Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorLarrañaga Rubio, Eduard Alexis
dc.contributor.authorConde Ocazionez, Carlos Alfonso
dc.date.accessioned2020-02-25T16:41:36Z
dc.date.available2020-02-25T16:41:36Z
dc.date.issued2020-01-21
dc.date.issued2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75729
dc.description.abstractIn this work, the gravitational radiation emitted from a compact binary system is analyzed in the context of general relativity and f(R) gravity based on linearized theory. Besides the two standard polarizations of gravitational waves, an additional massive scalar mode is present in f(R). At the Newtonian limit, it implies a Yukawa-like addition to the Newtonian potential. This kind of potential interaction has been studied in other scenarios. Here, the quadrupole radiation for the massless polarizations of a binary source in circular motion under such potential is determined. The back-reaction effect due to the emission of gravitational waves is discussed at linear and second order in Υ = 1/λg where λg is the Compton wavelength of the graviton. It is expected that in future measurements, slightly changes in the frequency waveform pattern of those systems may be put better constraints on the space parameters of alternative theories of gravity such as f(R).
dc.format.extent190
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcAstronomía y ciencias afines
dc.titleGravitational radiation from the inspiral of compact binaries based on a Yukawa-type addition to the Newtonian potential
dc.title.alternativeGravitational radiation from the inspiral of compact binaries based on a Yukawa-type addition to the Newtonian potential
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectDirección de Investigación-Sede Bogotá, Universidad Nacional de Colombia (DIB-UNAL) under Project No. 41673 and Grupo de Astronomía, Astrofísica y Cosmología-Observatorio Astronómico Nacional.
dc.description.additionalMaster of Science - Astronomy
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupAstronomía, Astrofísica y Cosmologia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesFlanagan, E. E. & Hughes, S. A. The basics of gravitational wave theory. New Journal of Physics 7, 204 (2005).
dc.relation.referencesEinstein, A. On gravitational waves. Journal of the Franklin Institute 223, 43–54 (1918).
dc.relation.referencesRosen, N. Plane polarized waves in the general theory of relativity. Phys. Z. Sowjetunion 12, 366–372 (1937).
dc.relation.referencesHill, C. D. & Nurowski, P. How the green light was given for gravitational wave search. arXiv preprint arXiv:1608.08673 (2016).
dc.relation.referencesTrautman, A. Radiation and boundary conditions in the theory of gravitation. arXiv reprinted arXiv:1604.03145 (2016).
dc.relation.referencesRobinson, I. & Trautman, A. Spherical gravitational waves. Physical Review Letters 4, 431 (1960).
dc.relation.referencesKennefick, D. J. Traveling at the speed of thought: Einstein and the quest for gravitational waves (Princeton university press, 2016).
dc.relation.referencesMaggiore, M. Gravitational waves: Volume 1: Theory and experiments (Oxford university press, 2008).
dc.relation.referencesPoisson, E. & Will, C. M. Gravity: Newtonian, post-newtonian, relativistic (Cambridge University Press, 2014).
dc.relation.referencesWeisberg, J. M., Taylor, J. H. & Fowler, L. A. Gravitational waves from an orbiting pulsar. Scientific American 245, 74–83 (1981).
dc.relation.referencesPeters, P. & Mathews, J. Gravitational radiation from point masses in a Keplerian orbit. Physical Review 131, 435 (1963).
dc.relation.referencesAbbott, B. P. et al. GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Physical review letters 116, 241103 (2016).
dc.relation.referencesAbbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Physical review letters 116, 061102 (2016).
dc.relation.referencesScientific, L. et al. GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Physical Review Letters 118, 221101 (2017).
dc.relation.referencesAbbott, B. P. et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Physical review letters 119, 141101 (2017).
dc.relation.referencesAbbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Physical Review Letters 119, 161101 (2017).
dc.relation.referencesSotiriou, T. P. & Faraoni, V. f (R) theories of gravity. Reviews of Modern Physics 82, 451 (2010).
dc.relation.referencesHaranas, I. & Ragos, O. Yukawa-type effects in satellite dynamics. Astrophysics and Space Science 331, 115–119 (2011).
dc.relation.referencesHaranas, I., Ragos, O. & Mioc, V. Yukawa-type potential effects in the anomalistic period of celestial bodies. Astrophysics and Space Science 332, 107–113 (2011).
dc.relation.referencesHaranas, I., Kotsireas, I., Gómez, G., Fullana, M. J. & Gkigkitzis, I. Yukawa effects on the mean motion of an orbiting body. Astrophysics and Space Science 361, 365 (2016).
dc.relation.referencesPricopi, D. Stability of the celestial body orbits under the influence of Yukawa potential. Astrophysics and Space Science 361, 277 (2016).
dc.relation.referencesIorio, L. Constraints on the range λ of Yukawa-like modifications to the Newtonian inverse-square law of gravitation from Solar System planetary motions. Journal of High Energy Physics 2007, 041 (2007).
dc.relation.referencesBorka, D, Jovanović, P, Jovanović, V. B. & Zakharov, A. Constraining the range of Yukawa gravity interaction from S2 star orbits. Journal of Cosmology and Astroparticle Physics 2013, 050 (2013).
dc.relation.referencesUrsulov, A. & Chuvasheva, T. Influence of Yukawa-type additions to a Newtonian gravitational potential on the perihelion precession of bodies in the solar system. Astronomy Reports 61, 468–474 (2017).
dc.relation.referencesDe Martino, I., Lazkoz, R. & De Laurentis, M. Analysis of the Yukawa gravitational potential in f(R) gravity. I. Semiclassical periastron advance. Physical Review D 97, 104067 (2018).
dc.relation.referencesDe Laurentis, M., De Martino, I. & Lazkoz, R. Analysis of the Yukawa gravitational potential in f (R) gravity. II. Relativistic periastron advance. Physical Review D 97, 104068 (2018).
dc.relation.referencesBerry, C. P. & Gair, J. R. Linearized f (R) gravity: gravitational radiation and solar system tests. Physical Review D 83, 104022 (2011).
dc.relation.referencesPoisson, E. A relativist’s toolkit: the mathematics of black-hole mechanics (Cambridge university press, 2004).
dc.relation.referencesStephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. & Herlt, E. Exact solutions of Einstein’s field equations (Cambridge university press, 2009).
dc.relation.referencesWald, R. M. General relativity (University of Chicago Press (Chicago, 1984), 1987).
dc.relation.referencesCarroll, S. M. Spacetime and geometry (Cambridge University Press, 2004).
dc.relation.referencesBuonanno, A. Gravitational waves. arXiv preprint arXiv:0709.4682 (2007).
dc.relation.referencesMisner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (Princeton University Press, 1973).
dc.relation.referencesDe Laurentis, M. The Newtonian and relativistic theory of orbits and the emission of gravitational waves Open Astron. J 4, 1874 (2011).
dc.relation.referencesHobson, M. P., Efstathiou, G. P. & Lasenby, A. N. General relativity: an introduction for physicists (Cambridge University Press, 2006).
dc.relation.referencesWeinberg, S. Gravitation and cosmology: principles and applications of the general theory of relativity (1972).
dc.relation.referencesPadmanabhan, T. Gravitation: foundations and frontiers (Cambridge University Press, 2010).
dc.relation.referencesPoisson, E. An advanced course in general relativity. lecture notes at University of Guelph (2002).
dc.relation.referencesStein, L. C. & Yunes, N. Effective gravitational wave stress-energy tensor in alternative theories of gravity. Physical Review D 83, 064038 (2011).
dc.relation.referencesIsaacson, R. A. Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Physical Review 166, 1272 (1968).
dc.relation.referencesZalaletdinov, R. M. Averaging out the Einstein equations. General Relativity and Gravitation 24, 1015–1031 (1992).
dc.relation.referencesCreighton, J. D. & Anderson, W. G. Gravitational-wave physics and astronomy: An introduction to theory, experiment and data analysis (John Wiley & Sons, 2012).
dc.relation.referencesSchutz, B. A first course in general relativity (Cambridge university press, 2009).
dc.relation.referencesSchutz, B. F. Gravitational radiation. arXiv preprint gr-qc/0003069 (2000).
dc.relation.referencesLandau, L. D. The classical theory of fields (Elsevier, 1975).
dc.relation.referencesWalker, M. & Will, C. M. The approximation of radiative effects in relativistic gravity-Gravitational radiation reaction and energy loss in nearly Newtonian systems. The Astrophysical Journal 242, L129–L133 (1980).
dc.relation.referencesWalker, M. & Will, C. M. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems. Physical Review Letters 45, 1741 (1980).
dc.relation.referencesBlanchet, L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Reviews in Relativity 17, 2 (2014).
dc.relation.referencesLightman, A. P., Press, W. H., Price, R. H. & Teukolsky, S. A. Problem book in relativity and gravitation (Princeton University Press, 1979).
dc.relation.referencesGuarnizo, A., Castaneda, L. & Tejeiro, J. M. Boundary term in metric f (R) gravity: field equations in the metric formalism. General Relativity and Gravitation 42, 2713–2728 (2010).
dc.relation.referencesDe Felice, A. & Tsujikawa, S. f (R) theories. Living Reviews in Relativity 13, 3 (2010).
dc.relation.referencesOlmo, G. J. Palatini approach to modified gravity: f(R) theories and beyond. International Journal of Modern Physics D 20, 413–462 (2011).
dc.relation.referencesCapozziello, S., Corda, C. & De Laurentis, M. F. Massive gravitational waves from f(R) theories of gravity: Potential detection with LISA. Physics Letters B 669, 255–259 (2008).
dc.relation.referencesCorda, C. Massive gravitational waves from the R2 theory of gravity: production and response of interferometers. International Journal of Modern Physics A 23, 1521–1535 (2008).
dc.relation.referencesCorda, C. Massive relic gravitational waves from f (R) theories of gravity: production and potential detection. The European Physical Journal C 65, 257 (2010).
dc.relation.referencesNäf, J. & Jetzer, P. Gravitational radiation in quadratic f (R) gravity. Physical Review D 84, 024027 (2011).
dc.relation.referencesCapozziello, S. & Bajardi, F. Gravitational waves in modified gravity. International Journal of Modern Physics D 28, 1942002 (2019).
dc.relation.referencesPeskin, M. E. An introduction to quantum field theory (CRC Press, 2018).
dc.relation.referencesSaff, E. B. & Snider, A. D. Fundamentals of complex analysis for mathematics, science, and engineering BOOK (Prentice-Hall, 1976).
dc.relation.referencesCorda, C. The production of matter from curvature in a particular linearized high order theory of gravity and the longitudinal response function of interferometers. Journal of Cosmology and Astroparticle Physics 2007, 009 (2007).
dc.relation.referencesGoldstein, H., Poole, C. & Safko, J. Classical mechanics 2002.
dc.relation.referencesMarion, J. B. Classical dynamics of particles and systems (Academic Press, 2013).
dc.relation.referencesFinn, L. S. & Sutton, P. J. Bounding the mass of the graviton using binary pulsar observations. Physical Review D 65, 044022 (2002).
dc.relation.referencesLee, S. Constraint on reconstructed f (R) gravity models from gravitational waves. The European Physical Journal C 78, 449 (2018).
dc.relation.referencesTaylor, J. H., Fowler, L. & McCulloch, P. Measurements of general relativistic effects in the binary pulsar PSR1913+ 16. Nature 277, 437 (1979).
dc.relation.referencesWeisberg, J. M. & Taylor, J. H. Relativistic binary pulsar B1913+ 16: Thirty years of observations and analysis. arXiv preprint astro-ph/0407149 (2004).
dc.relation.referencesWeisberg, J. M. & Huang, Y. Relativistic measurements from timing the binary pulsar PSR B1913+ 16. The Astrophysical Journal 829, 55 (2016).
dc.relation.referencesNeedham, T. Visual complex analysis (Oxford University Press, 1998).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalGeneral relativity
dc.subject.proposalGravitational waves
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito