Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMatta Camacho, Nubia Estela
dc.contributor.authorGiraldo Cepeda, Axl
dc.date.accessioned2020-02-26T16:02:30Z
dc.date.available2020-02-26T16:02:30Z
dc.date.issued2019-11-11
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75759
dc.description.abstractResearch on malaria has focused during a long time on the parasites that infect humans.However, it is also true that most information about the biology of this parasites comes from experimental models. For this reason, this thesis focuses on a Haemosporida parasite closely related to the Plasmodium genus, which is the Haemoproteus parasites. Methods include standardizing an experimental animal model for the Haemoproteus transmission. The approach involved the natural host Rock Pigeon (Columba livia), the louse flies (Pseudolynchia canariensis) which are the vectors and the parasite Haemoproteus columbae. The first hole in the road to overcoming was to increase the number of parasites present inthe blood sample (parasitemia); in this way, it was possible to reduce the gap between the proportion of host DNA and parasite DNA. Besides, there was necessary to standardize the conditions to reared louse flies in the lab, and the methodologies that allow following the infection both in the vector and in the vertebrate host these results are shown in Chapter 6. On the other hand, total genomic DNA was sequenced on Illumina HiSeqX 150-bp technology, resulting in a total of 628'859.636 pair-end reads. It allows obtaining the complete apicoplast and mitochondrial genomes, with enough coverage to be considered reference genomes. These results are shown in Chapters 7 and 8. Regarding the Apigenome, phylogenetic, phylogenomic and evolutionary analyses were carried out, highlighting an evolutionary dynamic related to GC content bias within Haemosporida order, which had an impact on the Substitution Saturation of coding sequences aswell as in the Codon Usage. Finally, a draft nuclear genome was assembled, and 3976 genes were annotated. Likewise, evidence of LTR-transposon sequences was found, which play acritical role in the evolutionary dynamics of genomes (Chapter 8). In conclusion, this thesis present to the scientific community an experimental animal modelthat undoubtedly will allow new approximations to characterize the life cycle of vector-borne parasites. The apicoplast genome of this parasite allowed us to study the evolutionary dynamics of this organelle inside and outside the Haemosporida order. Finally, we generate thefirst draft genome of parasite belonging to Haemoproteus genus, subgenus Haemoproteus,which it could be useful for genetic, immunological, evolutionary, and ecological studies,among others. Altogether, this thesis generates valuable information that open possibilities to explore new approaches to characterize in-depth the biology, evolution and phylogenetic relationships of apicomplexan parasites.
dc.format.extent133
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcBiología::Genética y evolución
dc.subject.ddcBiología::Historia natural de los organismos y temas relacionados
dc.titleCaracterización del genoma de Haemoproteus (Haemoproteus) columbae: como herramienta para el estudio evolutivo del orden Haemosporida
dc.title.alternativeCharacterization of Haemoproteus (Haemoproteus) columbae genome: as a tool for evolutionary study of Haemosporida order
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagister en Ciencias - Biología. Línea de Investigación: Relación Parasito Hospedero: Genómica
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupCaracterización genética e inmunología
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesArisue, N., Hashimoto, T., Kawai, S., Honma, H., Kume, K., and Horii, T. (2019). Apicoplast phylogeny reveals the position of Plasmodium vivax basal to the asian primate malaria parasite clade. Scientific reports, 9(1):7274. Arisue, N., Hashimoto, T., Mitsui, H., Palacpac, N. M., Kaneko, A., Kawai, S., Hasegawa, M., Tanabe, K., and Horii, T. (2012). The Plasmodium apicoplast genome: conserved structure and close relationship of P. ovale to rodent malaria parasites. Molecular biology and evolution, 29(9):2095–2099. Bahl, A., Brunk, B., Crabtree, J., Fraunholz, M. J., Gajria, B., Grant, G. R., Ginsburg, H., Gupta, D., Kissinger, J. C., Labo, P., et al. (2003). Plasmodb: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic acids research, 31(1):212–215. Bennett, G., Garnham, P., and Fallis, A. (1965). On the status of the genera Leucocytozoon ziemann, 1898 and haemoproteus kruse, 1890 (Haemosporidiida: Leucocytozoidae and Haemoproteidae). Canadian Journal of Zoology, 43(6):927–932. Bensch, S., Canbäck, B., DeBarry, J. D., Johansson, T., Hellgren, O., Kissinger, J. C., Palinauskas, V., Videvall, E., and Valki¯unas, G. (2016). The Genome of Haemoproteus tartakovskyi and its relationship to human malaria parasites. Genome biology and evolution, 8(5):1361–1373. Bensch, S., Hellgren, O., and Pérez-Tris, J. (2009). Malavi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources, 9(5):1353–1358. Böhme, U., Otto, T. D., Cotton, J. A., Steinbiss, S., Sanders, M., Oyola, S. O., Nicot, A., Gandon, S., Patra, K. P., Herd, C., et al. (2018). Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals. Genome research, 28(4):547–560. Bukauskait˙e, D., Žiegyt˙e, R., Palinauskas, V., Iezhova, T. A., Dimitrov, D., Ilg¯unas, M., Bernotien˙e, R., Markovets, M. Y., and Valki¯unas, G. (2015). Biting midges (culicoides, diptera) transmit Haemoproteus parasites of owls: evidence from sporogony and molecular phylogeny. Parasites & vectors, 8(1):303. Bukauskaité, D., B. R. I. T. and Valki¯unas, G. (2016). Mechanisms of mortality in culicoides biting midges due to Haemoproteus infection. Parasitology, 143(13):1748–1754. Cepeda, A. S., Lotta, I. A., Pinto Osorio, D. F., Macías Zapata, J., Valki¯unas, G., Barato, P., and Matta, N. E. (2019a). The experimental characterization of complete life cycle of Haemoproteus columbae, with description of natural host-parasite system to study this infection. International Journal for Parasitology, accepted. Cepeda, A. S., Pacheco, M. A., Escalante, A. A., Alzate, J. F., and Matta, N. E. (2019b). Haemoproteus columbae apigenome: as an approach for evolutionary and phylogenetic studies of the apicoplast. In preparation. Field, J. T., Weinberg, J., Bensch, S., Matta, N. E., Valki¯unas, G., and Sehgal, R. N. (2018). Delineation of the genera haemoproteus and plasmodium using rna-seq and multi-gene phylogenetics. Journal of molecular evolution, 86(9):646–654. Hellgren, O., Waldenström, J., and Bensch, S. (2004). A new pcr assay for simultaneous studies of LeucocytozoonI, Plasmodium, and Haemoproteus from avian blood. Journal of Parasitology, 90(4):797–803. Imura, T., Sato, S., Sato, Y., Sakamoto, D., Isobe, T., Murata, K., Holder, A. A., and Yukawa, M. (2014). The apicoplast genome of Leucocytozoon caulleryi, a pathogenic apicomplexan parasite of the chicken. Parasitology research, 113(3):823–828. Kimura, M. (2008). Understanding avian plasmodium distribution: the role of vector and host. LaPointe, D. A., Goff, M. L., and Atkinson, C. T. (2005). Comparative susceptibility of introduced forest-dwelling mosquitoes in hawai’i to avian malaria, plasmodium relictum. Journal of Parasitology, 91(4):843–850. Levin, I., Zwiers, P., Deem, S., Geest, E., Higashiguchi, J., Iezhova, T., Jiménez-Uzcátegui, G., Kim, D., Morton, J., Perlut, N., et al. (2013). Multiple lineages of avian malaria parasites (plasmodium) in the galapagos islands and evidence for arrival via migratory birds. Conservation Biology, 27(6):1366–1377. Martinsen, E. S., Perkins, S. L., and Schall, J. J. (2008). A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Molecular phylogenetics and evolution, 47(1):261–273. Pacheco, M. A., Matta, N. E., Valki¯unas, G., Parker, P. G., Mello, B., Stanley Jr, C. E., Lentino, M., Garcia-Amado, M. A., Cranfield, M., Kosakovsky Pond, S. L., et al. (2018). Mode and rate of evolution of haemosporidian mitochondrial genomes: timing the radiation of avian parasites. Molecular biology and evolution, 35(2):383–403. Valki¯unas, G. (2005). Avian malaria parasites and other haemosporidia CRC press. Florida, Boca Raton. Valki¯unas, G., Zehtindjiev, P., Dimitrov, D., Križanauskien˙e, A., Iezhova, T. A., and Bensch, S. (2008). Polymerase chain reaction-based identification of Plasmodium (Huffia) elongatum, with remarks on species identity of haemosporidian lineages deposited in genbank. Parasitology research, 102(6):1185–1193. Valki¯unas, G., Žiegyt˙e, R., Palinauskas, V., Bernotien˙e, R., Bukauskait˙e, D., Ilg¯unas, M., Dimitrov, D., and Iezhova, T. A. (2015). Complete sporogony of Plasmodium relictum (lineage pgrw4) in mosquitoes culex pipiens pipiens, with implications on avian malaria epidemiology. Parasitology research, 114(8):3075–3085. van Riper, C., van Riper, S. G., Goff, M. L., and Laird, M. (1986). The epizootiology and ecological significance of malaria in hawaiian land birds. Ecological monographs, 56(4):327– 344. Videvall, E. (2019). Genomic advances in avian malaria research. Trends in parasitology. Adl, S. M., Simpson, A. G., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., et al. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59(5):429–514. Bennett, G., Garnham, P., and Fallis, A. (1965). On the status of the genera Leucocytozoon ziemann, 1898 and haemoproteus kruse, 1890 (Haemosporidiida: Leucocytozoidae and Haemoproteidae). Canadian Journal of Zoology, 43(6):927–932. Bensch, S., Canbäck, B., DeBarry, J. D., Johansson, T., Hellgren, O., Kissinger, J. C., Palinauskas, V., Videvall, E., and Valki¯unas, G. (2016). The Genome of Haemoproteus tartakovskyi and its relationship to human malaria parasites. Genome biology and evolution, 8(5):1361–1373. Böhme, U., Otto, T. D., Cotton, J. A., Steinbiss, S., Sanders, M., Oyola, S. O., Nicot, A., Gandon, S., Patra, K. P., Herd, C., et al. (2018). Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals. Genome research, 28(4):547–560. Brown, T. (2008). Genomas/Genome. Ed. Médica Panamericana. Carlton, J. M., Das, A., and Escalante, A. A. (2013). Genomics, population genetics and evolutionary history of plasmodium vivax. Adv Parasitol, 81:203–222. Compeau, P. E., Pevzner, P. A., and Tesler, G. (2011). How to apply de bruijn graphs to genome assembly. Nature biotechnology, 29(11):987–991. Coral, A. A., Valki¯unas, G., González, A. D., and Matta, N. E. (2015). In vitro development of Haemoproteus columbae (haemosporida: Haemoproteidae), with perspectives for genomic studies of avian haemosporidian parasites. Experimental parasitology, 157:163–169. Ekblom, R. and Wolf, J. B. (2014). A field guide to whole-genome sequencing, assembly and annotation. Evolutionary applications, 7(9):1026–1042. El-Metwally, S., Ouda, O. M., and Helmy, M. (2014). Next generation sequencing technologies and challenges in sequence assembly, volume 7. Springer Science & Business. Ferrell, S. T., Snowden, K., Marlar, A. B., Garner, M., and Lung, N. P. (2007). Fatal hemoprotozoal infections in multiple avian species in a zoological park. Journal of Zoo and Wildlife Medicine, 38(2):309–316. Iezhova, T. A., Dodge, M., Sehgal, R. N., Smith, T. B., and Valki¯unas, G. (2011). New avian haemoproteus species (haemosporida: Haemoproteidae) from african birds, with a critique of the use of host taxonomic information in hemoproteid classification. Journal of Parasitology, 97(4):682–694. Islam, M. S., Alim, M. A., Das, S., Ghosh, K. K., Pervin, S., Lipi, A., Siddiki, A. Z., Masuduzzaman, M., and Hossain, M. A. (2014). Prevalence of haemoproteus sp in domestic pigeon at chittagong and khulna district in bangladesh. J Adv Parasitol, 1:24–26. Kissinger, J. C. and DeBarry, J. (2011). Genome cartography: charting the apicomplexan genome. Trends in parasitology, 27(8):345–354. Levin, I. I., Valki¯unas, G., Iezhova, T. A., O’brien, S. L., and Parker, P. G. (2012). Novel Haemoproteus species (haemosporida: Haemoproteidae) from the swallow-tailed gull (lariidae), with remarks on the host range of hippoboscid-transmitted avian hemoproteids. The Journal of parasitology, pages 847–854. Levin, I. I., Valki¯unas, G., Santiago-Alarcon, D., Cruz, L. L., Iezhova, T. A., O’Brien, S. L., Hailer, F., Dearborn, D., Schreiber, E., Fleischer, R. C., et al. (2011). Hippoboscidtransmitted haemoproteus parasites (haemosporida) infect galapagos pelecaniform birds: Evidence from molecular and morphological studies, with a description of haemoproteus iwa. International Journal for Parasitology, 41(10):1019–1027. Martinsen, E. S., Perkins, S. L., and Schall, J. J. (2008). A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Molecular phylogenetics and evolution, 47(1):261–273. Miller, J. R., Koren, S., and Sutton, G. (2010). Assembly algorithms for next-generation sequencing data. Genomics, 95(6):315–327. Møller, A. P. and Nielsen, J. T. (2007). Malaria and risk of predation: a comparative study of birds. Ecology, 88(4):871–881. Oakgrove, K. S., Harrigan, R. J., Loiseau, C., Guers, S., Seppi, B., and Sehgal, R. N. (2014). Distribution, diversity and drivers of blood-borne parasite co-infections in alaskan bird populations. International journal for parasitology, 44(10):717–727. Olias, P., Wegelin, M., Zenker, W., Freter, S., Gruber, A. D., and Klopfleisch, R. (2011). Avian malaria deaths in parrots, europe. Emerging Infectious Diseases, 17(5):950. Rouzé, P., Pavy, N., and Rombauts, S. (1999). Genome annotation: which tools do we have for it? Current opinion in plant biology, 2(2):90–95 Rutledge, G. G., Böhme, U., Sanders, M., Reid, A. J., Cotton, J. A., Maiga-Ascofare, O., Djimdé, A. A., Apinjoh, T. O., Amenga-Etego, L., Manske, M., et al. (2017). Plasmodium malariae and p. ovale genomes provide insights into malaria parasite evolution. Nature, 542(7639):101. Saif, Y., Barnes, H., Glisson, J., Fadly, A., McDougald, L., and Swayne, D. (2003). Diseases of Poultry. Wiley. Valki¯unas, G. (2005). Avian malaria parasites and other haemosporidia CRC press. Florida, Boca Raton. van Riper, C., van Riper, S. G., Goff, M. L., and Laird, M. (1986). The epizootiology and ecological significance of malaria in hawaiian land birds. Ecological monographs, 56(4):327– 344.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalGenomic
dc.subject.proposalGenómica
dc.subject.proposalParasitología
dc.subject.proposalParasitology
dc.subject.proposalEvolution
dc.subject.proposalEvolución
dc.subject.proposalHaemoproteus columbae
dc.subject.proposalHaemoproteus columbae
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito