Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorGómez Alegría, Claudio Jaime
dc.contributor.authorRivera Diaz, Paola Andrea
dc.date.accessioned2020-03-05T12:35:56Z
dc.date.available2020-03-05T12:35:56Z
dc.date.issued2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75854
dc.description.abstractLa diabetes es una enfermedad metabólica de origen multifactorial que ha sido considerada la epidemia del siglo XXI. La mayor parte de los casos de diabetes corresponden a diabetes tipo 2, que se relacionan con obesidad y resistencia a la insulina, esta última entendida como una menor respuesta a la insulina por parte de las células y tejidos. El objetivo de este trabajo fue estandarizar y caracterizar a nivel molecular un modelo celular de resistencia a la insulina inducida farmacológicamente. Para ello se trabajó con células adiposas 3T3-L1, y se implementó un bioensayo colorimétrico para cuantificar el consumo de glucosa tanto basal como estimulado con insulina, el que sirvió de base para evaluar la resistencia inducida por diferentes fármacos. De cinco fármacos evaluados, se observó resistencia a la insulina sólo en respuesta a glucocorticoides. El tratamiento con dexametasona 10 μM por 24 y 48 horas, o con prednisolona ≥10 μM por 48 horas, disminuyó significativamente el consumo de glucosa estimulado por insulina, indicando resistencia a la insulina. El tratamiento con indinavir, olanzapina o peróxido de hidrógeno (100 μM por 24 y 48 horas) no afectó la respuesta a insulina. Interesantemente, olanzapina aumentó significativamente el consumo basal de glucosa a 24 y 48 h. La caracterización molecular de nuestro modelo se realizó a través de un análisis de proteómica cuantitativa tipo label free, el cual identificó 76 proteínas que se expresaron diferencialmente en las células con resistencia a insulina inducida por prednisolona (100 M por 48 horas) comparadas con las células control. De éstas, 56 aumentaron y 20 disminuyeron su expresión entre 1.25 y 5 veces, lo que nos permitió identificar por primera vez un grupo de proteínas cuya expresión se relacionaría con resistencia a la insulina inducida por prednisolona. Estas proteínas fueron: ACADSB, ACOT9, ATP6V1A, CKAP4, CTTN, DCAKD, EIF4A3, ESYT2, FKBP5, GSN, NMT1, PHGDH, PNPLA2, RBM14, SAMM50, SLC3A2, SRSF3, TUBA1A, SCD2, CAVIN1, ESYT1, LIPE, PKM, PLIN4, SPTBN1 y SUMO2. En conclusión, se estandarizó y caracterizó a nivel proteómico un modelo celular de resistencia a la insulina inducida con prednisolona en adipocitos 3T3-L1. Este modelo debería ser útil en la identificación de nuevas dianas moleculares implicadas en la respuesta y en la resistencia a la insulina, en la fisiopatología de la diabetes mellitus tipo 2, y en la búsqueda de nuevos fármacos.
dc.description.abstractDiabetes is a metabolic disease of multifactorial origin that has been considered the epidemic of the 21st century. Most cases of diabetes are type 2 diabetes, which are associated with obesity and insulin resistance, the latter understood as a lower response to insulin by cells and tissues. The objective of this work was to standardize and characterize at the molecular level a cellular model of pharmacologically induced insulin resistance. To do this, we worked with 3T3-L1 adipose cells, and a colorimetric bioassay was implemented to quantify both basal and insulin-stimulated glucose consumption, which served as the basis for evaluating resistance induced by different drugs. Out of five drugs evaluated, insulin resistance was observed only in response to glucocorticoids. Treatment with dexamethasone 10 μM for 24 and 48 hours, or with prednisolone ≥10 μM for 48 hours, significantly decreased the insulin-stimulated glucose consumption, indicating insulin resistance. Treatment with indinavir, olanzapine or hydrogen peroxide (100 μM for 24 and 48 hours) did not affect insulin response. Interestingly, olanzapine significantly increased baseline glucose consumption at 24 and 48 hours. The molecular characterization of our model was performed through a label-free quantitative proteomic analysis, which identified 76 proteins that were expressed differentially in cells with prednisolone-induced insulin resistance (100 M for 48 hours) compared to control cells. Of these, 56 increased and 20 decreased their expression between 1.25 and 5 times, which allowed us to identify for the first time a group of proteins whose expression would be related to prednisolone-induced insulin resistance. These proteins were: ACADSB, ACOT9, ATP6V1A, CKAP4, CTTN, DCAKD, EIF4A3, ESYT2, FKBP5, GSN, NMT1, PHGDH, PNPLA2, RBM14, SAMM50, SLC3A2, SRSF3, TUBA1A, SCD2, CAVIN1, ESYT1, LIPE, PKM, PLIN4, SPTBN1 y SUMO2. In conclusion, a cellular model of prednisolone-induced insulin resistance in 3T3-L1 adipocytes was standardized and characterized at the proteomic level. This model should be useful in identifying new molecular targets involved in insulin response and resistance, in the pathophysiology of type 2 diabetes mellitus, and in the search for new drugs.
dc.description.sponsorshipColciencias (Convocatoria 727-Doctorados Nacionales 2015)
dc.format.extent128
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcMedicina y salud::Farmacología y terapéutica
dc.titleEstandarización y caracterización de un modelo celular de resistencia a la insulina
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalDoctor en Ciencias Farmacéuticas. Línea de Investigación: Farmacología Molecular
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupUNIMOL
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Farmacia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. OMS. Informe mundial sobre la diabetes. Ginebra; 2016.
dc.relation.references2. OMS. Diabetes country profiles 2016 [Internet]. 2016. Available from: https://www.who.int/diabetes/country-profiles/col_en.pdf?ua=1
dc.relation.references3. Ahmad SI. Diabetes: an old disease, a new insight. New York: Springer; 2013.
dc.relation.references4. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes. 2010 Jul;1(3):68–75.
dc.relation.references5. Egan AM, Dinneen SF. What is diabetes? Medicine (Baltimore). 2019;47(1):1–4.
dc.relation.references6. Borst SE. The role of TNF-alpha in insulin resistance. Endocrine. 2004;23(2–3):177–82.
dc.relation.references7. Draznin B, Sussman KE, Eckel RH, Kao M, Yost T, Sherman NA. Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. J Clin Invest. 1988 Dec;82(6):1848–52.
dc.relation.references8. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 1999 Jun;48(6):1270–4.
dc.relation.references9. Ge X, Yu Q, Qi W, Shi X, Zhai Q. Chronic insulin treatment causes insulin resistance in 3T3-L1 adipocytes through oxidative stress. Free Radic Res. 2008 Jun;42(6):582–91.
dc.relation.references10. Ogihara T, Asano T, Katagiri H, Sakoda H, Anai M, Shojima N, Ono H, Fujishiro M, Kushiyama A, Fukushima Y, Kikuchi M, Noguchi N, Aburatani H, Gotoh Y, Komuro I, Fujita T. Oxidative stress induces insulin resistance by activating the nuclear factor-kappa B pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia. 2004 May;47(5):794–805.
dc.relation.references11. Sakoda H, Ogihara T, Anai M, Funaki M, Inukai K, Katagiri H, Fukushima Y, Onishi Y, Ono H, Fujishiro M, Kikuchi M, Oka Y, Asano T. Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes. 2000;49(10):1700–8.
dc.relation.references12. Buren J, Liu HX, Jensen J, Eriksson JW. Dexamethasone impairs insulin signalling and glucose transport by depletion of insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase B in primary cultured rat adipocytes. Eur J Endocrinol. 2002;146:419–29.
dc.relation.references13. Ruzzin J, Wagman AS, Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia. 2005;48(10):2119–30.
dc.relation.references14. Reed MJ, Scribner KA. In-vivo and in-vitro models of type 2 diabetes in pharmaceutical drug discovery. Diabetes Obes Metab. 1999;1(2):75–86.
dc.relation.references15. Fröde TS, Medeiros YS. Animal models to test drugs with potential antidiabetic activity. J Ethnopharmacol. 2008;115(2):173–83.
dc.relation.references16. Sah SP, Singh B, Choudhary S, Kumar A. Animal models of insulin resistance: A review. Pharmacol Rep. 2016 Dec;68(6):1165–77.
dc.relation.references17. Ayala-Sumuano J-T, Velez-delValle C, Beltran-Langarica A, Marsch-Moreno M, Hernandez-Mosqueira C, Kuri-Harcuch W. Glucocorticoid paradoxically recruits adipose progenitors and impairs lipid homeostasis and glucose transport in mature adipocytes. Sci Rep. 2013;3:2573.
dc.relation.references18. Jaiswal N, Gunaganti N, Maurya CK, Narender T, Tamrakar AK. Free fatty acid induced impairment of insulin signaling is prevented by the diastereomeric mixture of calophyllic acid and isocalophyllic acid in skeletal muscle cells. Eur J Pharmacol. 2015 Jan;746:70–7.
dc.relation.references19. Beg M, Abdullah N, Thowfeik FS, Altorki NK, McGraw TE. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake. Elife. 2017 Jun;6.
dc.relation.references20. Yamamoto N, Ashida H. Evaluation Methods for Facilitative Glucose Transport in Cells and Their Applications. 2012;18(4):493–503.
dc.relation.references21. Yamamoto N, Ueda-Wakagi M, Sato T, Kawasaki K, Sawada K, Kawabata K, Akagawa M, Ashida H. Measurement of Glucose Uptake in Cultured Cells. Curr Protoc Pharmacol. 2015 Dec;71:12.14.1-26.
dc.relation.references22. Clavijo MA, Gómez Camargo D, Gómez Alegría C. Adipogénesis in vitro de células 3T3-L1. Vol. 15, Revista Med. 2007. p. 170–6.
dc.relation.references23. Sandoval A. Modulación farmacológica de PPARγ y su efecto en la expresión de caveolina-1 en células 3T3-L1. Universidad Nacional de Colombia; 2008.
dc.relation.references24. Domínguez GP. Efectos de la modulación de los receptores PPARγ y de Glucocorticoides en la expresion de Caveolina-1 en células 3T3-L1. Universidad Nacional de Colombia; 2011.
dc.relation.references25. Pinzón García AD, Sandoval Hernández AG, Rivera Diaz PA, Gómez Camargo DE, Gómez Alegría CJ. Determinación colorimétrica de glucosa y consumo de glucosa en cultivos de células adiposas 3T3-L1. Acta Bioquím Clín Latinoam. 2017;51(2):195–202.
dc.relation.references26. Florez J, Armijo JA, Mediavilla A. Farmacología Humana. 5a ed. Barcelona: Masson; 2008. 1051–1072 p.
dc.relation.references27. De Meyts P. Insulin and its receptor: structure, function and evolution. Bioessays. 2004;26(12):1351–62.
dc.relation.references28. Rang HR, Dale MM, Ritter JM, Flower RJ. Rang y Dale. Farmacología. 6a ed. Barcelona: Elsevier; 2008. 397–409 p.
dc.relation.references29. Hall JE. Guyton y Hall: Tratado de fisiología médica. 12a ed. Barcelona: Elsevier; 2011.
dc.relation.references30. Barret KE, Barman SM, Boitano S, Brooks HL. Ganong. Fisiología Médica. 23a ed. México D.F.: McGraw Hill; 2010. 315–336 p.
dc.relation.references31. Goodman LS, Brunton L, Blumenthal D, Buxton I. Goodman and Gilman’s Manual of Pharmacology and Therapeutics. 12a ed. McGraw-Hill Education; 2008.
dc.relation.references32. Newsholme EA, Dimitriadis G. Integration of biochemical and physiologic effects of insulin on glucose metabolism. Exp Clin Endocrinol Diabetes. 2001;109 Suppl:S122-34.
dc.relation.references33. Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA. Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract. 2011 Aug;93 Suppl 1:S52-9.
dc.relation.references34. Mangmool S, Denkaew T, Parichatikanond W, Kurose H. β-Adrenergic Receptor and Insulin Resistance in the Heart. Biomol Ther (Seoul). 2017;25(1):44–56.
dc.relation.references35. Ye L, Maji S, Sanghera N, Gopalasingam P, Gorbunov E, Tarasov S, Epstein O, Klein-Seetharaman J. Structure and dynamics of the insulin receptor: implications for receptor activation and drug discovery. Drug Discov Today. 2017 Jul;22(7):1092–102.
dc.relation.references36. Yunn N-O, Kim J, Kim Y, Leibiger I, Berggren P-O, Ryu SH. Mechanistic understanding of insulin receptor modulation: Implications for the development of anti-diabetic drugs. Pharmacol Ther. 2018 May;185:86–98.
dc.relation.references37. Saltiel A, Kahn C. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806.
dc.relation.references38. Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014 Sep;46(6):372–83.
dc.relation.references39. King M. Integrative Medical Biochemistry: Examination and Board Review. McGraw-Hill Education; 2014. 912 p.
dc.relation.references40. Choi K, Kim Y-B. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med. 2010;25(2):119–29.
dc.relation.references41. Gutiérrez-Rodelo C, Roura-Guiberna A, Olivares-Reyes JA. Mecanismos Moleculares de la Resistencia a la Insulina: Una Actualización. Gac Med Mex. 2017;153:214–28.
dc.relation.references42. Thatcher JD. The Ras-MAPK Signal Transduction Pathway. Sci Signal. 2010;3(119):tr1 LP-tr1.
dc.relation.references43. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85.
dc.relation.references44. OPS. Diabetes [Internet]. Available from: https://www.paho.org/hq/index.php?option=com_content&view=article&id=6715:2012-diabetes&Itemid=39446&lang=es
dc.relation.references45. Tan SY, Mei Wong JL, Sim YJ, Wong SS, Mohamed Elhassan SA, Tan SH, Ling Lim GP, RongTay NW, Annan NC, Bhattamisra SK, Candasamy M. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr Clin Res Rev. 2019;13(1):364–72.
dc.relation.references46. Holt RIG, Cockram C, Flyvbjerg A, Goldstein BJ, editors. Textbook of Diabetes. 4a ed. Chicester, United Kingdom: Willey-Blackwell; 2011.
dc.relation.references47. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138):2449–62.
dc.relation.references48. Chetan MR, Thrower SL, Narendran P. What is type 1 diabetes? Medicine (Baltimore). 2019;47(1):5–9.
dc.relation.references49. Boles A, Kandimalla R, Reddy PH. Dynamics of diabetes and obesity: Epidemiological perspective. Biochim Biophys acta Mol basis Dis. 2017 May;1863(5):1026–36.
dc.relation.references50. Selivanova OM, Grishin SY, Glyakina A V, Sadgyan AS, Ushakova NI, Galzitskaya O V. Analysis of Insulin Analogs and the Strategy of Their Further Development. Biochemistry (Mosc). 2018 Jan;83(Suppl 1):S146–62.
dc.relation.references51. Sharma AK, Taneja G, Kumar A, Sahu M, Sharma G, Kumar A, Sardona S, Deep A. Insulin analogs: Glimpse on contemporary facts and future prospective. Life Sci. 2019;219(15):90–9.
dc.relation.references52. Pfeiffer AFH, Klein HH. The treatment of type 2 diabetes. Dtsch Arztebl Int. 2014;111(5):69–81.
dc.relation.references53. Thrasher J. Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies. Am J Med. 2017 Jun;130(6S):S4–17.
dc.relation.references54. Mlinar B, Marc J, Janez A, Pfeifer M. Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta. 2007;375(1–2):20–35.
dc.relation.references55. Soumaya K. Molecular mechanisms of insulin resistance in diabetes. Adv Exp Med Biol. 2012;771:240–51.
dc.relation.references56. Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med. 2008;14(11–12):741–51.
dc.relation.references57. Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013;4:71.
dc.relation.references58. Nicholson T, Church C, Baker DJ, Jones SW. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. J Inflamm. 2018;15(1):9.
dc.relation.references59. Antuna-Puente B, Feve B, Fellahi S, Bastard J-P. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 2008 Feb;34(1):2–11.
dc.relation.references60. Repaske DR. Medication-induced diabetes mellitus. Pediatr Diabetes. 2016 Sep;17(6):392–7.
dc.relation.references61. Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant. 2003 Feb;3(2):178–85.
dc.relation.references62. Fathallah N, Slim R, Larif S, Hmouda H, Ben Salem C. Drug-Induced Hyperglycaemia and Diabetes. Drug Saf. 2015 Dec;38(12):1153–68.
dc.relation.references63. Rehman A, Setter SM, Vue MH. Drug-Induced Glucose Alterations Part 2: Drug-Induced Hyperglycemia. Diabetes Spectr. 2011;24(4):234–8.
dc.relation.references64. Huang C-Y, Ma T, Tien L, Hsieh Y-W, Lee S-Y, Chen H-Y, Jon GP. A retrospective longitudinal cohort study of antihypertensive drug use and new-onset diabetes in Taiwanese patients. Biomed Res Int. 2013;2013.
dc.relation.references65. Chan JC, Cockram CS, Critchley JA. Drug-induced disorders of glucose metabolism. Mechanisms and management. Drug Saf. 1996 Aug;15(2):135–57.
dc.relation.references66. Kostis JB, Wilson AC, Freudenberger RS, Cosgrove NM, Pressel SL, Davis BR. Long-term effect of diuretic-based therapy on fatal outcomes in subjects with isolated systolic hypertension with and without diabetes. Am J Cardiol. 2005 Jan;95(1):29–35.
dc.relation.references67. Anyanwagu U, Idris I, Donnelly R. Drug-Induced Diabetes Mellitus: Evidence for Statins and Other Drugs Affecting Glucose Metabolism. Clin Pharmacol Ther. 2016 Apr;99(4):390–400.
dc.relation.references68. Navarese EP, Buffon A, Andreotti F, Kozinski M, Welton N, Fabiszak T, Caputo S, Grzesk G, Kubica A, Swiatkiewicz I, Sukiennik A, Kelm M, De Servi S, Kubica J. Meta-analysis of impact of different types and doses of statins on new-onset diabetes mellitus. Am J Cardiol. 2013 Apr;111(8):1123–30.
dc.relation.references69. Feeney ER, Mallon PWG. Insulin resistance in treated HIV infection. Best Pract Res Clin Endocrinol Metab. 2011 Jun;25(3):443–58.
dc.relation.references70. Hresko RC, Hruz PW. HIV Protease Inhibitors Act as Competitive Inhibitors of the Cytoplasmic Glucose Binding Site of GLUTs with Differing Affinities for GLUT1 and GLUT4. PLoS One. 2011;6(9).
dc.relation.references71. Hruz PW. Molecular mechanisms for insulin resistance in treated HIV-infection. Best Pract Res Clin Endocrinol Metab. 2011;25(3):459–68.
dc.relation.references72. Ballon JS, Pajvani U, Freyberg Z, Leibel RL, Lieberman JA. Molecular pathophysiology of metabolic effects of antipsychotic medications. Trends Endocrinol Metab. 2014 Nov;25(11):593–600.
dc.relation.references73. Ren L, Zhou X, Huang X, Wang C, Li Y. The IRS/PI3K/Akt signaling pathway mediates olanzapine-induced hepatic insulin resistance in male rats. Life Sci. 2019 Jan;217:229–36.
dc.relation.references74. Liu X, Zhu X, Miao Q, Ye H, Zhang Z, Li Y-M. Hyperglycemia induced by glucocorticoids in nondiabetic patients: a meta-analysis. Ann Nutr Metab. 2014;65(4):324–32.
dc.relation.references75. Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res. 2007;125(3):451–72.
dc.relation.references76. Martínez BB, Pereira ACC, Muzetti JH, Telles F de P, Mundim FGL, Teixeira MA. Experimental model of glucocorticoid-induced insulin resistance. Acta Cir Bras. 2016;31(10):645–9.
dc.relation.references77. King AJF. The use of animal models in diabetes research. Br J Pharmacol. 2012 Jun;166(3):877–94.
dc.relation.references78. King A, Bowe J. Animal models for diabetes: Understanding the pathogenesis and finding new treatments. Biochem Pharmacol. 2016 Jan;99:1–10.
dc.relation.references79. Prabhakar PK. Animal Models in Type 2 Diabetes Research. In: Govil JN, editor. Recent Progress in Medicinal Plants. 1a ed. India: Studium Press; 2015.
dc.relation.references80. The National Centre for the Replacement Refinement and Reduction of Animals in Research (NC3Rs). The 3Rs [Internet]. [cited 2018 Jan 14]. Available from: https://www.nc3rs.org.uk/the-3rs
dc.relation.references81. Esmaeili MA, Yazdanparast R. Hypoglycaemic effect of Teucrium polium: studies with rat pancreatic islets. J Ethnopharmacol. 2004 Nov;95(1):27–30.
dc.relation.references82. Wu W, Tang S, Shi J, Yin W, Cao S, Bu R, Zhu D, Bi Y. Metformin attenuates palmitic acid-induced insulin resistance in L6 cells through the AMP-activated protein kinase/sterol regulatory element-binding protein-1c pathway. Int J Mol Med. 2015 Jun;35(6):1734–40.
dc.relation.references83. Zhou L, Wang L, Hu X, Li Y. PTEN in propofol-induced insulin resistance in mouse primary hepatocytes. Exp Ther Med. 2018 Dec;16(6):4831–5.
dc.relation.references84. Fang Z-J, Shen S-N, Wang J-M, Wu Y-J, Zhou C-X, Mo J-X, Lin LG, Gan L-S. Triterpenoids from Cyclocarya paliurus that Enhance Glucose Uptake in 3T3-L1 Adipocytes. Molecules. 2019;24(1):187.
dc.relation.references85. Green H, Kehinde O. An establiseh preadipose cell line and its differentation in culture II. Factors affecting the adipose conversion. Cell. 1975;5(1):19–27.
dc.relation.references86. Green H, Meuth M. An established pre-adipose cell line and its differentation in culture. Cell. 1974;3(2):127–33.
dc.relation.references87. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem. 1969;6:24–7.
dc.relation.references88. Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci. 2011;2(1):21–5.
dc.relation.references89. Little TA. Method Validation Essentials, Limit of Blank, Limit of Detection, and Limit of Quantitation. BioPharm Int. 2015;28(4):48–51.
dc.relation.references90. Rudich A, Konrad D, Torok D, Ben-Romano R, Huang C, Niu W, Garg RR, Wijesekara N, Germinario RJ, Bilan PJ, Klip A. Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia. 2003 May;46(5):649–58.
dc.relation.references91. Houseknecht KL, Robertson AS, Zavadoski W, Gibbs EM, Johnson DE, Rollema H. Acute effects of atypical antipsychotics on whole-body insulin resistance in rats: implications for adverse metabolic effects. Neuropsychopharmacology. 2007 Feb;32(2):289–97.
dc.relation.references92. Ma M, Quan Y, Li Y, He X, Xiao J, Zhan M, Zhao W, Xin Y, Lu L, Luo L. Bidirectional modulation of insulin action by reactive oxygen species in 3T3L1 adipocytes. Mol Med Rep. 2018 Jul;18(1):807–14.
dc.relation.references93. Lo KA, Labadorf A, Kennedy NJ, Han MS, Yap YS, Matthews B, Xin Y, Sun L, Davis RJ, Lodish HF, Fraenkel E. Analysis of in vitro insulin-resistance models and their physiological relevance to in vivo diet-induced adipose insulin resistance. Cell Rep. 2013 Oct;5(1):259–70.
dc.relation.references94. Fleuren WWM, Linssen MML, Toonen EJM, van der Zon GCM, Guigas B, de Vlieg J, Dokter WHA, Ouwens DM, Alkema W. Prednisolone induces the Wnt signalling pathway in 3T3-L1 adipocytes. Arch Physiol Biochem. 2013 May;119(2):52–64.
dc.relation.references95. Sapcariu SC, Kanashova T, Weindl D, Ghelfi J, Dittmar G, Hiller K. Simultaneous extraction of proteins and metabolites from cells in culture. MethodsX. 2014;1:74–80.
dc.relation.references96. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics. 2011;11(4):535–53.
dc.relation.references97. Eng JK, Jahan TA, Hoopmann MR. Comet: An open-source MS/MS sequence database search tool. Proteomics. 2013;13(1):22–4.
dc.relation.references98. Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004 Jun;20(9):1466–7.
dc.relation.references99. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2018;47(D1):D419–26.
dc.relation.references100. Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, Thomas PD. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc. 2019;14(3):703–21.
dc.relation.references101. Hartley HO. The use of range in analysis of variance. Biometrika. 1950;37(3–4):271–80.
dc.relation.references102. Smirnov N. Table for Estimating the Goodness of Fit of Empirical Distributions. Ann Math Stat. 1948;19(2):279–81.
dc.relation.references103. Student. The Probable Error of a Mean. Biometrika. 1908;6(1):1–25.
dc.relation.references104. Mann HB, Whitney DR. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann Math Stat. 1947;18(1):50–60.
dc.relation.references105. Fisher R. Statistical methods for research workers. Edinburg: Oliver and Boyd; 1925.
dc.relation.references106. Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949 Jun;5(2):99–114.
dc.relation.references107. Kruskal WH, Wallis WA. Use of Ranks in One-Criterion Variance Analysis. J Am Stat Assoc. 1952;47(260):583–621.
dc.relation.references108. Dunn O. Multiple comparisons among means. JASA. 1961;56:54–64.
dc.relation.references109. GraphPad Prism. GraphPad Prism versión 6.07 (Demo) [Internet]. La Jolla California, USA; 2015. Available from: www.graphpad.com
dc.relation.references110. The Gene Ontology Consortium. The Gene Ontology Resource [Internet]. [cited 2019 Jun 14]. Available from: http://geneontology.org/
dc.relation.references111. Ruiz-Ojeda FJ, Ruperez AI, Gomez-Llorente C, Gil A, Aguilera CM. Cell Models and Their Application for Studying Adipogenic Differentiation in Relation to Obesity: A Review. Int J Mol Sci. 2016 Jun;17(7).
dc.relation.references112. Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000;130(12):3122S-3126S.
dc.relation.references113. Gathercole LL, Bujalska IJ, Stewart PM, Tomlinson JW. Glucocorticoid modulation of insulin signaling in human subcutaneous adipose tissue. J Clin Endocrinol Metab. 2007;92(11):4332–9.
dc.relation.references114. Zebisch K, Voigt V, Wabitsch M, Brandsch M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem. 2012 Jun;425(1):88–90.
dc.relation.references115. Vishwanath D, Srinivasan H, Patil MS, Seetarama S, Agrawal SK, Dixit MN, Dhar K. Novel method to differentiate 3T3 L1 cells in vitro to produce highly sensitive adipocytes for a GLUT4 mediated glucose uptake using fluorescent glucose analog. J Cell Commun Signal. 2013 Jun;7(2):129–40.
dc.relation.references116. Gregoire FM, Smas CM, Sul HEIS. Understanding Adipocyte Differentiation. Physiol Rev. 1998;78(3):783–809.
dc.relation.references117. ICH. “Validation of analytical procedures: text and methodology Q2(R1)”, ICH Harmonised Tripartite Guideline. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Geneva; 1996.
dc.relation.references118. Olefsky JM. Effect of dexamethasone on insulin binding, glucose transport, and glucose oxidation of isolated rat adipocytes. J Clin Invest. 1975 Dec;56(6):1499–508.
dc.relation.references119. Hjollund E, Pedersen O. Transport and metabolism of D-glucose in human adipocytes. Studies of the dependence on medium glucose and insulin concentrations. Biochim Biophys Acta. 1988 Jan;937(1):93–102.
dc.relation.references120. Perriott LM, Kono T, Whitesell RR, Knobel SM, Piston DW, Granner DK, Powers AC, May JM. Glucose uptake and metabolism by cultured human skeletal muscle cells: rate-limiting steps. Am J Physiol Endocrinol Metab. 2001 Jul;281(1):E72-80.
dc.relation.references121. Nelson DL, Cox MM. Lehninger principles of biochemistry. 5a ed. New York: W.H. Freeman; 2008.
dc.relation.references122. Brown GK. Glucose transporters: structure, function and consequences of deficiency. J Inherit Metab Dis. 2000 May;23(3):237–46.
dc.relation.references123. Medina RA, Owen GI. Glucose transporters: expression, regulation and cancer. Biol Res. 2002;35(1):9–26.
dc.relation.references124. Sigma-Aldrich®. Glucose Uptake Colorimetric Assay Kit-Technical Bulletin [Internet]. 2015 [cited 2019 Jan 22]. Available from: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/1/mak083bul.pdf
dc.relation.references125. Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, Hinohara K, Strathdee CA, Dempster J, Lyons NJ, Burns R, Nag A, Kugener G, Cimini B, Tsvetkov P, Maruvka YE, O'Rourke R, Garrity A, Tubelli AA, Bandopadhayay P, Tsherniak A, Vazquez F, Wong B, Birger C, Ghandi M, Thorner AR, Bittker JA, Meyerson M, Getz G, Beroukhim R, Golub TR. Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 2018;560(7718):325–30.
dc.relation.references126. Weiland M, Bahr F, Hohne M, Schurmann A, Ziehm D, Joost HG. The signaling potential of the receptors for insulin and insulin-like growth factor I (IGF-I) in 3T3-L1 adipocytes: comparison of glucose transport activity, induction of oncogene c-fos, glucose transporter mRNA, and DNA-synthesis. J Cell Physiol. 1991 Dec;149(3):428–35.
dc.relation.references127. Young PW, Cawthorne MA, Coyle PJ, Holder JC, Holman GD, Kozka IJ, Kirkham DM, Lister CA, Smith SA. Repeat treatment of obese mice with BRL 49653, a new potent insulin sensitizer, enhances insulin action in white adipocytes. Association with increased insulin binding and cell-surface GLUT4 as measured by photoaffinity labeling. Diabetes. 1995 Sep;44(9):1087–92.
dc.relation.references128. Semaan DG, Igoli JO, Young L, Gray AI, Rowan EG, Marrero E. In vitro anti-diabetic effect of flavonoids and pheophytins from Allophylus cominia Sw. on the glucose uptake assays by HepG2, L6, 3T3-L1 and fat accumulation in 3T3-L1 adipocytes. J Ethnopharmacol. 2018 Apr;216:8–17.
dc.relation.references129. Janneh O, Hoggard PG, Tjia JF, Jones SP, Khoo SH, Maher B, Back DJ, Pirmohamed M. Intracellular disposition and metabolic effects of zidovudine, stavudine and four protease inhibitors in cultured adipocytes. Antivir Ther. 2003 Oct;8(5):417–26.
dc.relation.references130. El-Houri RB, Kotowska D, Olsen LCB, Bhattacharya S, Christensen LP, Grevsen K, Oksbjerg N, Faergeman N, Kristiansen K, Christensen KB. Screening for bioactive metabolites in plant extracts modulating glucose uptake and fat accumulation. Evid Based Complement Alternat Med. 2014;2014:156398.
dc.relation.references131. Murata H, Hruz PW, Mueckler M. Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS. 2002 Apr;16(6):859–63.
dc.relation.references132. Coccurello R, Brina D, Caprioli A, Conti R, Ghirardi O, Schepis F, Moles A. 30 days of continuous olanzapine infusion determines energy imbalance, glucose intolerance, insulin resistance, and dyslipidemia in mice. J Clin Psychopharmacol. 2009 Dec;29(6):576–83.
dc.relation.references133. Li R, Ou J, Li L, Yang Y, Zhao J, Wu R. The Wnt Signaling Pathway Effector TCF7L2 Mediates Olanzapine-Induced Weight Gain and Insulin Resistance. Front Pharmacol. 2018;9:379.
dc.relation.references134. Vestri HS, Maianu L, Moellering DR, Garvey WT. Atypical antipsychotic drugs directly impair insulin action in adipocytes: effects on glucose transport, lipogenesis, and antilipolysis. Neuropsychopharmacology. 2007 Apr;32(4):765–72.
dc.relation.references135. Robinson KA, Yacoub Wasef SZ, Buse MG. At therapeutic concentrations, olanzapine does not affect basal or insulin-stimulated glucose transport in 3T3-L1 adipocytes. Prog Neuropsychopharmacol Biol Psychiatry. 2006 Jan;30(1):93–8.
dc.relation.references136. Matsuda M, Shimomura I. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk. Horm Mol Biol Clin Investig. 2014 Aug;19(2):75–88.
dc.relation.references137. Guo H, Ling W, Wang Q, Liu C, Hu Y, Xia M. Cyanidin 3-glucoside protects 3T3-L1 adipocytes against H2O2- or TNF-alpha-induced insulin resistance by inhibiting c-Jun NH2-terminal kinase activation. Biochem Pharmacol. 2008 Mar;75(6):1393–401.
dc.relation.references138. Nagami M, Ito Y, Nagasawa T. Phenethyl isothiocyanate protects against H2O2-induced insulin resistance in 3T3-L1 adipocytes. Biosci Biotechnol Biochem. 2017 Nov;81(11):2195–203.
dc.relation.references139. Garvey WT, Huecksteadt TP, Monzon R, Marshall S. Dexamethasone regulates the glucose transport system in primary cultured adipocytes: different mechanisms of insulin resistance after acute and chronic exposure. Endocrinology. 1989 May;124(5):2063–73.
dc.relation.references140. den Uyl D, van Raalte DH, Nurmohamed MT, Lems WF, Bijlsma JWJ, Hoes JN, Dijkmans BAC, Diamant M. Metabolic effects of high-dose prednisolone treatment in early rheumatoid arthritis: balance between diabetogenic effects and inflammation reduction. Arthritis Rheum. 2012 Mar;64(3):639–46.
dc.relation.references141. Petersons CJ, Mangelsdorf BL, Jenkins AB, Poljak A, Smith MD, Greenfield JR, Thompson CH, Burt MG. Effects of low-dose prednisolone on hepatic and peripheral insulin sensitivity, insulin secretion, and abdominal adiposity in patients with inflammatory rheumatologic disease. Diabetes Care. 2013 Sep;36(9):2822–9.
dc.relation.references142. Ishizuka T, Nagashima T, Kajita K, Miura A, Yamamoto M, Itaya S, Kanoh Y, Ishizawa M, Murase H, Yasuda K. Effect of glucocorticoid receptor antagonist RU 38486 on acute glucocorticoid-induced insulin resistance in rat adipocytes. Metabolism. 1997;46(9):997–1002.
dc.relation.references143. Kramer D, Shapiro R, Adler A, Bush E, Rondinone CM. Insulin-sensitizing effect of rosiglitazone (BRL-49653) by regulation of glucose transporters in muscle and fat of Zucker rats. Metabolism. 2001 Nov;50(11):1294–300.
dc.relation.references144. Martinez L, Berenguer M, Bruce MC, Le Marchand-Brustel Y, Govers R. Rosiglitazone increases cell surface GLUT4 levels in 3T3-L1 adipocytes through an enhancement of endosomal recycling. Biochem Pharmacol. 2010 May;79(9):1300–9.
dc.relation.references145. Washio K (Watanabe), Kusunoki Y, Murase T, Nakamura T, Osugi K, Ohigashi M, Ohigashi M, Sukenaga T, Ochi F, Matsuo T, Katsuno T, Moriwaki Y, Yamamoto T, Namba M, Koyama H. Xanthine oxidoreductase activity is correlated with insulin resistance and subclinical inflammation in young humans. Metab - Clin Exp. 2017 May 1;70:51–6.
dc.relation.references146. Sunagawa S, Shirakura T, Hokama N, Kozuka C, Yonamine M, Namba T, Morishima S, Nakachi S, Nishi Y, Ikema T, Okamoto S, Matsui C, Hase N, Tamura M, Shimabukuro M, Masuzaki H. Activity of xanthine oxidase in plasma correlates with indices of insulin resistance and liver dysfunction in patients with type 2 diabetes mellitus and metabolic syndrome: A pilot exploratory study. J Diabetes Investig. 2019;10(1):94–103.
dc.relation.references147. Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J Off Publ Fed Am Soc Exp Biol. 1999 Nov;13(14):2051–60.
dc.relation.references148. Ortenblad N, Mogensen M, Petersen I, Hojlund K, Levin K, Sahlin K, Beck-Nielsen H, Gaster M. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim Biophys Acta. 2005 Jun;1741(1–2):206–14.
dc.relation.references149. Sen S, Jumaa H, Webster NJG. Splicing factor SRSF3 is crucial for hepatocyte differentiation and metabolic function. Nat Commun. 2013;4:1336.
dc.relation.references150. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem. 2002 Oct;277(42):39858–66.
dc.relation.references151. Basso AD, Solit DB, Munster PN, Rosen N. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene. 2002 Feb;21(8):1159–66.
dc.relation.references152. Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res. 2001 May;61(10):4003–9.
dc.relation.references153. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006 Apr;440(7086):944–8.
dc.relation.references154. Ikemura M, Nishikawa M, Hyoudou K, Kobayashi Y, Yamashita F, Hashida M. Improvement of insulin resistance by removal of systemic hydrogen peroxide by PEGylated catalase in obese mice. Mol Pharm. 2010 Dec;7(6):2069–76.
dc.relation.references155. Lee H-Y, Choi CS, Birkenfeld AL, Alves TC, Jornayvaz FR, Jurczak MJ, Zhang D, Woo DK, Shadel GS, Ladiges W, Rabinovitch PS, Santos JH, Petersen KF, Samuel VT, Shulman GI. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 2010 Dec;12(6):668–74.
dc.relation.references156. Ande SR, Mishra S. Prohibitin interacts with phosphatidylinositol 3,4,5-triphosphate (PIP3) and modulates insulin signaling. Biochem Biophys Res Commun. 2009;390(3):1023–8.
dc.relation.references157. Ande SR, Nguyen KH, Padilla-Meier GP, Wahida W, Nyomba BLG, Mishra S. Prohibitin Overexpression in Adipocytes Induces Mitochondrial Biogenesis, Leads to Obesity Development, and Affects Glucose Homeostasis in a Sex-Specific Manner. Diabetes. 2014 Nov 1;63(11):3734 LP – 3741.
dc.relation.references158. Burkart AM, Tan K, Warren L, Iovino S, Hughes KJ, Kahn CR, Patti M-E. Insulin Resistance in Human iPS Cells Reduces Mitochondrial Size and Function. Sci Rep. 2016;6:22788.
dc.relation.references159. Hojlund K, Wrzesinski K, Larsen PM, Fey SJ, Roepstorff P, Handberg A, Dela F, Vinten J, McCormack JG, Reynet C, Beck-Nielsen H. Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem. 2003 Mar;278(12):10436–42.
dc.relation.references160. Ceperuelo-Mallafre V, Ejarque M, Serena C, Duran X, Montori-Grau M, Rodriguez MA, MA, Yanes O, Núñez-Roa C, Roche K, Puthanveetil P, Garrido-Sánchez L, Saez E, Tinahones FJ, Garcia-Roves PM, Gómez-Foix AM, Saltiel AR, Vendrell J, Fernández-Veledo S. Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans. Mol Metab. 2016 Jan;5(1):5–18.
dc.relation.references161. Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D. Dephosphorylation of Translation Initiation Factor 2α Enhances Glucose Tolerance and Attenuates Hepatosteatosis in Mice. Cell Metab. 2008;7(6):520–32.
dc.relation.references162. Berhane F, Fite A, Daboul N, Al-Janabi W, Msallaty Z, Caruso M, Lewis MK, Yi Z, Diamond MP, Abou-Samra AB, Seyoum B. Plasma Lactate Levels Increase during Hyperinsulinemic Euglycemic Clamp and Oral Glucose Tolerance Test. J Diabetes Res. 2015;2015:102054.
dc.relation.references163. Maagaard A, Holberg-Petersen M, Torjesen PA, Bruun JN, Kvale D. Insulin resistance is affected by increased levels of plasma lactate but not mitochondrial alterations in skeletal muscle in NRTI-exposed HIV-infected patients. HIV Clin Trials. 2007;8(5):345–53.
dc.relation.references164. Kleppe R, Martinez A, Døskeland SO, Haavik J. The 14-3-3 proteins in regulation of cellular metabolism. Semin Cell Dev Biol. 2011;22(7):713–9.
dc.relation.references165. Chen S, Synowsky S, Tinti M, MacKintosh C. The capture of phosphoproteins by 14-3-3 proteins mediates actions of insulin. Trends Endocrinol Metab. 2011 Nov;22(11):429–36.
dc.relation.references166. Kao AW, Noda Y, Johnson JH, Pessin JE, Saltiel AR. Aldolase mediates the association of F-actin with the insulin-responsive glucose transporter GLUT4. J Biol Chem. 1999 Jun;274(25):17742–7.
dc.relation.references167. Ziboh VA, Rauls TJ, Hsia SL. Adaptive changes of glycerol 3-phosphate dehydrogenase level in rat skin: effects of starvation, alloxan diabetes and insulin. Endocrinology. 1971 Jul;89(1):240–5.
dc.relation.references168. Gudayol M, Vidal J, Usac EF, Morales A, Fabregat ME, Fernandez-Checa JC, Novials A, Gomis R. Identification and functional analysis of mutations in FAD-binding domain of mitochondrial glycerophosphate dehydrogenase in caucasian patients with type 2 diabetes mellitus. Endocrine. 2001 Oct;16(1):39–42.
dc.relation.references169. Tu K, Ju H, Pettit F, Shive W, Topek N, Matthews R, Matthews K. Glycerol-3-Phosphate Dehydrogenase Activity in Human Lymphocytes- Effects of Insulin, Obesity and Weight Loss. Biochem Biophys Res Commun. 1995;207(1):183–90.
dc.relation.references170. Bratti L de OS, do Carmo IAR, Vilela TF, Wopereis S, de Moraes ACR, Borba BGM, et al. Complement component 3 (C3) as a biomarker for insulin resistance after bariatric surgery. Clin Biochem. 2017 Jun;50(9):529–32.
dc.relation.references171. Wlazlo N, van Greevenbroek MMJ, Ferreira I, Feskens EJM, van der Kallen CJH, Schalkwijk CG, Schalkwijk CG, Bravenboer B, Stehouwer CD. Complement Factor 3 Is Associated With Insulin Resistance and With Incident Type 2 Diabetes Over a 7-Year Follow-up Period: The CODAM Study. Diabetes Care. 2014 Jul 1;37(7):1900 LP – 1909.
dc.relation.references172. Ursini F, Abenavoli L. The Emerging Role of Complement C3 as A Biomarker of Insulin Resistance and Cardiometabolic Diseases: Preclinical and Clinical Evidence. Rev Recent Clin Trials. 2018 Jan;13(1):61–8.
dc.relation.references173. Packialakshmi B, Liyanage R, Lay JJ, Okimoto R, Rath N. Prednisolone-induced predisposition to femoral head separation and the accompanying plasma protein changes in chickens. Biomark Insights. 2015;10:1–8.
dc.relation.references174. Shan SW, Do CW, Lam TC, Kong RPW, Li KK, Chun KM, Stamer WD, To CH. New Insight of Common Regulatory Pathways in Human Trabecular Meshwork Cells in Response to Dexamethasone and Prednisolone Using an Integrated Quantitative Proteomics: SWATH and MRM-HR Mass Spectrometry. J Proteome Res. 2017 Oct;16(10):3753–65.
dc.relation.references175. Kamisoglu K, Sukumaran S, Nouri-Nigjeh E, Tu C, Li J, Shen X, Duan X, Qu J, Almon RR, DuBois DC, Jusko WJ, Androulakis IP. Tandem analysis of transcriptome and proteome changes after a single dose of corticosteroid: a systems approach to liver function in pharmacogenomics. OMICS. 2015 Feb;19(2):80–91.
dc.relation.references176. Ayyar VS, Almon RR, DuBois DC, Sukumaran S, Qu J, Jusko WJ. Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: Relationship to hepatic stress, signaling, energy regulation, and drug metabolism. J Proteomics. 2017 May;160:84–105.
dc.relation.references177. Nouri-Nigjeh E, Sukumaran S, Tu C, Li J, Shen X, Duan X, DuBois DC, Almon RR, Jusko WJ, Qu J. Highly multiplexed and reproducible ion-current-based strategy for large-scale quantitative proteomics and the application to protein expression dynamics induced by methylprednisolone in 60 rats. Anal Chem. 2014 Aug;86(16):8149–57.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalGlucose uptake
dc.subject.proposalConsumo de glucosa
dc.subject.proposalResistencia a la insulina
dc.subject.proposalInsulin resistance
dc.subject.proposalCélulas adiposas
dc.subject.proposalAdipose cells
dc.subject.proposalCélulas 3T3-L1
dc.subject.proposal3T3-L1 cells
dc.subject.proposalInsulina
dc.subject.proposalInsulin
dc.subject.proposalGlucocorticoides
dc.subject.proposalGlucocorticoids
dc.subject.proposalPrednisolona
dc.subject.proposalPrednisolone
dc.subject.proposalDexametasona
dc.subject.proposalDexamethasone
dc.subject.proposalLabel free proteomics
dc.subject.proposalProteómica label free
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito