Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDíaz Monroy, Luis Guillermo
dc.contributor.authorRomero Coronado, Carolina
dc.date.accessioned2020-03-04T15:46:07Z
dc.date.available2020-03-04T15:46:07Z
dc.date.issued2019-11-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75825
dc.description.abstractModeling spatial and temporal correlation simultaneously has become a topic of interest for different contexts, especially in the geostatistical context, since the realization of an optimal spatial prediction in sites not sampled for a given regionalized variable under study, is linked to the correct identification of existing dependencies between said regionalized variable and the longitudinal component thereof (that is, the moment of time in which it was measured). An extension of the methodology applied by (Militino et al., 2008) is contemplated, using the mixed linear models (LMM for its acronym in English), but adding an analysis that involves the use of methodologies for spatial data and longitudinal data, in order to visualize the implications of modeling via LMM, forgetting and contemplating the spatial correlation inherent in the data of the process to be studied. The estimation of the proposed model will be done by restricted maximum likelihood (REML).
dc.description.abstractModelar correlación espacial y temporal en simultáneo se ha convertido en un tema de interés para diferentes contextos, especialmente en el contexto geoestadístico, pues la realización de una predicción espacial óptima en sitios no muestreados para determinada variable regionalizada en estudio, se encuentra ligada a la correcta identificación de dependencias existentes entre dicha variable regionalizada y la componente longitudinal de la misma (esto es, el instante de tiempo en el que fue medida). Se contempla una ampliación de la metodología aplicada por (Militino et al., 2008), usando los modelos lineales mixtos (LMM por sus siglas en inglés), pero adicionando un análisis que involucre el uso de metodologías para datos espaciales y datos longitudinales, en aras de visualizar las implicaciones que tiene el modelar vía LMM, olvidando y contemplando la correlación espacial inherente a los datos del proceso a estudiar. La estimación del modelo propuesto se har á vía máxima verosimilitud restringida (REML, en inglés).
dc.format.extent47
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcColecciones de estadística general
dc.titleModelo Lineal de Efectos Mixtos: Una aplicación a Datos Temporal y Espacialmente Correlacionados
dc.title.alternativeLinear Mixed Effects Model: An application to Temporal and Spatially Correlated Data
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ciencias - Estadística. Línea de investigación: Análisis de Medidas Repetidas.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Estadística
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAkaike, H. (1973). Information theory and an extension of the maximum likelihood principle,[w:] proceedings of the 2nd international symposium on information, bn petrow, f, Czaki, Akademiai Kiado, Budapest .
dc.relation.referencesAngulo, J., Gonzalez-Manteiga, W., Febrero-Bande, M. & Alonso, F. (1998). Semi-parametric statistical approaches for space-time process prediction, Environmental and Ecological Statistics 5(4): 297-316.
dc.relation.referencesBi, J., Xu, T., Chen, C.-M. & Johannesen, J. (2015). Spatio-temporal modeling of eeg data for understanding working memory, ICML Workshop on Statistics, Machine Learning and Neuroscience (Stamlins 2015).
dc.relation.referencesBogaert, P. & Christakos, G. (1997). Spatiotemporal analysis and processing of thermometric data over belgium, Journal of Geophysical Research: Atmospheres 102(D22): 25831-25846.
dc.relation.referencesBohorquez, C. M. (2009). Estadística espacial, Notas de Clase. Departamento de Estadística, Universidad Nacional de Colombia.
dc.relation.referencesCepeda, E. (2011). Generalized spatio-temporal models, SORT: statistics and operations research transactions 35 (2): 0165-178.
dc.relation.referencesChamberlain, G. (1984). Panel data. In Z. griliches and M. D. Intriligator (eds.), Handbook of econometrics 2 : 1247-1318.
dc.relation.referencesChen, Q. (2013). Spatial-temporal modeling of active layer thickness. Department of Statistics The George Washington University.
dc.relation.referencesClark, I. (1979). Practical geostatistics , Vol. 3, Applied Science Publishers London.
dc.relation.referencesCressie, N. A. (1993). Statistics for spatial data: Wiley series in probability and mathematical statistics.
dc.relation.referencesCressie, N. & Majure, J. J. (1997). Spatio-temporal statistical modeling of livestock waste in streams, Journal of Agricultural, Biological, and Environmental Statistics pp. 24-47.
dc.relation.referencesDavidian, M. (2019). ST 732, Longitudinal Data Analysis, Spring 2019 - North Carolina State University. URL: https://www4.stat.ncsu.edu/ davidian/st732/
dc.relation.referencesDavis, C. S. (2002). Statistical methods for the analysis of repeated measurements , Springer Science & Business Media.
dc.relation.referencesde Castro González, F. V. (2012). La contaminación en España: los efectos del ozono y del cambio climático, Editorial Club Universitario.
dc.relation.referencesDesign, G. (1995). Gs+: Geostatistical software for the agronomic and biological sciences, Plainwell, Michigan.
dc.relation.referencesDiggle, P., Diggle, P. J., Heagerty, P., Heagerty, P. J., Liang, K.-Y., Zeger, S. et al. (2002). Analysis of longitudinal data, Oxford University Press.
dc.relation.referencesDiggle, P. & Ribeiro Jr, P. (2007). Model based geostatistics springer, New York.
dc.relation.referencesDuong, Q. P. (1984). On the choice of the order of autoregressive models: a ranking and selection approach, Journal of Time Series Analysis 5 (3): 145-157.
dc.relation.referencesEdward Vonesh, V. M. C. (1996). Linear and Nonlinear Models for the Analysis of Repeated Measurements , Statistics: Textbooks and Monographs, har/dskt edn, Marcel Dekker. URL: http://gen.lib.rus.ec/book/index.php?md5=71E2CDD9E0915B853547059B2CAC6452
dc.relation.referencesEEA (2019). European environment agency. AirBase - The European air quality database. URL: https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-qualitydatabase- 7#tab-figures-produced
dc.relation.referencesEfron, B. & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation, The American Statistician 37 (1): 36-48.
dc.relation.referencesFernández-Casal, R., González-Manteiga, W. & Febrero-Bande, M. (2003). Flexible spatiotemporal stationary variogram models, Statistics and Computing 13 (2): 127-136.
dc.relation.referencesFitzmaurice, G., Davidian, M., Verbeke, G. & Molenberghs, G. (2008). Longitudinal data analysis, CRC Press.
dc.relation.referencesGiraldo, H. R. (2011). Estadística espacial, Notas de Clase. Departamento de Estadística, Universidad Nacional de Colombia.
dc.relation.referencesGiraldo, R. (2002). Introducción a la geoestadística: Teoría y aplicación, Bogotá: Universidad Nacional de Colombia.
dc.relation.referencesGneiting, T. (2002). Compactly supported correlation functions, Journal of Multivariate Analysis 83 (2): 493-508.
dc.relation.referencesGoldberger, A. S. (1962). Best linear unbiased prediction in the generalized linear regression model, Journal of the American Statistical Association 57 (298): 369-375.
dc.relation.referencesGotway, C. A. & Cressie, N. (1993). Improved multivariate prediction under a general linear model, Journal of multivariate analysis 45 (1): 56-72.
dc.relation.referencesGotway, C. A. & Stroup, W. W. (1997). A generalized linear model approach to spatial data analysis and prediction, Journal of Agricultural, Biological, and Environmental Statistics pp. 157-178.
dc.relation.referencesHenderson, C. R. (1953). Estimation of variance and covariance components, Biometrics 9 (2): 226- 252.
dc.relation.referencesHomish, G. G., Edwards, E. P., Eiden, R. D. & Leonard, K. E. (2010). Analyzing family data: a gee approach for substance use researchers, Addictive behaviors 35 (6): 558-563.
dc.relation.referencesIsaaks, E. H. & Srivastava, R. M. (1989). An introduction to applied geostatistics, Technical report , Oxford university press.
dc.relation.referencesJennrich, R. I. & Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices., Biometrics 42 (4): 805-820.
dc.relation.referencesJiang, J. (2007). Linear and generalized linear mixed models and their applications , Springer Science & Business Media.
dc.relation.referencesJones, R. H. (1993). Longitudinal data with serial correlation: a state-space approach , Chapman and Hall/CRC.
dc.relation.referencesKrige, D. G. (1951). A statistical approach to some basic mine valuation problems on the witwatersrand, Journal of the Southern African Institute of Mining and Metallurgy 52 (6): 119-139.
dc.relation.referencesKyriakidis, P. C. & Journel, A. G. (1999). Geostatistical space-time models: a review, Mathematical geology 31 (6): 651-684.
dc.relation.referencesLiang, K.-Y. & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models, Biometrika 73 (1): 13-22. URL: http://dx.doi.org/10.1093/biomet/73.1.13
dc.relation.referencesMardia, K. V., Goodall, C., Redfern, E. J. & Alonso, F. J. (1998). The kriged kalman filter, Test 7 (2): 217-282.
dc.relation.referencesMatheron, G. (1963). Principles of geostatistics, Economic geology 58 (8): 1246-1266.
dc.relation.referencesMcCullagh, P. (1983). Quasi-likelihood functions, The Annals of Statistics pp. 59-67.
dc.relation.referencesMilitino, A. (1998). Strategies for dynamic space-time statistical modeling: discussion of “the kriged kalman filter” by mardia et al.
dc.relation.referencesMilitino, A. F., Ugarte, M. D. & Ibánez, B. (2008). Longitudinal analysis of spatially correlated data, Stochastic Environmental Research and Risk Assessment 22 (1): 49-57.
dc.relation.referencesMinasny, B. & McBratney, A. B. (2005). The matérn function as a general model for soil variograms, Geoderma 128 (3-4): 192-207.
dc.relation.referencesMolina, J. J. C. (2015). La presión atmosférica y los vientos en la Península Ibérica. Reflexiones sobre el Monzón Ibérico, NIMBUS no 4 4 (4): 5-60.
dc.relation.referencesNelder, J. A. & Wedderburn, R. W. M. (1972). Longitudinal analysis of spatially correlated data, Journal of the Royal Statistical Society, Series A (135): 370-384.
dc.relation.referencesPatterson, H. D. & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal, Biometrika 58 (3): 545-554.
dc.relation.referencesPetitgas, P. (1996). Geostatistics and their applications to fisheries survey data, Computers in fisheries research , Springer, pp. 113-142.
dc.relation.referencesSamper, F. & Carrera, J. (1990). Geoestadística, Aplicaciones a la Hidrogeología Subterránea. Centro Internacional de Métodos Numéricos en Ingeniería. Universitat Politécnica de Catalunya. Barcelona.
dc.relation.referencesSAS-Institute (1999). SAS Procedures Guide: Version 8 , Vol. 1, Sas Inst.
dc.relation.referencesSchabenberger, O. & Gotway, C. A. (2005). Statistical methods for spatial data analysis , CRC press.
dc.relation.referencesSchwarz, G. (1978). Estimating the dimension of a model, The annals of statistics 6 (2): 461-464.
dc.relation.referencesShirk, O. (2000). Las mediciones del ozono, Dräger Sicherheitstechnik GmbH. Dräger Hispania Mapfre Seguridad 77: 17-21.
dc.relation.referencesStein, M. L. (2005). Space-time covariance functions, Journal of the American Statistical Association 100 (469): 310-321.
dc.relation.referencesTobler, W. R. (1970). A computer movie simulating urban growth in the detroit region, Economic geography 46 (sup1): 234-240.
dc.relation.referencesWarrick, A. & Myers, D. (1987). Optimization of sampling locations for variogram calculations, Water Resources Research 23 (3): 496-500.
dc.relation.referencesWedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss- Newton method, Biometrika 61 (3): 439-447.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAnálisis de medidas repetidas
dc.subject.proposalAnalysis of repeated measures
dc.subject.proposalcorrelación espacial y temporal
dc.subject.proposalspatial and temporal correlation
dc.subject.proposalmixed linear model
dc.subject.proposalmodelo lineal mixto
dc.subject.proposalREML
dc.subject.proposalREML
dc.subject.proposalKriging models
dc.subject.proposalmodelos kriging
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito