Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorInstituto de Genética de la Universidad Nacional de Colombia – IGUN
dc.contributor.advisorRey Buitrago, Mauricio
dc.contributor.authorGantiva Gantiva, Mauricio
dc.date.accessioned2020-02-26T15:44:22Z
dc.date.available2020-02-26T15:44:22Z
dc.date.issued2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75758
dc.description.abstractLa -sinucleína es el componente principal de los cuerpos de Lewy y un sello patogénico de todas las sinucleinopatías, en personas con alto consumo de alcohol, se han observado cambios importantes en la expresión de α sinucleína, alterando la neuroprotección. Las mutaciones en el gen -sinucleína y su correspondiente producción de proteína mutada han sido asociadas con procesos de agregación de la proteína, en donde se ve alterada su conformación y adquiriere capacidad autoagregante, lo que se relaciona con el depósito de agregados proteináceos en las neuronas y podría constituir un factor fisiopatológico importante en enfermedades neuronales. Dentro de las mutaciones identificadas, una mutación importante "G51D" en el gen de la -sinucleína sugirio que la -sinucleína podría servir como marcador anatomopatológico para enfermedades neuronales, y de adicciones relacionadas con el abuso de alcohol. En este proyecto presentamos la metodología que nos permitió establecer las mejores condiciones de expresión, purificación y caracterización de la proteína recombinante α-sinucleína G51D, con ensayos de agragación y la estandarizaron de las condiciones para la obtención del anticuerpo de tipo policlonal dirigido hacia el antígeno α-sinucleína G51D; para lograr lo anterior se identifico por medio de estudios bioinformáticos un candidato mutante de la proteína α-sinucleína, que en nuestro caso resultó en un cambio en el aminoácido 51 de la proteína, siendo reemplazada la Glicina por Acido aspártico; se realizó la optimización para la clonación del gen de estudio, utilizando el vector pET30a, que nos dio la mejor solubilidad in silico, y la proteína obtenida permitió la obtención de un anticuerpo policlonal anti proteína mutada α-sinucleína G51D, constituyendo una herramienta inmunológica importante en la confirmación de la existencia de proteínas mutantes a nivel de la α-sinucleína.
dc.format.extent88
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcMedicina y salud
dc.titleObtención y caracterización parcial de un mutante de la proteína recombinante α-sinucleína, y producción de su anticuerpo policlonal
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Genética Humana. Línea de investigación: Genética Clínica
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAgerschou, E. D., Flagmeier, P., Saridaki, T., Galvagnion, C., Komnig, D., Heid, L., … Buell, A. K. (2019). An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils. ELife, 8. https://doi.org/10.7554/elife.46112 Bessette, P. H., Åslund, F., Beckwith, J., & Georgiou, G. (1999). Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proceedings of the National Academy of Sciences, 96(24). Biancalana, M., & Koide, S. (2010, July). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta - Proteins and Proteomics, Vol. 1804, pp. 1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001 Bisaglia, M., Mammi, S., & Bubacco, L. (2009). Structural insights on physiological functions and pathological effects of alpha-synuclein. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 23(2), 329–340. https://doi.org/10.1096/fj.08-119784 Bönsch, D., Lederer, T., Reulbach, U., Hothorn, T., Kornhuber, J., & Bleich, S. (2005). Joint analysis of the NACP-REP1 marker within the alpha synuclein gene concludes association with alcohol dependence. Human Molecular Genetics, 14(7), 967–971. https://doi.org/10.1093/hmg/ddi090 Bönsch, Dominikus, Reulbach, U., Bayerlein, K., Hillemacher, T., Kornhuber, J., & Bleich, S. (2004). Elevated alpha synuclein mRNA levels are associated with craving in patients with alcoholism. Biological Psychiatry, 56(12), 984–986. https://doi.org/10.1016/j.biopsych.2004.09.016 Bruno. (n.d.). UNIVERSIDAD DE COSTA RICA Facultad de Microbiología Instituto Clodomiro Picado Manual de Métodos Inmunológicos. Retrieved from http://www.icp.ucr.ac.cr/~blomonte/ Chin, J. X., Chung, B. K. S., & Lee, D. Y. (2014). Codon Optimization OnLine (COOL): A web-based multi-objective optimization platform for synthetic gene design. Bioinformatics, 30(15), 2210–2212. https://doi.org/10.1093/bioinformatics/btu192 Choi, J. H., Keum, K. C., & Lee, S. Y. (2006). Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical Engineering Science. https://doi.org/10.1016/j.ces.2005.03.031 Clayton, D. F., & George, J. M. (1999). Synucleins in synaptic plasticity and neurodegenerative disorders. Journal of Neuroscience Research, 58(1), 120–129. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10491577 Cowieson, N. P., Wensley, B., Robin, G., Guncar, G., Forwood, J., Hume, D. A., … Martin, J. L. (2008). A medium or high throughput protein refolding assay. Methods in Molecular Biology (Clifton, N.J.), 426, 269–275. https://doi.org/10.1007/978-1-60327-058-8_17 de Oliveira, G. A. P., & Silva, J. L. (2019). Alpha-synuclein stepwise aggregation reveals features of an early onset mutation in Parkinson’s disease. Communications Biology, 2(1). https://doi.org/10.1038/s42003-019-0598-9 Di Giovanni, S., Eleuteri, S., Paleologou, K. E., Yin, G., Zweckstetter, M., Carrupt, P. A., & Lashuel, H. A. (2010). Entacapone and tolcapone, two catechol O-methyltransferase inhibitors, block fibril formation of α-synuclein and β-amyloid and protect against amyloid-induced toxicity. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M109.080390 Ehlers, C. L., Gilder, D. A., Wall, T. L., Phillips, E., Feiler, H., & Wilhelmsen, K. C. (2004). Genomic screen for loci associated with alcohol dependence in Mission Indians. American Journal of Medical Genetics, 129B(1), 110–115. https://doi.org/10.1002/ajmg.b.30057 Fares, M. B., Ait-Bouziad, N., Dikiy, I., Mbefo, M. K., Jovičić, A., Kiely, A., … Lashuel, H. A. (2014). The novel Parkinson’s disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells. Human Molecular Genetics, 23(17), 4491–4509. https://doi.org/10.1093/hmg/ddu165 Ferrer-Miralles, N., Domingo-Espín, J., Corchero, J., Vázquez, E., & Villaverde, A. (2009). Microbial factories for recombinant pharmaceuticals. Microbial Cell Factories. https://doi.org/10.1186/1475-2859-8-17 Fra, A. M., Williamson, E., Simons, K., & Parton, R. G. (1995). De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proceedings of the National Academy of Sciences of the United States of America, 92(19), 8655–8659. https://doi.org/10.1073/pnas.92.19.8655 Geng, X., & Wang, C. (2007). Protein folding liquid chromatography and its recent developments. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. https://doi.org/10.1016/j.jchromb.2006.10.068 Goedert, M. (2013). Alpha-synuclein and neurodegenerative diseases Michel Goedert. https://doi.org/10.1038/35081564 Hirose, S., & Noguchi, T. (2013). Espresso: A system for estimating protein expression and solubility in protein expression systems. Proteomics, 13(9), 1444–1456. https://doi.org/10.1002/pmic.201200175 Janeczek, P., & Lewohl, J. M. (2017). Effect of Alcohol on the Regulation of α-Synuclein in the Human Brain. In Addictive Substances and Neurological Disease: Alcohol, Tobacco, Caffeine, and Drugs of Abuse in Everyday Lifestyles (pp. 67–73). https://doi.org/10.1016/B978-0-12-805373-7.00008-6 Janeczek, Paulina, & Lewohl, J. M. (2013). The role of α-synuclein in the pathophysiology of alcoholism. Neurochemistry International. https://doi.org/10.1016/j.neuint.2013.06.007 Jonasson, P., Liljeqvist, S., Nygren, P.-A., & Ståhl, S. (2002). Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnology and Applied Biochemistry, 35(Pt 2), 91–105. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11916451 Lavedan, C. (1998). The synuclein family. Genome Research, 8(9), 871–880. https://doi.org/10.1101/gr.8.9.871 Lee, V. M.-Y., & Trojanowski, J. Q. (2006). Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron, 52(1), 33–38. https://doi.org/10.1016/j.neuron.2006.09.026 Lehmann, K., Hoffmann, S., Neudecker, P., Suhr, M., Becker, W.-M., & Rösch, P. (2003). High-yield expression in Escherichia coli, purification, and characterization of properly folded major peanut allergen Ara h 2. Protein Expression and Purification, 31(2), 250–259. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14550644 Lesage, S., Anheim, M., Letournel, F., Bousset, L., Honoré, A., Rozas, N., … French Parkinson’s Disease Genetics Study Group. (2013). G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Annals of Neurology, 73(4), 459–471. https://doi.org/10.1002/ana.23894 Lilie, H., Schwarz, E., & Rudolph, R. (1998). Advances in refolding of proteins produced in E. coli. Current Opinion in Biotechnology, 9(5), 497–501. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9821278 Magnan, C. N., Randall, A., & Baldi, P. (2009). SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics (Oxford, England), 25(17), 2200–2207. https://doi.org/10.1093/bioinformatics/btp386 Marshall, G. R. (1987). Molecular Modeling in Drug Design. In Clinical Pharmacology in Psychiatry (pp. 3–11). https://doi.org/10.1007/978-3-642-71288-3_1 Masliah, E., Iwai, A., Mallory, M., Uéda, K., & Saitoh, T. (1996). Altered presynaptic protein NACP is associated with plaque formation and neurodegeneration in Alzheimer’s disease. The American Journal of Pathology. Masuda, M., Suzuki, N., Taniguchi, S., Oikawa, T., Nonaka, T., Iwatsubo, T., … Hasegawa, M. (2006). Small molecule inhibitors of α-synuclein filament assembly. Biochemistry. https://doi.org/10.1021/bi0600749 Meade, R. M., Fairlie, D. P., & Mason, J. M. (2019). Alpha-synuclein structure and Parkinson’s disease - lessons and emerging principles. Molecular Neurodegeneration, 14(1), 29. https://doi.org/10.1186/s13024-019-0329-1 Miller, D. W., Hague, S. M., Clarimon, J., Baptista, M., Gwinn-Hardy, K., Cookson, M. R., & Singleton, A. B. (2004). Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology, 62(10), 1835–1838. https://doi.org/10.1212/01.wnl.0000127517.33208.f4 Ni, Y., & Chen, R. (2009). Extracellular recombinant protein production from Escherichia coli. Biotechnology Letters, 31(11), 1661–1670. https://doi.org/10.1007/s10529-009-0077-3 Ramprasad, M. P., Terpstra, V., Kondratenko, N., Quehenberger, O., & Steinberg, D. (1996). Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 93(25), 14833–14838. https://doi.org/10.1073/pnas.93.25.14833 Reich, T., Edenberg, H. J., Goate, A., Williams, J. T., Rice, J. P., Van Eerdewegh, P., … Begleiter, H. (1998). Genome-wide search for genes affecting the risk for alcohol dependence. American Journal of Medical Genetics, 81(3), 207–215. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9603606 Russell, D. W., & Sambrook, J. (2001). Molecular cloning: A laboratory manual, Chapter 5. In Cold Spring Harbour. Schatz, G., & Dobberstein, B. (1996). Common principles of protein translocation across membranes. Science (New York, N.Y.), 271(5255), 1519–1526. https://doi.org/10.1126/science.271.5255.1519 Schlossmacher, M. G., Curran, M. D., Paleologou, K. E., El-Agnaf, O. M. A., Court, J. A., Salem, S. A., … Allsop, D. (2006). Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. The FASEB Journal. https://doi.org/10.1096/fj.03-1449com Smialowski, P., Doose, G., Torkler, P., Kaufmann, S., & Frishman, D. (2012). PROSO II--a new method for protein solubility prediction. The FEBS Journal, 279(12), 2192–2200. https://doi.org/10.1111/j.1742-4658.2012.08603.x Sørensen, H. P., & Mortensen, K. K. (2005). Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, 115(2), 113–128. https://doi.org/10.1016/j.jbiotec.2004.08.004 Sui, Y. T., Bullock, K. M., Erickson, M. A., Zhang, J., & Banks, W. A. (2014). Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides, 62, 197–202. https://doi.org/10.1016/j.peptides.2014.09.018 Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76(9), 4350–4354. https://doi.org/10.1073/pnas.76.9.4350 Ulmer, T. S., Bax, A., Cole, N. B., & Nussbaum, R. L. (2005). Structure and dynamics of micelle-bound human alpha-synuclein. The Journal of Biological Chemistry, 280(10), 9595–9603. https://doi.org/10.1074/jbc.M411805200 Uversky, V. N., & Fink, A. L. (2002). Amino acid determinants of alpha-synuclein aggregation: putting together pieces of the puzzle. FEBS Letters, 522(1–3), 9–13. https://doi.org/10.1016/s0014-5793(02)02883-1 Visanji, N. P., Brotchie, J. M., Kalia, L. V., Koprich, J. B., Tandon, A., Watts, J. C., & Lang, A. E. (2016, November 1). α-Synuclein-Based Animal Models of Parkinson’s Disease: Challenges and Opportunities in a New Era. Trends in Neurosciences, Vol. 39, pp. 750–762. https://doi.org/10.1016/j.tins.2016.09.003 Ward, W., & Swiatek, G. (2009). Protein Purification. Current Analytical Chemistry, 5(2), 85–105. https://doi.org/10.2174/157341109787846171 Xu, L., & Pu, J. (2016). Alpha-Synuclein in Parkinson’s Disease: From Pathogenetic Dysfunction to Potential Clinical Application. Parkinson’s Disease, 2016, 1720621. https://doi.org/10.1155/2016/1720621 Yadira Martínez-Rodríguez, T., & Rey-Buitrago, M. (2019). Physiological, molecular and genetic aspects of alpha-synuclein and its correlation with high alcohol consumption Aspectos fisiológicos, moleculares y genéticos de la α-sinucleína y su relación con el alto consumo de alcohol. Rev. Fac. Med, 67(3), 11610. https://doi.org/10.15446/revfacmed.v67n3.69962 Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40. https://doi.org/10.1186/1471-2105-9-40
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalα-sinucleína
dc.subject.proposalα-sinucleína G51D
dc.subject.proposalpET30a
dc.subject.proposalMutante
dc.subject.proposalAnticuerpo policlonal
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito