreatic cancer. Cell death & disease. 2013;4(7):e728. 45. Filippakis H, Spandidos DA, Sourvinos G. Herpesviruses: hijacking the Ras signaling pathway. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2010;1803(7):777-85. 46. Goetz C, Everson RG, Zhang LC, Gromeier M. MAPK signal-integrating kinase controls cap-independent translation and cell type-specific cytotoxicity of an oncolytic poliovirus. Molecular Therapy. 2010;18(11):1937-46. 47. Heo J, Breitbach CJ, Moon A, Kim CW, Patt R, Kim MK, et al. Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. Molecular Therapy. 2011;19(6):1170-9. 48. Guo ZS, Thorne SH, Bartlett DL. Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2008;1785(2):217-31. 49. Braidwood L, Graham SV, Graham A, Conner J. Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs. Oncolytic virotherapy. 2013;2:57. 50. Liu T-C, Galanis E, Kirn D. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nature Reviews Clinical Oncology. 2007;4(2):101. 51. Sanjuán R, Grdzelishvili VZ. Evolution of oncolytic viruses. Current opinion in virology. 2015;13:1-5. 52. Le Bœuf F, Bell JC. United virus: the oncolytic tag-team against cancer! Cytokine & growth factor reviews. 2010;21(2-3):205-11. 53. Russell SJ, Peng K-W, Bell JC. Oncolytic virotherapy. Nature biotechnology. 2012;30(7):658. 54. Ilkow CS, Swift SL, Bell JC, Diallo J-S. From scourge to cure: tumour-selective viral pathogenesis as a new strategy against cancer. PLoS pathogens. 2014;10(1):e1003836. 55. Motalleb G. Virotherapy in cancer. Iranian journal of cancer prevention. 2013;6(2):101. 56. McCormick F KW. Gene Therapy and Oncolytic Viruses [Internet]. Elsevier Inc: Elsevier Inc; 2008 [Available from: http://dx.doi.org/10.1016/B978-1-4557-4066-6.00054-8. 57. Cherubini G, Kallin C, Mozetic A, Hammaren-Busch K, Müller H, Lemoine N, et al. The oncolytic adenovirus AdΔΔ enhances selective cancer cell killing in combination with DNA-damaging drugs in pancreatic cancer models. Gene therapy. 2011;18(12):1157. 58. Engeland CE, Grossardt C, Veinalde R, Bossow S, Lutz D, Kaufmann JK, et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Molecular Therapy. 2014;22(11):1949-59. 59. Rajecki M, Hällström Ta, Hakkarainen T, Nokisalmi P, Hautaniemi S, Nieminen AI, et al. Mre11 inhibition by oncolytic adenovirus associates with autophagy and underlies synergy with ionizing radiation. International journal of cancer. 2009;125(10):2441-9. 60. Bourke M, Salwa S, Harrington K, Kucharczyk M, Forde P, de Kruijf M, et al. The emerging role of viruses in the treatment of solid tumours. Cancer treatment reviews. 2011;37(8):618-32. 61. Wollmann G, Ozduman K, van den Pol AN. Oncolytic virus therapy of glioblastoma multiforme–concepts and candidates. Cancer journal (Sudbury, Mass). 2012;18(1):69. 62. Marchini A, Scott E, Rommelaere J. Overcoming barriers in oncolytic virotherapy with HDAC inhibitors and immune checkpoint blockade. Viruses. 2016;8(1):9. 63. Zemp FJ, Corredor JC, Lun X, Muruve DA, Forsyth PA. Oncolytic viruses as experimental treatments for malignant gliomas: using a scourge to treat a devil. Cytokine & growth factor reviews. 2010;21(2-3):103-17. 64. Alvarez-Breckenridge CA, Yu J, Kaur B, Caligiuri MA, Chiocca EA. Deciphering the multifaceted relationship between oncolytic viruses and natural killer cells. Advances in virology. 2012;2012. 65. Alvarez-Breckenridge CA, Yu J, Price R, Wojton J, Pradarelli J, Mao H, et al. NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nature medicine. 2012;18(12):1827. 66. Sobol PT, Boudreau JE, Stephenson K, Wan Y, Lichty BD, Mossman KL. Adaptive antiviral immunity is a determinant of the therapeutic success of oncolytic virotherapy. Molecular Therapy. 2011;19(2):335-44. 67. Kohlhapp FJ, Kaufman HL. Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clinical Cancer Research. 2016;22(5):1048-54. 68. Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nature Reviews Immunology. 2018;18(8):498. 69. Bell J, McFadden G. Viruses for tumor therapy. Cell host & microbe. 2014;15(3):260-5. 70. Agency EM. International conference on harmonization of Considerations Oncolytic Viruses. Journal of pharmacology & pharmacotherapeutics. 2009;6(3):185. 71. Dean W. G. Harron BSc P, FRPharmS, MPSNI. Technical Requirements for Registration of Pharmaceuticals for Human use: the ICH Process. The Textbook of Pharmaceutical Medicine2009. p. 522-33. 72. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Bányai K, Brister JR, et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Archives of virology. 2011;156(8):1397-413. 73. Hu L, Crawford SE, Hyser JM, Estes MK, Prasad BV. Rotavirus non-structural proteins: structure and function. Current opinion in virology. 2012;2(4):380-8. 74. Stencel-Baerenwald JE, Reiss K, Reiter DM, Stehle T, Dermody TS. The sweet spot: defining virus-sialic acid interactions. Nature reviews Microbiology. 2014;12(11):739-49. 75. Arias CF, Silva-Ayala D, Lopez S. Rotavirus entry: a deep journey into the cell with several exits. J Virol. 2015;89(2):890-3. 76. Hu L, Ramani S, Czako R, Sankaran B, Yu Y, Smith DF, et al. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus. Nature communications. 2015;6:8346. 77. Hu L, Crawford SE, Czako R, Cortes-Penfield NW, Smith DF, Le Pendu J, et al. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature. 2012;485(7397):256-9. 78. Dormitzer PR, Sun ZY, Blixt O, Paulson JC, Wagner G, Harrison SC. Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J Virol. 2002;76(20):10512-7. 79. Dormitzer PR, Sun ZY, Wagner G, Harrison SC. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. The EMBO journal. 2002;21(5):885-97. 80. Zarate S, Espinosa R, Romero P, Guerrero CA, Arias CF, Lopez S. Integrin alpha2beta1 mediates the cell attachment of the rotavirus neuraminidase-resistant variant nar3. Virology. 2000;278(1):50-4. 81. Coulson BS, Londrigan SL, Lee DJ. Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(10):5389-94. 82. Graham KL, Fleming FE, Halasz P, Hewish MJ, Nagesha HS, Holmes IH, et al. Rotaviruses interact with alpha4beta7 and alpha4beta1 integrins by binding the same integrin domains as natural ligands. The Journal of general virology. 2005;86(Pt 12):3397-408. 83. Hewish MJ, Takada Y, Coulson BS. Integrins α2β1 and α4β1 can mediate SA11 rotavirus attachment and entry into cells. Journal of virology. 2000;74(1):228-36. 84. Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, et al. Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol. 2003;77(18):9969-78. 85. Zárate S, Cuadras MA, Espinosa R, Romero P, Juárez KO, Camacho-Nuez M, et al. Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. Journal of virology. 2003;77(13):7254-60. 86. Calderon MN, Guerrero CA, Acosta O, Lopez S, Arias CF. Inhibiting rotavirus infection by membrane-impermeant thiol/disulfide exchange blockers and antibodies against protein disulfide isomerase. Intervirology. 2012;55(6):451-64. 87. Calderón MN, Guzmán F, Acosta O, Guerrero CA. Rotavirus VP4 and VP7-derived synthetic peptides as potential substrates of protein disulfide isomerase lead to inhibition of rotavirus infection. International Journal of Peptide Research and Therapeutics. 2012;18(4):373-82. 88. Liu Y, Huang P, Tan M, Liu Y, Biesiada J, Meller J, et al. Rotavirus VP8*: phylogeny, host range, and interaction with histo-blood group antigens. Journal of virology. 2012;86(18):9899-910. 89. Torres-Flores JM, Silva-Ayala D, Espinoza MA, López S, Arias CF. The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells. Virology. 2015;475:172-8. 90. Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, et al. Integrin-using rotaviruses bind α2β1 integrin α2 I domain via VP4 DGE sequence and recognize αXβ2 and αVβ3 by using VP7 during cell entry. Journal of virology. 2003;77(18):9969-78. 91. Pérez-Vargas J, Romero P, López S, Arias CF. The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. Journal of virology. 2006;80(7):3322-31. 92. Sanchez-San Martin C, Lopez T, Arias CF, Lopez S. Characterization of rotavirus cell entry. J Virol. 2004;78(5):2310-8. 93. Gutiérrez M, Isa P, Sánchez-San Martin C, Pérez-Vargas J, Espinosa R, Arias CF, et al. Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis. Journal of virology. 2010;84(18):9161-9. 94. McDonald SM, Patton JT. Assortment and packaging of the segmented rotavirus genome. Trends in microbiology. 2011;19(3):136-44. 95. Trujillo-Alonso V, Maruri-Avidal L, Arias CF, López S. Rotavirus infection induces the unfolded protein response of the cell and controls it through the nonstructural protein NSP3. Journal of virology. 2011;85(23):12594-604. 96. Guerrero CA, Acosta O. Inflammatory and oxidative stress in rotavirus infection. World journal of virology. 2016;5(2):38. 97. Superti F, Ammendolia MG, Tinari A, Bucci B, Giammarioli AM, Rainaldi G, et al. Induction of apoptosis in HT‐29 cells infected with SA‐11 rotavirus. Journal of medical virology. 1996;50(4):325-34. 98. Chaïbi C, Cotte-Laffitte J, Sandré C, Esclatine A, Servin AL, Quéro A-M, et al. Rotavirus induces apoptosis in fully differentiated human intestinal Caco-2 cells. Virology. 2005;332(2):480-90. 99. Martin-Latil S, Mousson L, Autret A, Colbère-Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. Journal of virology. 2007;81(9):4457-64. 100. Bagchi P, Nandi S, Nayak MK, Chawla-Sarkar M. Molecular mechanism behind rotavirus NSP1-mediated PI3 kinase activation: interaction between NSP1 and the p85 subunit of PI3 kinase. Journal of virology. 2013;87(4):2358-62. 101. Bhowmick R, Halder UC, Chattopadhyay S, Nayak MK, Chawla-Sarkar M. Rotavirus-encoded nonstructural protein 1 modulates cellular apoptotic machinery by targeting tumor suppressor protein p53. Journal of virology. 2013;87(12):6840-50. 102. Bhowmick R, Halder UC, Chattopadhyay S, Chanda S, Nandi S, Bagchi P, et al. Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection. Journal of Biological Chemistry. 2012;287(42):35004-20. 103. Goodarzi Z, Soleimanjahi H, Arefian E, Saberfar E. The effect of bovine rotavirus and its nonstructural protein 4 on ER stress-mediated apoptosis in HeLa and HT-29 cells. Tumor Biology. 2016;37(3):3155-61. 104. Holloway G, Johnson RI, Kang Y, Dang VT, Stojanovski D, Coulson BS. Rotavirus NSP6 localizes to mitochondria via a predicted N-terminal a-helix. The Journal of general virology. 2015;96(12):3519-24. 105. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell. 2011;144(5):646-74. 106. Wong AS, Auersperg N. Ovarian surface epithelium: family history and early events in ovarian cancer. Reproductive biology and endocrinology. 2003;1(1):70. 107. Karst AM, Drapkin R. Ovarian cancer pathogenesis: a model in evolution. Journal of oncology. 2010;2010. 108. Auersperg N, Wong AS, Choi K-C, Kang SK, Leung PC. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocrine reviews. 2001;22(2):255-88. 109. Sawada K, Mitra AK, Radjabi AR, Bhaskar V, Kistner EO, Tretiakova M, et al. Loss of E-cadherin promotes ovarian cancer metastasis via α5-integrin, which is a therapeutic target. Cancer research. 2008;68(7):2329-39. 110. Erickson BK, Conner MG, Landen Jr CN. The role of the fallopian tube in the origin of ovarian cancer. American journal of obstetrics and gynecology. 2013;209(5):409-14. 111. Prat J, Oncology FCoG. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. International Journal of Gynecology & Obstetrics. 2014;124(1):1-5. 112. LD G. Carcinogénesis de Ovario. . Fundacion Universitaria de Ciencias de la Salud. 113. Kaku T, Ogawa S, Kawano Y, Ohishi Y, Kobayashi H, Hirakawa T, et al. Histological classification of ovarian cancer. Medical Electron Microscopy. 2003;36(1):9-17. 114. Strauss R, Li Z-Y, Liu Y, Beyer I, Persson J, Sova P, et al. Analysis of epithelial and mesenchymal markers in ovarian cancer reveals phenotypic heterogeneity and plasticity. PloS one. 2011;6(1):e16186. 115. De Franceschi N, Hamidi H, Alanko J, Sahgal P, Ivaska J. Integrin traffic–the update. J Cell Sci. 2015;128(5):839-52. 116. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends in cell biology. 2015;25(4):234-40. 117. Foubert P, Varner JA. Integrins in tumor angiogenesis and lymphangiogenesis. Integrin and Cell Adhesion Molecules: Springer; 2011. p. 471-86. 118. Skubitz AP, Bast Jr RC, Wayner EA, Letourneau PC, Wilke MS. Expression of alpha 6 and beta 4 integrins in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin. The American journal of pathology. 1996;148(5):1445. 119. Moss NM, Barbolina MV, Liu Y, Sun L, Munshi HG, Stack MS. Ovarian cancer cell detachment and multicellular aggregate formation are regulated by membrane type 1 matrix metalloproteinase: a potential role in Ip metastatic dissemination. Cancer research. 2009;69(17):7121-9. 120. Gao J, Hu Z, Liu D, Liu J, Liu C, Hou R, et al. Expression of Lewis y antigen and integrin αv, β3 in ovarian cancer and their relationship with chemotherapeutic drug resistance. Journal of Experimental & Clinical Cancer Research. 2013;32(1):36. 121. Goldberg I, Davidson B, Reich R, Gotlieb WH, Ben-Baruch G, Bryne M, et al. αv integrin expression is a novel marker of poor prognosis in advanced-stage ovarian carcinoma. Clinical cancer research. 2001;7(12):4073-9. 122. Hapke S, Kessler H, Luber B, Benge A, Hutzler P, Höfler H, et al. Ovarian cancer cell proliferation and motility is induced by engagement of integrin αvβ3/vitronectin interaction. Biological chemistry. 2003;384(7):1073-83. 123. Partheen K, Levan K, Österberg L, Claesson I, Sundfeldt K, Horvath G. External validation suggests Integrin beta 3 as prognostic biomarker in serous ovarian adenocarcinomas. BMC cancer. 2009;9(1):336. 124. Landen CN, Kim T-J, Lin YG, Merritt WM, Kamat AA, Han LY, et al. Tumor-selective response to antibody-mediated targeting of αvβ3 integrin in ovarian cancer. Neoplasia. 2008;10(11):1259-67. 125. Kaur S, Kenny HA, Jagadeeswaran S, Zillhardt MR, Montag AG, Kistner E, et al. β3-integrin expression on tumor cells inhibits tumor progression, reduces metastasis, and is associated with a favorable prognosis in patients with ovarian cancer. The American journal of pathology. 2009;175(5):2184-96. 126. Ahmed N, Riley C, Rice GE, Quinn MA, Baker MS. αvβ6 integrin-A marker for the malignant potential of epithelial ovarian cancer. Journal of Histochemistry & Cytochemistry. 2002;50(10):1371-9. 127. Banerjee S, Gore M. The future of targeted therapies in ovarian cancer. The oncologist. 2009;14(7):706-16. 128. Creekmore AL, Silkworth WT, Cimini D, Jensen RV, Roberts PC, Schmelz EM. Changes in gene expression and cellular architecture in an ovarian cancer progression model. PloS one. 2011;6(3):e17676. 129. Köbel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, et al. Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS medicine. 2008;5(12):e232. 130. Dobbin ZC, Katre AA, Steg AD, Erickson BK, Shah MM, Alvarez RD, et al. Using heterogeneity of the patient-derived xenograft model to identify the chemoresistant population in ovarian cancer. Oncotarget. 2014;5(18):8750. 131. Correa RJ, Komar M, Tong JG, Sivapragasam M, Rahman MM, McFadden G, et al. Myxoma virus-mediated oncolysis of ascites-derived human ovarian cancer cells and spheroids is impacted by differential AKT activity. Gynecologic oncology. 2012;125(2):441-50. 132. Hartkopf AD, Fehm T, Wallwiener D, Lauer U. Oncolytic virotherapy of gynecologic malignancies. Gynecologic oncology. 2011;120(2):302-10. 133. Li S, Tong J, Rahman MM, Shepherd TG, McFadden G. Oncolytic virotherapy for ovarian cancer. Oncolytic Virother. 2012;1:1-21. 134. Lau M-T, So W-K, Leung PC. Integrin β1 mediates epithelial growth factor-induced invasion in human ovarian cancer cells. Cancer letters. 2012;320(2):198-204. 135. Zhao M, Ding J, Zeng K, Zhao J, Shen F, Yin Y, et al. Heat shock protein 27: a potential biomarker of peritoneal metastasis in epithelial ovarian cancer? Tumor Biology. 2014;35(2):1051-6. 136. Zhao M, Shen F, Yin Y, Yang Y, Xiang D, Chen Q. Increased expression of heat shock protein 27 correlates with peritoneal metastasis in epithelial ovarian cancer. Reproductive Sciences. 2012;19(7):748-53. 137. Kimura E, Enns RE, Alcaraz JE, Arboleda J, Slamon DJ, Howell SB. Correlation of the survival of ovarian cancer patients with mRNA expression of the 60-kD heat-shock protein HSP-60. Journal of clinical oncology. 1993;11(5):891-8. 138. Elstrand MB, Kleinberg L, Kohn EC, Tropé CG, Davidson B. Expression and clinical role of antiapoptotic proteins of the bag, heat shock, and Bcl-2 families in effusions, primary tumors, and solid metastases in ovarian carcinoma. International Journal of Gynecological Pathology. 2009;28(3):211-21. 139. Maes P, Matthijnssens J, Rahman M, Van Ranst M. RotaC: a web-based tool for the complete genome classification of group A rotaviruses. BMC microbiology. 2009;9(1):238. 140. Davola ME, Mossman KL. Oncolytic viruses: how “lytic” must they be for therapeutic efficacy? Oncoimmunology. 2019;8(6):e1581528. 141. Peruzzi P, Chiocca EA. Viruses in cancer therapy—from benchwarmers to quarterbacks. Nature Reviews Clinical Oncology. 2018;15(11):657. 142. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat shock proteins and cancer. Trends in pharmacological sciences. 2017;38(3):226-56. 143. Vahid S, Thaper D, Zoubeidi A. Chaperoning the cancer: the proteostatic functions of the heat shock proteins in cancer. Recent patents on anti-cancer drug discovery. 2017;12(1):35-47. 144. Ata R, Antonescu C. Integrins and cell metabolism: an intimate relationship impacting cancer. International journal of molecular sciences. 2017;18(1):189. 145. Ciarlet M, Crawford SE, Cheng E, Blutt SE, Rice DA, Bergelson JM, et al. VLA-2 (α2β1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment. Journal of virology. 2002;76(3):1109-23. 146. Raj P, Matson D, Coulson B, Bishop R, Taniguchi K, Urasawa S, et al. Comparisons of rotavirus VP7-typing monoclonal antibodies by competition binding assay. Journal of clinical microbiology. 1992;30(3):704-11. 147. Lin PH, Selinfreund R, Wakshull E, Wharton W. Rapid and efficient purification of plasma membrane from cultured cells: characterization of epidermal growth factor binding. Biochemistry. 1987;26(3):731-6. 148. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC bioinformatics. 2017;18(1):529. 149. Díaz-Salinas MA, Romero P, Espinosa R, Hoshino Y, López S, Arias CF. The spike protein VP4 defines the endocytic pathway used by rotavirus to enter MA104 cells. Journal of virology. 2013;87(3):1658-63. 150. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nature methods. 2012;9(7):676. 151. Chazal N, Gerlier D. Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev. 2003;67(2):226-37. 152. Iša P, Realpe M, Romero P, López S, Arias CF. Rotavirus RRV associates with lipid membrane microdomains during cell entry. Virology. 2004;322(2):370-81. 153. Dou X, Li Y, Han J, Zarlenga DS, Zhu W, Ren X, et al. Cholesterol of lipid rafts is a key determinant for entry and post-entry control of porcine rotavirus infection. BMC veterinary research. 2018;14(1):45. 154. Delmas O, Breton M, Sapin C, Le Bivic A, Colard O, Trugnan G. Heterogeneity of raft-type membrane microdomains associated with VP4, the rotavirus spike protein, in Caco-2 and MA 104 cells. Journal of virology. 2007;81(4):1610-8. 155. Isa P, Gutiérrez M, Arias CF, López S. Rotavirus cell entry. 2008. 156. Guerrero C, Moreno L. Rotavirus receptor proteins Hsc70 and integrin αvβ3 are located in the lipid microdomains of animal intestinal cells. Acta virologica. 2012;56(1):63-70. 157. Yuan C, Furlong J, Burgos P, Johnston LJ. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophysical journal. 2002;82(5):2526-35. 158. Zinchuk V, Zinchuk O. Quantitative colocalization analysis of confocal fluorescence microscopy images. Current protocols in cell biology. 2008;39(1):4.19. 1-4.. 6. 159. Morales J, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Critical Reviews™ in Eukaryotic Gene Expression. 2014;24(1). 160. Chaitanya GV, Alexander JS, Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Communication and Signaling. 2010;8(1):31. 161. Bass DM, Baylor MR, Chen C, Mackow EM, Bremont M, Greenberg HB. Liposome-mediated transfection of intact viral particles reveals that plasma membrane penetration determines permissivity of tissue culture cells to rotavirus. The Journal of clinical investigation. 1992;90(6):2313-20. 162. Chen D, Ramig RF. Rescue of infectivity by sequential in vitro transcapsidation of rotavirus core particles with inner capsid and outer capsid proteins. Virology. 1993;194(2):743-51. 163. Desselberger U, Richards J, Tchertanov L, Lepault J, Lever A, Burrone O, et al. Further characterisation of rotavirus cores: Ss (+) RNAs can be packaged in vitro but packaging lacks sequence specificity. Virus research. 2013;178(2):252-63. 164. Teimoori A, Soleimanjahi H, Makvandi M. Characterization and transferring of human rotavirus double-layered particles in MA104 cells. Jundishapur journal of microbiology. 2014;7(6). 165. Barro M, Patton JT. Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proceedings of the National Academy of Sciences. 2005;102(11):4114-9. 166. Graff JW, Mitzel DN, Weisend CM, Flenniken ML, Hardy ME. Interferon regulatory factor 3 is a cellular partner of rotavirus NSP1. Journal of virology. 2002;76(18):9545-50. 167. Carreño-Torres JJ, Gutiérrez M, Arias CF, López S, Isa P. Characterization of viroplasm formation during the early stages of rotavirus infection. Virology journal. 2010;7(1):350. 168. Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, et al. Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. Journal of Biological Chemistry. 2003;278(9):7607-16. 169. Sidera K, Patsavoudi E. Extracellular HSP90: conquering the cell surface. Cell cycle. 2008;7(11):1564-8. 170. Nimmervoll B, Chtcheglova LA, Juhasz K, Cremades N, Aprile FA, Sonnleitner A, et al. Cell surface localised Hsp70 is a cancer specific regulator of clathrin-independent endocytosis. FEBS letters. 2015;589(19):2747-53. 171. Mahalka AK, Kirkegaard T, Jukola LT, Jäättelä M, Kinnunen PK. Human heat shock protein 70 (Hsp70) as a peripheral membrane protein. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2014;1838(5):1344-61. 172. Botzler C, Li G, Issels RD, Multhoff G. Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell stress & chaperones. 1998;3(1):6. 173. Reyes-del Valle J, Chávez-Salinas S, Medina F, Del Angel RM. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. Journal of virology. 2005;79(8):4557-67. 174. Zhu Y-Z, Cao M-M, Wang W-B, Wang W, Ren H, Zhao P, et al. Association of heat-shock protein 70 with lipid rafts is required for Japanese encephalitis virus infection in Huh7 cells. Journal of general virology. 2012;93(1):61-71. 175. Wang Y, Li Y, Ding T. Heat shock protein 90β in the Vero cell membrane binds Japanese encephalitis virus. International journal of molecular medicine. 2017;40(2):474-82. 176. Triantafilou K, Fradelizi D, Wilson K, Triantafilou M. GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. Journal of virology. 2002;76(2):633-43. 177. Sagara Y, Ishida C, Inoue Y, Shiraki H, Maeda Y. 71-kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1. Journal of virology. 1998;72(1):535-41. 178. Wampler JL, Kim K-P, Jaradat Z, Bhunia AK. Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infection and immunity. 2004;72(2):931-6. 179. Dziewanowska K, Carson AR, Patti JM, Deobald CF, Bayles KW, Bohach GA. Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. Infection and immunity. 2000;68(11):6321-8. 180. Speth C, Prohászka Z, Mair M, Stöckl G, Zhu X, Jöbstl B, et al. A 60 kD heat-shock protein-like molecule interacts with the HIV transmembrane glycoprotein gp41. Molecular immunology. 1999;36(9):619-28. 181. Triantafilou K, Triantafilou M, Dedrick RL. A CD14-independent LPS receptor cluster. Nature immunology. 2001;2(4):338. 182. Barazi HO, Zhou L, Templeton NS, Krutzsch HC, Roberts DD. Identification of heat shock protein 60 as a molecular mediator of α3β1 integrin activation. Cancer research. 2002;62(5):1541-8. 183. Armijo G, Okerblom J, Cauvi DM, Lopez V, Schlamadinger DE, Kim J, et al. Interaction of heat shock protein 70 with membranes depends on the lipid environment. Cell Stress and Chaperones. 2014;19(6):877-86. 184. Simons K, Toomre D. Lipid rafts and signal transduction. Nature reviews Molecular cell biology. 2000;1(1):31. 185. Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nature reviews Molecular cell biology. 2017;18(6):361. 186. Frédérick J-M, Rodgers JM, Willems TF, Smit B. Molecular simulation of the effect of cholesterol on lipid-mediated protein-protein interactions. Biophysical journal. 2010;99(11):3629-38. 187. Cuadras MA, Bordier BB, Zambrano JL, Ludert JE, Greenberg HB. Dissecting rotavirus particle-raft interaction with small interfering RNAs: insights into rotavirus transit through the secretory pathway. Journal of virology. 2006;80(8):3935-46. 188. Cuadras MA, Greenberg HB. Rotavirus infectious particles use lipid rafts during replication for transport to the cell surface in vitro and in vivo. Virology. 2003;313(1):308-21. 189. Lang T, Bruns D, Wenzel D, Riedel D, Holroyd P, Thiele C, et al. SNAREs are concentrated in cholesterol‐dependent clusters that define docking and fusion sites for exocytosis. The EMBO journal. 2001;20(9):2202-13. 190. Haselhorst T, Fleming FE, Dyason JC, Hartnell RD, Yu X, Holloway G, et al. Sialic acid dependence in rotavirus host cell invasion. Nature chemical biology. 2009;5(2):91. 191. Isa P, Arias CF, López S. Role of sialic acids in rotavirus infection. Glycoconjugate journal. 2006;23(1-2):27-37. 192. Enouf V, Chwetzoff S, Trugnan G, Cohen J. Interactions of rotavirus VP4 spike protein with the endosomal protein Rab5 and the prenylated Rab acceptor PRA1. Journal of virology. 2003;77(12):7041-7. 193. Mercer J, Helenius A. Virus entry by macropinocytosis. Nature cell biology. 2009;11(5):510. 194. Halasz P, Holloway G, Coulson BS. Death mechanisms in epithelial cells following rotavirus infection, exposure to inactivated rotavirus or genome transfection. Journal of General Virology. 2010;91(8):2007-18. 195. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a cancer journal for clinicians. 2016;66(1):7-30. 196. Network NCC. Ovarian Cancer Guidelines: aviable in https://www.nccn.org/about/permissions/reference.aspx; 2016 [consultado: 16/08/2019]. 197. Lloyd KL, Cree IA, Savage RS. Prediction of resistance to chemotherapy in ovarian cancer: a systematic review. BMC cancer. 2015;15(1):117. 198. Leffers N, Lambeck AJ, Gooden MJ, Hoogeboom BN, Wolf R, Hamming IE, et al. Immunization with a P53 synthetic long peptide vaccine induces P53‐specific immune responses in ovarian cancer patients, a phase II trial. International Journal of Cancer. 2009;125(9):2104-13. 199. Martin L, Schilder R. Novel approaches in advancing the treatment of epithelial ovarian cancer: the role of angiogenesis inhibition. Journal of Clinical Oncology. 2007;25(20):2894-901. 200. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. New England Journal of Medicine. 2016;375(22):2154-64. 201. Pujade-Lauraine E, Hilpert F, Weber B, Reuss A, Poveda A, Kristensen G, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. Obstetrical & Gynecological Survey. 2014;69(7):402-4. 202. Galanis E, Atherton PJ, Maurer MJ, Knutson KL, Dowdy SC, Cliby WA, et al. Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer research. 2015;75(1):22-30. 203. Kurman RJ, Shih I-M. The Origin and pathogenesis of epithelial ovarian cancer-a proposed unifying theory. The American journal of surgical pathology. 2010;34(3):433. 204. Vang R, Shih IM, Kurman RJ. Fallopian tube precursors of ovarian low‐and high‐grade serous neoplasms. Histopathology. 2013;62(1):44-58. 205. Bodelon C, Killian JK, Sampson JN, Anderson WF, Matsuno R, Brinton LA, et al. Molecular classification of epithelial ovarian cancer based on methylation profiling: evidence for survival heterogeneity. Clinical Cancer Research. 2019:clincanres. 3720.2018. 206. Narayanankutty V, Narayanankutty A, Nair A. Heat Shock Proteins (HSPs): A Novel Target for Cancer Metastasis Prevention. Current drug targets. 2019;20(7):727-37. 207. Tsai Y-P, Yang M-H, Huang C-H, Chang S-Y, Chen P-M, Liu C-J, et al. Interaction between HSP60 and β-catenin promotes metastasis. Carcinogenesis. 2009;30(6):1049-57. 208. Feng J, Xie G, Zhan Y, Lu J, Xu L, Fan S, et al. Elevated HSP 90 associates with expression of HIF‐1α and p‐AKT and predicts the poor prognosis in the nasopharyngeal carcinoma. Histopathology. 2019. 209. Klimczak M, Biecek P, Zylicz A, Zylicz M. Heat shock proteins create a signature to predict the clinical outcome in breast cancer. Scientific reports. 2019;9(1):7507. 210. Liu H, Xiao F, Serebriiskii IG, O'Brien SW, Maglaty MA, Astsaturov I, et al. Network analysis identifies an HSP90-central hub susceptible in ovarian cancer. Clinical Cancer Research. 2013;19(18):5053-67. 211. ELPEK GÖ, KARAVELI Ş, ŞIMŞEK T, KELEŞ N, Aksoy NH. Expression of heat‐shock proteins hsp27, hsp70 and hsp90 in malignant epithelial tumour of the ovaries: Correlation with clinicopathologic factors and survival. Apmis. 2003;111(4):523-30. 212. Langdon SP, Rabiasz GJ, Hirst GL, King R, Hawkins RA, Smyth JF, et al. Expression of the heat shock protein HSP27 in human ovarian cancer. Clinical Cancer Research. 1995;1(12):1603-9. 213. Annunziata CM, Kleinberg L, Davidson B, Berner A, Gius D, Tchabo N, et al. BAG-4/SODD and associated antiapoptotic proteins are linked to aggressiveness of epithelial ovarian cancer. Clinical Cancer Research. 2007;13(22):6585-92. 214. Schneider J, Jimenez E, Marenbach K, Romero H, Marx D, Meden H. Immunohistochemical detection of HSP60-expression in human ovarian cancer. Correlation with survival in a series of 247 patients. Anticancer research. 1999;19(3A):2141-6. 215. Bodzek P, Partyka R, Damasiewicz-Bodzek A. Antibodies against Hsp60 and Hsp65 in the sera of women with ovarian cancer. Journal of ovarian research. 2014;7(1):30. 216. Calderwood SK. Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands? Philosophical Transactions of the Royal Society B: Biological Sciences. 2017;373(1738):20160524. 217. Cohen M, Dromard M, Petignat P. Heat shock proteins in ovarian cancer: a potential target for therapy. Gynecologic oncology. 2010;119(1):164-6. 218. Marsico G, Russo L, Quondamatteo F, Pandit A. Glycosylation and Integrin Regulation in Cancer. Trends in cancer. 2018;4(8):537-52. 219. Casey RC, Burleson KM, Skubitz KM, Pambuccian SE, Oegema Jr TR, Ruff LE, et al. β1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. The American journal of pathology. 2001;159(6):2071-80. 220. Cruet-Hennequart S, Maubant S, Luis J, Gauduchon P, Staedel C, Dedhar S. α v integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene. 2003;22(11):1688. 221. Mitra A, Sawada K, Tiwari P, Mui K, Gwin K, Lengyel E. Ligand-independent activation of c-Met by fibronectin and α 5 β 1-integrin regulates ovarian cancer invasion and metastasis. Oncogene. 2011;30(13):1566. 222. Cannistra SA, Ottensmeier C, Niloff J, Orta B, DiCarlo J. Expression and function of β1 and αvβ3 integrins in ovarian cancer. Gynecologic oncology. 1995;58(2):216-25. 223. Bartolazzi A, Kaczmarek J, Nicolo G, Risso A, Tarone G, Rossino P, et al. Localization of the alpha 3 beta 1 integrin in some common epithelial tumors of the ovary and in normal equivalents. Anticancer research. 1993;13(1):1-11. 224. Shield K, Riley C, Quinn MA, Rice GE, Ackland ML, Ahmed N. α2β1 integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis. Journal of carcinogenesis. 2007;6:11. 225. Liapis H, Adler LM, Wick MR, Rader JS. Expression of αvβ3 integrin is less frequent in ovarian epithelial tumors of low malignant potential in contrast to ovarian carcinomas. Human pathology. 1997;28(4):443-9. 226. Organization WH, Research SPf, Diseases TiT, Diseases WHODoCoNT, Epidemic WHO, Alert P. Dengue: guidelines for diagnosis, treatment, prevention and control: World Health Organization; 2009. 227. Zárate S, Espinosa R, Romero P, Méndez E, Arias CF, López S. The VP5 domain of VP4 can mediate attachment of rotaviruses to cells. Journal of Virology. 2000;74(2):593-9. 228. Shepherd TG, Thériault BL, Campbell EJ, Nachtigal MW. Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients. Nature protocols. 2006;1(6):2643. 229. Clark R, Krishnan V, Schoof M, Rodriguez I, Theriault B, Chekmareva M, et al. Milky spots promote ovarian cancer metastatic colonization of peritoneal adipose in experimental models. The American journal of pathology. 2013;183(2):576-91. 230. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nature reviews Drug discovery. 2015;14(9):642-62. 231. Chaibi C, Cotte-Laffitte J, Sandre C, Esclatine A, Servin AL, Quero AM, et al. Rotavirus induces apoptosis in fully differentiated human intestinal Caco-2 cells. Virology. 2005;332(2):480-90. 232. Martin-Latil S, Mousson L, Autret A, Colbere-Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol. 2007;81(9):4457-64. 233. Corrado G, Salutari V, Palluzzi E, Distefano MG, Scambia G, Ferrandina G. Optimizing treatment in recurrent epithelial ovarian cancer. Expert review of anticancer therapy. 2017;17(12):1147-58. 234. Silvestri LS, Taraporewala ZF, Patton JT. Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms. Journal of virology. 2004;78(14):7763-74. 235. Zhang S, Balch C, Chan MW, Lai H-C, Matei D, Schilder JM, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer research. 2008;68(11):4311-20. 236. Maru Y, Hippo Y. Current Status of Patient-Derived Ovarian Cancer Models. Cells. 2019;8(5):505.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCáncer de ovario, Rotavirus, Oncolítico, Proteínas de choque térmico, integrina
dc.subject.proposalOvarian Cancer, rotavirus, oncolytic, heat shock proteins, integrin.
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito