Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorArboleda Bustos, Gonzalo Humberto
dc.contributor.advisorSandoval Hernández, Adrián Gabriel
dc.contributor.authorRodríguez Muñoz, Angela
dc.date.accessioned2020-03-04T14:59:06Z
dc.date.available2020-03-04T14:59:06Z
dc.date.issued2019-12-10
dc.identifier.citationRodriguez-Muñoz, Angela. Análisis del efecto neuroprotector de agonistas de receptores nucleares en modelo farmacológico de Parkinson en neuronas dopaminérgicas. Facultad de medicina, maestria en neurociencias. 2019.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75821
dc.description.abstractLa enfermedad de Parkinson (EP) es la segunda patología neurodegenerativa más prevalente a nivel mundial se caracteriza por la muerte sistemática de las neuronas de la SNpc, la cual se ha vinculado al estrés oxidativo y la difusión mitocondrial. Diferentes estudios han demostrado que la deficiencia de PINK1, una quinasa tipo serina/treonina que fosforila a AKT, causa una mayor susceptibilidad a estímulos nocivos acelerando el proceso de muerte celular. Los agonistas de receptores nucleares LXR y RXR tienen efectos neuroprotectores en modelos in vitro/ in vivo de Parkinson, sin embargo, el mecanismo por el cual ejerce dicha protección no es claro. Estudios previos han encontrado que un agonista de receptor nuclear, el GW3965, promueve un aumento en la expresión de PINK1, lo cual abre la posibilidad que este agonista de RN pueda tener un rol importante en la supervivencia neuronal, limitando el daño asociado a diversas neurotoxinas.Al mismo tiempo ha cobrado relevancia la actividad agonista de algunos extractos vegetales, como Zanthoxylum rigidum y Beilschmiedia costarricense, sobre el LXR y su posible acción neuroprotectora. El objetivo de este trabajo fue evaluar el efecto neuroprotector de agonistas de receptores nucleares, incluido los extractos vegetales, en un modelo farmacológico de Parkinson inducido con MPP+ en neuronas dopaminérgicas (CAD-SHSY5Y). Se observó un incremento significativo (p<0,001) en la supervivencia celular luego de realizar un pretratamiento con agonistas de LXR y RXR, dicha neuroprotección se asoció al incremento en p-AKT y PINK1. Al realizar el silenciamiento de PINK1 la protección previamente presentada se anula lo que demuestra la relevancia de PINK1 en la protección encontrada por el uso de agonistas de LXR y RXR. Frente al uso de extractos vegetales se encontraron resultados similares a los obtenidos con los agonistas sintéticos, sin embargo, en el caso Beilschmiedia costarricense el incremento en la expresión de PINK1 y p-AKT fue mayor a los agonistas sintéticos. Esto permite concluir que la función protectora de los agonistas de los receptores nucleares LXR y RXR puede estar asociada al incremento de PINK1 y a su vez en el aumento en la activación de la vía AKT.
dc.description.abstractParkinson's disease (PD) is the second most prevalent neurodegenerative pathology in the world characterized by the systematic death of SNpc neurons, which has been linked to oxidative stress and mitochondrial difusión. Different studies have shown that the deficiency of PINK1, a serine / threonine kinase that phosphorylates AKT, causes greater susceptibility to harmful stimuli by accelerating the process of cell death. The LXR and RXR nuclear receptor agonists have neuroprotective effects in Parkinson's in vitro / in vivo models, however, the mechanism by which it exerts such protection is unclear. Previous studies have found that a nuclear receptor agonist, the GW3965, promotes an increase in the expression of PINK1, which opens the possibility that this RN agonist may have an important role in neuronal survival, limiting the damage associated with various neurotoxins. At the same time, the agonist activity of some plant extracts, such as Zanthoxylum rigidum and Beilschmiedia costarricense, on the LXR and its possible neuroprotective action has become relevant. The objective of this work was to evaluate the neuroprotective effect of nuclear receptor agonists, including plant extracts, in a pharmacological model of Parkinson's induced with MPP + in dopaminergic neurons (CAD-SHSY5Y). A significant increase (p <0.001) in cell survival was observed after pretreatment with LXR and RXR agonists, this suggest that neuroprotection was associated with the increase in p-AKT and PINK1. When the PINK1 is silenced, the previously presented protection is annulled, which demonstrates the relevance of PINK1 in the protection found by the use of LXR and RXR agonists. Compared to the use of plant extracts, results similar to those obtained with synthetic agonists were found, however, in the case of Beilschmiedia costarricense , the increase in the expression of PINK1 and p-AKT was greater than synthetic agonists. This allows concluding that the protective function of the agonists of the nuclear receptors LXR and RXR may be associated with the increase in PINK1 and turn in the increase in the activation of the AKT pathway.
dc.format.extent108
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcMedicina y salud
dc.titleAnálisis del efecto neuroprotector de agonistas de receptores nucleares en modelo farmacológico de Parkinson en neuronas dopaminérgicas.
dc.title.alternativeAnalysis of the neuroprotector effect of nuclear receptor agonist in a pharmacological model of Parkinson disease in dopaminergic neurons
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Neurociencias. Línea de Investigación: Enfermedades Neurodegenerativa.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupMuerte Celular
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Kalia, L. V & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015). 2. Wirdefeldt, K., Adami, H., Cole, P., Trichopoulos, D. & Mandel, J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur. J. Epidemiol. suppl. Suppl. 26, S1-58 (2011). 3. Pringsheim, T., Jette, N., Frolkis, A. & Steeves, T. D. L. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 29, 1583–1590 (2014). 4. NINDS; & Investigators, E. T. in P. D. (NET-P. F.-Z. Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial. Lancet. Neurol. 14, 795–803 (2015). 5. Suchowersky, O. et al. Practice Parameter : Neuroprotective strategies and alternative therapies for Parkinson disease ( an evidence-based review ) Report of the Quality Standards Subcommittee of the. (2006). 6. Evans, R. M. & Mangelsdorf, D. J. Nuclear Receptors, RXR, and the Big Bang. Cell 157, 255– 66 (2014). 7. Nagy, L. & Schwabe, J. W. R. Mechanism of the nuclear receptor molecular switch. Trends Biochem. Sci. 29, 317–324 (2004). 8. Makishima, M. Nuclear Receptor Regulation. 43–59 (2017). doi:10.1007/978-4-431-56062-3 9. Distefano, M. D. Nuclear Receptors in Neurodegenerative Diseases. 213–223 (2015). doi:10.1007/978-1-62703-673-3 10. Sandoval-Hernández, A. G., Buitrago, L., Moreno, H., Cardona-Gómez, G. P. & Arboleda, G. Role of Liver X receptor in AD pathophysiology. PLoS One 10, 1–24 (2015). 11. Gronemeyer, H., Gustafsson, J.-A. & Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3, 950–64 (2004). 12. Pérez, E., Bourguet, W., Gronemeyer, H. & Lera, A. R. De. Biochimica et Biophysica Acta Modulation of RXR function through ligand design. BBA - Mol. Cell Biol. Lipids 1821, 57–69 (2012). 13. McFarland, K. et al. Low dose bexarotene treatment rescues dopamine neurons and restores behavioral function in models of Parkinson’s disease. ACS Chem. Neurosci. 4, 1430–8 (2013). 14. Dai, Y.-B., Tan, X.-J., Wu, W.-F., Warner, M. & Gustafsson, J.-Å. Liver X receptor β protects dopaminergic neurons in a mouse model of Parkinson disease. doi:10.1073/pnas.1210833109 15. Hong, C. & Tontonoz, P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat. Rev. Drug Discov. 13, 433–444 (2014). 16. Wang, L. et al. Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc. Natl. Acad. Sci. U. S. A. 99, 13878–13883 (2002). 17. Hernández, C. J., Báez-Becerra, C., Contreras-Zárate, M. J., Arboleda, H. & Arboleda, G. PINK1 Silencing Modifies Dendritic Spine Dynamics of Mouse Hippocampal Neurons. J. Mol. Neurosci. (2019). doi:10.1007/s12031-019-01385-x 18. Haque, M. E. et al. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc. Natl. Acad. Sci. U. S. A. 105, 1716–21 (2008). 19. Báez-Becerra, C., Filipello, F., Sandoval-Hernández, A., Arboleda, H. & Arboleda, G. Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotox. Res. 1, (2018). 20. Kalia, L. V & Lang, A. E. Parkinson disease in 2015: Evolving basic, pathological and clinical concepts in PD. Nat. Rev. Neurol. 12, 65–6 (2016). 21. Bellou, V., Belbasis, L., Tzoulaki, I., Evangelou, E. & Ioannidis, J. P. A. Environmental risk factors and Parkinson’s disease: An umbrella review of meta-analyses. Parkinsonism Relat. Disord. 23, 1–9 (2015). 22. Schapira, A. H. & Jenner, P. Etiology and pathogenesis of Parkinson’s disease. Mov. Disord. 26, 1049–55 (2011). 23. Middleton, F. A. & Strick, P. L. Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Res. Rev. 31, 236–250 (2000). 24. Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 435–450 (2017). 25. Postuma, R. B. et al. Identifying prodromal Parkinson’s disease: pre-motor disorders in Parkinson’s disease. Mov. Disord. 27, 617–26 (2012). 26. Todorova, A., Jenner, P. & Ray Chaudhuri, K. Non-motor Parkinson’s: integral to motor Parkinson’s, yet often neglected. Pract. Neurol. 14, 310–22 (2014). 27. Ruipérez, V., Darios, F. & Davletov, B. Alpha-synuclein, lipids and Parkinson’s disease. Prog. Lipid Res. 49, 420–428 (2010). 28. Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013). 29. Przedborski, S. The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 18, 251–259 (2017). 30. Trinh, J. & Farrer, M. Advances in the genetics of Parkinson disease. Nat. Rev. Neurol. 9, 445– 454 (2013). 31. Surmeier, D. J., Guzman, J. N., Sanchez, J. & Schumacker, P. T. Physiological Phenotype and Vulnerability in Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2, a009290–a009290 (2012). 32. Subramaniam, S. R., Chesselet, M.-F., Savitt, J. M., Dawson, V. L. & Dawson, T. M. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog. Neurobiol. 106– 107, 17–32 (2013). 33. Ramanan, V. K. & Saykin, A. J. Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am J Neurodegener Dis 2, 145–175 (2013). 34. Edwards, T. L. et al. Genome-Wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for parkinson disease. Ann. Hum. Genet. 74, 97–109 (2010). 35. Schapira, A. H. V et al. Mitochondrial Complex I Deficiency in Parkinson’s Disease. J. Neurochem. 54, 823–827 (1990). 36. Dagda, R. K., Zhu, J. & Chu, C. T. Mitochondrial kinases in Parkinson’s disease: Converging insights from neurotoxin and genetic models. Mitochondrion 9, 289–298 (2009). 37. Plun-Favreau, H. et al. The mitochondrial protease HtrA2 is regulated by Parkinson’s diseaseassociated kinase PINK1. Nat. Cell Biol. 9, 1243–1252 (2007). 38. Dextera, D. T. & Jenner, P. Parkinson disease: From pathology to molecular disease mechanisms. Free Radical Biology and Medicine (2013). doi:10.1016/j.freeradbiomed.2013.01.018 39. Pfisterer, U. & Khodosevich, K. Neuronal survival in the brain : neuron type-specific mechanisms. 8, e2643-14 (2017). 40. Dibble, C. C. & Cantley, L. C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 25, 545–555 (2015). 41. Timmons, S., Coakley, M. F., Moloney, A. M. & O&apos; Neill, C. Akt signal transduction dysfunction in Parkinson’s disease. Neurosci. Lett. 467, 30–35 (2009). 42. Toker, A. & Marmiroli, S. Signaling specificity in the Akt pathway in biology and disease. Adv. Biol. Regul. 55, 28–38 (2014). 43. Soutar, M. P. M. et al. AKT signalling selectively regulates PINK1 mitophagy in SHSY5Y cells and human iPSC-derived neurons. Sci. Rep. 8, 1–11 (2018). 44. Dudek, H. et al. Regulation of Neuronal Survival by the Serine-Threonine Protein Kinase Akt. Science (80-. ). 275, 661–665 (1997). 45. Kawajiri, S., Saiki, S., Sato, S. & Hattori, N. Genetic mutations and functions of PINK1. Trends Pharmacol. Sci. 32, 573–580 (2011). 46. Lin, W. & Kang, U. J. Structural determinants of PINK1 topology and dual subcellular distribution. BMC Cell Biol. 11, 90 (2010). 47. Aerts, L., Craessaerts, K., De Strooper, B. & Morais, V. A. PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402. J. Biol. Chem. 290, 2798–2811 (2015). 48. Sim, C. H., Gabriel, K., Mills, R. D., Culvenor, J. G. & Cheng, H. C. Analysis of the regulatory and catalytic domains of PTEN-induced kinase-1 (PINK1). Hum. Mutat. 33, 1408–1422 (2012). 49. Meissner, C., Lorenz, H., Weihofen, A., Selkoe, D. J. & Lemberg, M. K. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 117, 856–867 (2011). 50. Bose, Anindita; Beal, M. F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 14, 1261–1266 (2016). 51. Ryan, B. J., Hoek, S., Fon, E. A. & Wade-Martins, R. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends Biochem. Sci. 40, 200–210 (2015). 52. Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211–221 (2010). 53. Liu, S. et al. Parkinson’s disease-associated kinase PINK1 regulates miro protein level and axonal transport of mitochondria. PLoS Genet. 8, 15–17 (2012). 54. Morais, V. A. et al. Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol. Med. (2009). doi:10.1002/emmm.200900006 55. Wang, G., Pan, J. & Chen, S.-D. Kinases and kinase signaling pathways: potential therapeutic targets in Parkinson’s disease. Prog. Neurobiol. 98, 207–21 (2012). 56. Deas, E., Wood, N. W. & Plun-Favreau, H. Mitophagy and Parkinson’s disease: The PINK1- parkin link. Biochimica et Biophysica Acta - Molecular Cell Research (2011). doi:10.1016/j.bbamcr.2010.08.007 57. Schapira, A. H. V. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet. Neurol. 7, 97–109 (2008). 58. Cohen, S. & Greenberg, M. E. Communication Between the Synapse and the Nucleus in Neuronal Development, Plasticity, and Disease. Annu. Rev. Cell Dev. Biol. 24, 183–209 (2008). 59. Murata, H. et al. A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: Activation of AKT via MTORC2. J. Biol. Chem. 286, 7182–7189 (2011). 60. Akabane, S. et al. PKA Regulates PINK1 Stability and Parkin Recruitment to Damaged Mitochondria through Phosphorylation of MIC60. Mol. Cell 62, 371–384 (2016). 61. Dagda, R. K. et al. Beyond the mitochondrion: Cytosolic PINK1 remodels dendrites through Protein Kinase A. J. Neurochem. 128, 864–877 (2014). 62. Weihofen, A., Thomas, K. J., Ostaszewski, B. L., Cookson, M. R. & Selkoe, D. J. Pink1 forms a multiprotein complex with miro and milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48, 2045–2052 (2009). 63. Báez-Becerra, C., Filipello, F., Sandoval-Hernández, A., Arboleda, H. & Arboleda, G. Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotox. Res. (2018). doi:10.1007/s12640-017-9845-3 64. Choi, I. et al. PINK1 expression increases during brain development and stem cell differentiation, and affects the development of GFAP-positive astrocytes. Mol. Brain 9, 1–12 (2016). 65. Park, J. S., Davis, R. L. & Sue, C. M. Mitochondrial Dysfunction in Parkinson’s Disease: New Mechanistic Insights and Therapeutic Perspectives. Curr. Neurol. Neurosci. Rep. 18, (2018). 66. Santos, G. M., Fairall, L. & Schwabe, J. W. R. Negative regulation by nuclear receptors: a plethora of mechanisms. Trends Endocrinol. Metab. 22, 87–93 (2011). 67. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835– 839 (1995). 68. Huang, P., Chandra, V. & Rastinejad, F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72, 247–72 (2010). 69. Pascual, G. et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437, 759–63 (2005). 70. Mangelsdorf, D. J. et al. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 6, 329–344 (1992). 71. Castillo, A. I. et al. A Permissive Retinoid X Receptor/Thyroid Hormone Receptor Heterodimer Allows Stimulation of Prolactin Gene Transcription by Thyroid Hormone and 9-cis-Retinoic Acid. Mol. Cell. Biol. 24, 502–513 (2003). 72. Lund, E. G. et al. Knockout of the Cholesterol 24-Hydroxylase Gene in Mice Reveals a Brainspecific Mechanism of Cholesterol Turnover. J. Biol. Chem. 278, 22980–22988 (2003). 73. Zhang, X. et al. Regulation of the nongenomic actions of retinoid X receptor-α by targeting the coregulator-binding sites. Acta Pharmacol. Sin. 36, 102–12 (2015). 74. Gilardi, F. et al. Expression of sterol 27-hydroxylase in glial cells and its regulation by liver X receptor signaling. Neuroscience 164, 530–540 (2009). 75. Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R. & Mangelsdorf, D. J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383, 728–731 (1996). 76. Sacchetti, P. et al. Liver X Receptors and Oxysterols Promote Ventral Midbrain Neurogenesis In Vivo and in Human Embryonic Stem Cells. Cell Stem Cell 5, 409–419 (2009). 77. Dietschy, J. M. & Turley, S. D. Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12, 105– 12 (2001). 78. Lund, E. G. et al. Knockout of the Cholesterol 24-Hydroxylase Gene in Mice Reveals a Brainspecific Mechanism of Cholesterol Turnover. J. Biol. Chem. 278, 22980–22988 (2003). 79. Andersson, S. et al. Inactivation of liver X receptor leads to adult-onset motor neuron degeneration in male mice. Proc. Natl. Acad. Sci. 102, 3857–3862 (2005). 80. Song, J. X. et al. Anti-Parkinsonian drug discovery from herbal medicines: What have we got from neurotoxic models? J. Ethnopharmacol. 139, 698–711 (2012). 81. Rabiei, Z., Solati, K. & Amini-Khoei, H. Phytotherapy in treatment of Parkinson’s disease: a review. Pharm. Biol. 57, 355–362 (2019). 82. Yang, J., Wen, L., Jiang, Y. & Yang, B. Natural Estrogen Receptor Modulators and Their Heterologous Biosynthesis. Trends Endocrinol. Metab. 30, 66–76 (2019). 83. Javed, H. et al. Plant Extracts and Phytochemicals Targeting α-Synuclein Aggregation in Parkinson’s Disease Models. Front. Pharmacol. 9, 1–27 (2019). 84. Langston, J. W. The MPTP story. J. Parkinsons. Dis. 7, S11–S19 (2017). 85. Heikkila, R. E., Manzino, L., Cabbat, F. S. & Duvoisin, R. C. Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2, 5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311, 467–469 (1984). 86. Ramsay, R. R., Dadgar, J., Trevor, A. & Singer, T. P. Energy-driven uptake of N-methyl-4- phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP. Life Sci. 39, 581–588 (1986). 87. Ramsay, R. R., Kowal, A. T., Johnson, M. K., Salach, J. I. & Singer, T. P. The Inhibition Site of MPP + , the Neurotoxic Bioactivation Product of 1 -Methyl-4-phenyl- The inhibition of NADH dehydrogenase by l-methyl-4-phenylpyridinium leading to ATP depletion has been proposed to explain cell death in the expression of the magnet. 259, 645–649 (1987). 88. Fall, C. P. & Bennett, J. P. Characterization and Time Course of MPP-Induced Apoptosis in Human SH-SY5Y Neuroblastoma Cells. 89. Berry, C., La Vecchia, C. & Nicotera, P. Paraquat and parkinson’s disease. Cell Death and Differentiation (2010). doi:10.1038/cdd.2009.217 90. Franco, R., Li, S., Rodriguez-Rocha, H., Burns, M. & Panayiotidis, M. I. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson’s disease. Chemico-Biological Interactions (2010). doi:10.1016/j.cbi.2010.06.003 91. Rappold, P. M. et al. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. 108, 2–7 (2011). 92. Xicoy, H., Wieringa, B. & Martens, G. J. M. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Molecular Neurodegeneration (2017). doi:10.1186/s13024-017- 0149-0 93. Qi, Y., Wang, J. K., McMillian, M. & Chikaraishi, D. M. Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17, 1217– 1225 (1997). 94. Horton, C. D., Qi, Y., Chikaraishi, D. & Wang, J. K. T. Neurotrophin-3 mediates the autocrine survival of the catecholaminergic CAD CNS neuronal cell line. 201–209 (2001). 95. Qi, Y., Wang, J. K., McMillian, M. & Chikaraishi, D. M. Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17, 1217–25 (1997). 96. Fung, P. & Tischler, S. Catecholaminergic Cell Lines from the Brain and Adrenal Tyrosine Hydroxylase-SV40 T Antigen Transgenic Mice Glands of. 73, (1993). 97. Qi, Y., Wang, J. K. T., Mcmillian, M. & Chikaraishi, D. M. Characterization of a CNS Cell Line, CAD, in which Morphological Differentiation Is Initiated by Serum Deprivation. (1997). 98. Biedler1, J. L., Roffler-Tarlov, S., Schachner, M. & Freedman, L. S. Multiple Neurotransmitter Synthesis by Human Neuroblastoma Cell Lines and Clones. (1978). 99. Joshi, S., Guleria, R., Pan, J., DiPette, D. & Singh, U. S. Retinoic acid receptors and tissuetransglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells. Oncogene (2006). doi:10.1038/sj.onc.1209027 100. Singh, J. & Kaur, G. Transcriptional regulation of polysialylated neural cell adhesion molecule expression by NMDA receptor activation in retinoic acid-differentiated SH-SY5Y neuroblastoma cultures. 4, 8–21 (2007). 101. Forster, J. I. et al. Characterization of Differentiated SH-SY5Y as Neuronal Screening Model Reveals Increased Oxidative Vulnerability. (2016). doi:10.1177/1087057115625190 102. López-Carballo, G., Moreno, L., Masiá, S., Pérez, P. & Barettino, D. Activation of the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway by Retinoic Acid Is Required for Neural Differentiation of SH-SY5Y Human Neuroblastoma Cells. J. Biol. Chem. 277, 25297–25304 (2002). 103. Meerloo, J. Van, Kaspers, G. J. L. & Cloos, J. Cancer Cell Culture: Cell senstitivity assays: The MTT assay. 731, 237–245 (2011). 104. Riss, T. L. et al. Cell Viability Assays. Assay Guid. Man. 1–25 (2004). 105. Wang, Q., Shen, B., Qin, X., Liu, S. & Feng, J. Akt/mTOR and AMPK signaling pathways are responsible for liver X receptor agonist GW3965-enhanced gefitinib sensitivity in non-small cell lung cancer cell lines. Transl. Cancer Res. 8, 66–76 (2019). 106. Rodríguez-Blanco, J. et al. Cooperative action of JNK and AKT/mTOR in 1-methyl-4- phenylpyridinium-induced autophagy of neuronal PC12 cells. J. Neurosci. Res. 90, 1850–1860 (2012). 107. Haque, M. E. et al. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc. Natl. Acad. Sci. U. S. A. 105, 1716–1721 (2008). 108. Kitagishi, Y. et al. PINK1 signaling in mitochondrial homeostasis and in aging (Review). Int. J. Mol. Med. 39, 3–8 (2017). 109. Kaur, R., Mehan, S. & Singh, S. Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. doi:10.1007/s10072-018-3585-x 110. Jenner, P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat. Rev. Neurosci. 9, 665– 677 (2008). 111. Schapira, A. H. V. Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ. 14, 1261–1266 (2007). 112. Barja, G. & Herrero, A. Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J. Bioenerg. Biomembr. 30, 235–243 (1998). 113. Fato, R. et al. Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. Biochim. Biophys. Acta 1787, 384–92 (2009). 114. Yasuda, Y. et al. The effects of MPTP on the activation of microglia/astrocytes and cytokine/chemokine levels in different mice strains. J. Neuroimmunol. 204, 43–51 (2008). 115. Hattori, N., Saiki, S. & Imai, Y. Regulation by mitophagy. Int. J. Biochem. Cell Biol. 53, 147–150 (2014). 116. Rojas-Charry, L., Cookson, M. R., Niño, A., Arboleda, H. & Arboleda, G. Downregulation of Pink1 influences mitochondrial fusion-fission machinery and sensitizes to neurotoxins in dopaminergic cells. Neurotoxicology 44, 140–148 (2014). 117. Contreras-Zárate, M. J., Niño, A., Rojas, L., Arboleda, H. & Arboleda, G. Silencing of PINK1 Inhibits Insulin-Like Growth Factor-1-Mediated Receptor Activation and Neuronal Survival. J. Mol. Neurosci. 56, 188–197 (2015). 118. Mei, Y. et al. FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc. Natl. Acad. Sci. 106, 5153–5158 (2009). 119. HERNANDEZ MARTINEZ, C. J. Efecto del silenciamiento de PINK1 sobre la dinamica de espinas dendrıticas en un cultivo primario de neuronas hipocampales.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalEnfermedad de Parkinson
dc.subject.proposalParkinson disease
dc.subject.proposalReceptores nucleares
dc.subject.proposalNuclear receptor
dc.subject.proposalLXR
dc.subject.proposalLXR
dc.subject.proposalRXR
dc.subject.proposalRXR
dc.subject.proposalPINK1
dc.subject.proposalPINK1
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito