Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorUsme Ciro, José A.
dc.contributor.advisorCastellanos, Jaime E.
dc.contributor.authorPalma Villanueva, Claudia Patricia
dc.date.accessioned2020-03-04T14:24:07Z
dc.date.available2020-03-04T14:24:07Z
dc.date.issued2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75819
dc.description.abstractIntroduction: Dengue is an infection caused by the virus of the same name belonging to the genus Flavivirus, transmitted mainly by the urban vector Aedes aegypti. Among some of its most frequent symptoms are: headache, myalgia, arthralgia, retroocular pain, among others, even being able to take the patient to death in severe cases. In Colombia, dengue cases and the magnitude of epidemics have been increasing in recent decades, which makes it a major public health problem. Objective: To correlate the phenotypic characteristics in vitro of dengue virus 2 and 3 strains with the different signs and symptoms and the clinical outcome of the disease. Methodology: Strains were characterized by growth curves in Vero and BHK-21 cells, titration by plaque assay, followed by an analysis of the information documented in the databases of the National Institute of Health (Virology Laboratory and Sivigila) through Tukey, Shapiro Wilk, chi square and Fisher statistical tests. Results: 100% of the cases of severe dengue corresponded to DENV-2, likewise these corresponded to secondary infections. In addition, according to statistical tests, there is no correlation between the clinical manifestations of the disease and the growth curves of circulating serotypes. Conclusions: The present diagnostic study recognizes the exclusive presence of DENV-2 in the analyzed severe dengue cases, as well as the occurrence of secondary infections in 100% of these cases. Coinfections were detected in 2015 and despite a correlation between the growth curves and the clinical outcome of the disease was not established, some differences in the viral kinetics could be recognized in future studies.
dc.description.abstractIntroducción: El dengue es una infección provocada por el virus del mismo nombre perteneciente al género Flavivirus, transmitido principalmente por el vector urbano Aedes aegypti. Entre algunos de sus síntomas más frecuentes destacan: cefalea, mialgia, artralgia, dolor retroocular, entre otros, pudiendo llevar al paciente hasta la muerte en casos severos. En Colombia los casos de dengue y la magnitud de las epidemias ha ido en aumento en las últimas décadas, lo cual lo convierte en un importante problema de salud pública. Objetivo: Correlacionar las características fenotípicas in vitro de cepas del virus dengue 2 y 3 con los diferentes signos y síntomas y el desenlace clínico de la enfermedad. Metodología: Se caracterizaron las cepas mediante curvas de crecimiento en células Vero y BHK-21, titulación mediante ensayo de placas, seguido de un análisis de la información documentada en la base de datos de Instituto Nacional de Salud (Laboratorio de Virología y Sivigila) a través de las pruebas estadísticas Tukey, Shapiro Wilk, chi cuadrado y Fisher. Resultados: El 100% de los casos de dengue grave correspondió al serotipo DENV-2, así mismo estos correspondieron a infecciones secundarias. Además de acuerdo con las pruebas estadísticas no existe correlación entre las manifestaciones clínicas de la enfermedad y las curvas de crecimiento de los serotipos circulantes. Conclusiones: El presente estudio permitió reconocer la presencia exclusiva de DENV-2 en los casos de dengue grave incluidos, así como la ocurrencia de infecciones secundarias en el 100% de estos casos. Se evidenció la presencia de coinfecciones en el año 2015 y a pesar de que no fue posible establecer una correlación entre las curvas de crecimiento y el desenlace clínico de la enfermedad, se sugieren algunas diferencias en las cinéticas virales que podrían ser reconocidas en futuros estudios.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcMedicina y salud::Enfermedades
dc.titleCaracterización fenotípica del virus dengue y su posible correlación con manifestaciones clínicas de la enfermedad en pacientes colombianos
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ciencias: Microbiología
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreelevelMaestría
dc.publisher.departmentInstituto de Biotecnología
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. (OMS) OM de la S. Dengue: guías para el diagnóstico, tratamiento, prevención y control. La paz, Bolivia; 2009. p. 152. 2. Laiton-Donato K, Alvarez DA, Peláez-Carvajal D, Mercado M, Ajami NJ, Bosch I, et al. Molecular characterization of dengue virus reveals regional diversification of serotype 2 in Colombia. Virol J [Internet]. 2019/05/08. 2019;16(1):62. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31068191 3. Zambrano B, San Martin JL. Epidemiology of Dengue in Latin America. J Pediatr Infect Dis Soc [Internet]. 2014/08/02. 2014;3(3):181–2. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26625380 4. Brathwaite Dick O, San Martín JL, Montoya RH, del Diego J, Zambrano B, Dayan GH. The history of dengue outbreaks in the Americas. Am J Trop Med Hyg [Internet]. 2012;87(4):584–93. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23042846 5. (OMS) WHO. DENGUE BULLETIN. Vol. 36. New Delhi, India; 2012. 6. Salud/ OP de la, salud O mundial de la. Actualización epidemiológica: Dengue. 22 de junio de 2019. Washington, D.C.; 2019. 7. Salud IN de. Boletín epidemiológico Semanal. Vol. 17. Bogotá, Colombia: Instituto Nacional de Salud; 2019. 8. Usme-Ciro JA, Méndez JA, Laiton KD, Páez A. The relevance of dengue virus genotypes surveillance at country level before vaccine approval. Hum Vaccin Immunother [Internet]. 2014/11/19. 2014;10(9):2674–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25483495 9. Halstead SB. Pathogenesis of Dengue: Dawn of a New Era. F1000Res [Internet]. 2015/11/25. 2015;4. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26918141 10. Tuiskunen A, Monteil V, Plumet S, Boubis L, Wahlström M, Duong V, et al. Phenotypic and genotypic characterization of dengue virus isolates differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome. Arch Virol. 2011; 11. Mores CN, Christofferson RC, Davidson SA. The role of the mosquito in a dengue human infection model. J Infect Dis. 2014; 12. Bhatia R, Dash AP, Sunyoto T. Changing epidemiology of dengue in South-East Asia. WHO South East Asia J Public Heal [Internet]. 2013;2(1):23–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28612819 13. M., Murray N, MB Q, A W-S. Epidemiology of dengue: past, present and future prospects. Clin Epidemiol. 2013;5:299–309. 14. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature [Internet]. 2013;496(7446):504–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23563266 15. WHO-SEARO, WHO-WPRO. The Dengue Strategic Plan for the Asia Pacific Region. Ginebra; 2015. p. 49. (http://www.wpro.who.int/mvp/Dengue_Strategic_Plan.pdf?ua=1). 16. Guo C, Zhou Z, Wen Z, Liu Y, Zeng C, Xiao D, et al. Global Epidemiology of Dengue Outbreaks in 1990-2015: A Systematic Review and Meta-Analysis. Front Cell Infect Microbiol [Internet]. 2017/07/12. 2017;7:317. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28748176 17. Amarasinghe A, Kuritsk JN, Letson GW, Margolis HS. Dengue virus infection in Africa. Emerg Infect Dis [Internet]. 2011;17(8):1349–54. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21801609 18. Ayolabi CI, Olusola BA, Ibemgbo SA, Okonkwo GO. Detection of Dengue viruses among febrile patients in Lagos, Nigeria and phylogenetics of circulating Dengue serotypes in Africa. Infect Genet Evol [Internet]. 2019/07/02. 2019;75:103947. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31276800 19. Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol [Internet]. 2014/01/24. 2014;22(3):138–46. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24468533 20. San Martín JL, Brathwaite O, Zambrano B, Solórzano JO, Bouckenooghe A, Dayan GH, et al. The epidemiology of dengue in the americas over the last three decades: a worrisome reality. Am J Trop Med Hyg [Internet]. 2010;82(1):128–35. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20065008 21. E. GRS. Informe del Evento Dengue Colombia, 2017. 3rd ed. Instituto Nacional de Salud; 2018. 22. Padilla JC, Rojas DP, Sanchez-Gomez R. Dengue en Colombia: Epidemiología de la reemergencia y la hiperendemia . Primera ed. editor. Los Autores, 2012. p. 249. 23. Carabali M, Hernandez LM, Arauz MJ, Villar LA, Ridde V. Why are people with dengue dying? A scoping review of determinants for dengue mortality. BMC Infect Dis. 2015; 24. Carrillo-Hernández MY, Ruiz-Saenz J, Villamizar LJ, Gómez-Rangel SY, Martínez-Gutierrez M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect Dis [Internet]. 2018/01/30. 2018;18(1):61. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29382300 25. Salud IN de. Boletín epidemiológico semanal. Vol. 52. Colombia: Instituto Nacional de Salud; 2018. 26. OPS/OMS OP de la S. Dengue and dengue haemorrhagic fever [Internet]. [cited 2019 Sep 1]. Available from: https://www.paho.org/sur/index.php?option=com_content&view=article&id=166:dengue-dengue-haemorrhagic-fever&Itemid=371 27. OPS/OMS OP de la S. Dengue: Información general [Internet]. [cited 2019 Sep 1]. Available from: https://www.paho.org/hq/index.php?option=com_content&view=article&id=4493:2010-informacion-general-dengue&Itemid=40232&lang=es 28. Amemiya T, Gromiha MM, Horimoto K, Fukui K. Drug repositioning for dengue haemorrhagic fever by integrating multiple omics analyses. Sci Rep [Internet]. 2019/01/24. 2019;9(1):523. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30679503 29. Xu HT, Colby-Germinario SP, Hassounah SA, Fogarty C, Osman N, Palanisamy N, et al. Evaluation of Sofosbuvir (β-D-2’-deoxy-2’-α-fluoro-2’-β-C-methyluridine) as an inhibitor of Dengue virus replication<sup/>. Sci Rep [Internet]. 2017/07/24. 2017;7(1):6345. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28740124 30. Villar L, Dayan GH, Arredondo-García JL, Rivera DM, Cunha R, Deseda C, et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med [Internet]. 2014/11/03. 2015;372(2):113–23. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25365753 31. Aguiar M. Dengue vaccination: a more ethical approach is needed. Lancet [Internet]. 2018;391(10132):1769–70. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29739559 32. Halstead SB. Dengue. Lancet [Internet]. 2007;370(9599):1644–52. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17993365 33. Jessie K, Fong MY, Devi S, Lam SK, Wong KT. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis [Internet]. 2004;189(8):1411–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15073678 34. RM A, J RV. Dengue Vaccines: Strongly Sought but Not a Reality Just Yet. PLOS pathogen. 2013. p. 1–4. (http://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1003551&type=printable; vol. 9). 35. Education N. Dengue fever [Internet]. [cited 2019 Sep 1]. Available from: https://www.nature.com/wls/ebooks/dengue-fever-22453392/contents/ 36. Martina BE, Koraka P, Osterhaus AD. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev [Internet]. 2009;22(4):564–81. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19822889 37. Halstead SB. Controversies in dengue pathogenesis. Paediatr Int Child Heal [Internet]. 2012;32 Suppl 1:5–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22668442 38. Cologna R, Armstrong PM, Rico-Hesse R. Selection for Virulent Dengue Viruses Occurs in Humans and Mosquitoes. J Virol. 2005; 39. Bente DA, Melkus MW, Garcia J V., Rico-Hesse R. Dengue Fever in Humanized NOD/SCID Mice. J Virol. 2005; 40. Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E. Murine Model for Dengue Virus-Induced Lethal Disease with Increased Vascular Permeability. J Virol. 2006; 41. I K, T T. Dengue fever and dengue haemorrhagic fever: challenges of controlling an enemy still at large. Rev Med Virol. 2001;11(5):301–11. 42. Crill WD, Roehrig JT. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol [Internet]. 2001;75(16):7769–73. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11462053 43. Lozach PY, Burleigh L, Staropoli I, Navarro-Sanchez E, Harriague J, Virelizier JL, et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem [Internet]. 2005;280(25):23698–708. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15855154 44. Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier JL, et al. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep [Internet]. 2003;4(7):723–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12783086 45. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med [Internet]. 2003;197(7):823–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12682107 46. Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med [Internet]. 1997;3(8):866–71. Available from: https://www.ncbi.nlm.nih.gov/pubmed/9256277 47. Hung SL, Lee PL, Chen HW, Chen LK, Kao CL, King CC. Analysis of the steps involved in Dengue virus entry into host cells. Virology [Internet]. 1999;257(1):156–67. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10208929 48. Muñoz-Jordán JL, Sánchez-Burgos GG, Laurent-Rolle M, García-Sastre A. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A. 2003; 49. Castillo Ramirez JA, Urcuqui-Inchima S. Dengue Virus Control of Type i IFN Responses: A History of Manipulation and Control. Journal of Interferon and Cytokine Research. 2015. 50. Castro-Mussot ME, Machain-Williams C, Loroño-Pino MA, Salazar MI. [Immune responses and immunopathogenesis in infections with dengue virus]. Gac Med Mex [Internet]. 2013;149(5):531–40. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24108339 51. O S-SMIL-O, M P-G, C M-A, D H, M T, et.al. Dengue: la infección y la respuesta inmune. ResearchGate. 2009. p. 196–211. (https://www.researchgate.net/publication/200763420_Dengue_la_infeccion_y_la_respuesta_inmune ). 52. Azeredo EL, De Oliveira-Pinto LM, Zagne SM, Cerqueira DI, Nogueira RM, Kubelka CF. NK cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease. Clin Exp Immunol [Internet]. 2006;143(2):345–56. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16412060 53. Kurane I, Hebblewaite D, Ennis FA. Characterization with monoclonal antibodies of human lymphocytes active in natural killing and antibody-dependent cell-mediated cytotoxicity of dengue virus-infected cells. Immunology [Internet]. 1986;58(3):429–36. Available from: https://www.ncbi.nlm.nih.gov/pubmed/3089915 54. Bethell DB, Gamble J, Pham PL, Nguyen MD, Tran TH, Ha TH, et al. Noninvasive measurement of microvascular leakage in patients with dengue hemorrhagic fever. Clin Infect Dis [Internet]. 2001;32(2):243–53. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11170914 55. Diamond MS, Edgil D, Roberts TG, Lu B, Harris E. Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol [Internet]. 2000;74(17):7814–23. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10933688 56. Suharti C, van Gorp EC, Setiati TE, Dolmans WM, Djokomoeljanto RJ, Hack CE, et al. The role of cytokines in activation of coagulation and fibrinolysis in dengue shock syndrome. Thromb Haemost [Internet]. 2002;87(1):42–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11858187 57. Rico-Hesse R. Microevolution and virulence of dengue viruses. Adv Virus Res [Internet]. 2003;59:315–41. Available from: https://www.ncbi.nlm.nih.gov/pubmed/14696333 58. Corrales-Aguilar E, Hun-Opfer L. Nuevas perspectivas sobre la patogénesis del dengue . Acta Med Costarric. 2012;54(2):75–85. 59. Narayan R, Raja S, Kumar S, Sambasivam M, Jagadeesan R, Arunagiri K, et al. A novel indirect ELISA for diagnosis of dengue fever. Indian J Med Res [Internet]. 2016;144(1):128–33. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27834337 60. Sa-Ngasang A, Anantapreecha S, A-Nuegoonpipat A, Chanama S, Wibulwattanakij S, Pattanakul K, et al. Specific IgM and IgG responses in primary and secondary dengue virus infections determined by enzyme-linked immunosorbent assay. Epidemiol Infect [Internet]. 2005/12/22. 2006;134(4):820–5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16371180 61. Wilder-Smith A, Byass P. The elusive global burden of dengue. Lancet Infect Dis [Internet]. 2016/02/10. 2016;16(6):629–31. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26874620 62. Estofolete CF, Terzian ACB, Colombo TE, de Freitas Guimarães G, Ferraz HC, da Silva RA, et al. Co-infection between Zika and different Dengue serotypes during DENV outbreak in Brazil. J Infect Public Heal [Internet]. 2018/10/06. 2019;12(2):178–81. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30301701 63. Mercado-Reyes M, Acosta-Reyes J, Navarro-Lechuga E, Corchuelo S, Rico A, Parra E, et al. Dengue, chikungunya and zika virus coinfection: results of the national surveillance during the zika epidemic in Colombia. Epidemiol Infect [Internet]. 2019;147:e77. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30869010 64. Villamil-Gómez WE, Rodríguez-Morales AJ, Uribe-García AM, González-Arismendy E, Castellanos JE, Calvo EP, et al. Zika, dengue, and chikungunya co-infection in a pregnant woman from Colombia. Int J Infect Dis [Internet]. 2016/08/03. 2016;51:135–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27497951 65. (WHO) World health organization. Dengue and severe dengue. 2019. (https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue). 66. Boshell J, Groot H, Gacharna M, Márquez G, González M, Gaitán MO, et al. Dengue en Colombia. Biomédica. 1986;6:3–4. 67. Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C, et al. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology. 1997; 68. Rosen L. The pathogenesis of dengue haemorrhagic fever. A critical appraisal of current hypotheses. South African Med J. 1986; 69. Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, de Chacon, et al. Dengue virus structural differences that correlate with pathogenesis. J Virol. 1999; 70. Halstead SB, Nimmannitya S, Cohen SN. Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med. 1970; 71. Guzmán MG, Kourí G, Morier L, Soler M, Fernández A. A study of fatal hemorrhagic dengue cases in Cuba, 1981. Bull Pan Am Health Organ. 1984; 72. Anto S, Sebodo T, Sutaryo, Suminta, Ismangoen. Nutritional status of Dengue haemorrhagic fever in children. Paediatr Indones. 1983; 73. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis [Internet]. 2000;181(1):2–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10608744 74. Dewi BE, Takasaki T, Tajima S, Sudiro TM, Larasati RP, Corwin AL, et al. Genotypic and phenotypic characteristics of DENV-3 isolated from patients with different disease severities in Indonesia. Dengue Bull. 2009; 75. Messer WB, Gubler DJ, Harris E, Sivananthan K, De Silva AM. Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg Infect Dis. 2003; 76. Mota J, Rico-Hesse R. Humanized Mice Show Clinical Signs of Dengue Fever according to Infecting Virus Genotype. J Virol. 2009; 77. Mendez JA, Usme-Ciro JA, Domingo C, Rey GJ, Sanchez JA, Tenorio A, et al. Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia. Virol J [Internet]. 2010;7:226. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20836894 78. Méndez JA, Usme-Ciro JA, Domingo C, Rey GJ, Sánchez JA, Tenorio A, et al. Phylogenetic reconstruction of dengue virus type 2 in Colombia. Virol J [Internet]. 2012;9:64. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22405440 79. Usme-Ciro JA, Mendez JA, Tenorio A, Rey GJ, Domingo C, Gallego-Gomez JC. Simultaneous circulation of genotypes I and III of dengue virus 3 in Colombia. Virol J [Internet]. 2008;5:101. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18764951 80. Salud IN de. Manual para obtención y envío de muestras para análisis de eventos de interés en salud pública . Bogotá: Instituto Nacional de Salud; 2011. 81. Nguyen THT, Clapham HE, Phung KL, Nguyen TK, DInh TT, Nguyen THQ, et al. Methods to discriminate primary from secondary dengue during acute symptomatic infection. BMC Infect Dis [Internet]. 2018/08/07. 2018;18(1):375. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30086716 82. Saroch A, Arya V, Sinha N, Taneja RS, Sahai P, Mahajan RK. Clinical and laboratory factors associated with mortality in dengue. Trop Doct [Internet]. 2017/01/01. 2017;47(2):141–5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28424034 83. Rojas EM, Herrera VM, Miranda MC, Rojas DP, Gomez AM, Pallares C, et al. Clinical indicators of fatal dengue in two endemic areas of Colombia: A hospital-based case-control study. Am J Trop Med Hyg. 2019; 84. Waggoner JJ, Gresh L, Vargas MJ, Ballesteros G, Tellez Y, Soda KJ, et al. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus. Clin Infect Dis [Internet]. 2016/08/30. 2016;63(12):1584–90. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27578819 85. Marchette NJ, Halstead SB, O’Rourke T, Scott RM, Bancroft WH, Vanopruks V. Effect of immune status on dengue 2 virus replication in cultured leukocytes from infants and children. Infect Immun. 1979; 86. Guzman MG, Kouri GP, Bravo J, Soler M, Vazquez S, Morier L. Dengue hemorrhagic fever in Cuba, 1981: A retrospective seroepidemiologic study. Am J Trop Med Hyg. 1990;
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalDengue
dc.subject.proposalDengue
dc.subject.proposalClasificación clínica
dc.subject.proposalClinical classification
dc.subject.proposalPhenotype
dc.subject.proposalFenotipo
dc.subject.proposalSerotipos
dc.subject.proposalSerotypes
dc.subject.proposalCultivos in vitro
dc.subject.proposalIn vitro culture
dc.subject.proposalGrowth kinetics
dc.subject.proposalCinética de crecimiento
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito