Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDueñas Goméz, Zulma
dc.contributor.advisorTorres Fernández, Orlando
dc.contributor.authorPorras Rodríguez, Andrés Obdulio
dc.date.accessioned2020-03-05T20:10:19Z
dc.date.available2020-03-05T20:10:19Z
dc.date.issued2020-01-23
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75895
dc.description.abstractLa rabia humana continúa siendo un importante problema de salud pública en países subdesarrollados por falta de control de la transmisión canina y la presencia de reservorios silvestres (algunos murciélagos y carnívoros). En el presente trabajo se analizaron los efectos del virus de la rabia en la morfología dendrítica y en la expresión de la proteína MAP-2 en las neuronas de Purkinje del cerebelo, utilizando respectivamente la técnica de Golgi y la inmunohistoquímica. Para esto, se inocularon ratones ICR con el virus de la rabia, por vía intramuscular o intracerebral, y se sacrificaron posteriormente en la fase terminal de la enfermedad. Los cerebelos fueron removidos y cortados sagitalmente en un vibrátomo, para posteriormente aplicar la batería metodológica correspondiente para cada técnica. Los cambios encontrados en la proteína MAP-2 mediante inmunohistoquímica no fueron estadísticamente significativos. Otros marcadores evaluados previamente por el grupo de investigación en el cerebelo (calbindina y aldolasa) generaron resultados similares, lo que sugiere una posible respuesta diferencial de neuroprotección en estas neuronas ante la infección con el virus de la rabia. Por el contrario, los resultados encontrados mediante la técnica de Golgi arrojaron cambios significativos en la estructura del patrón dendrítico de las neuronas de Purkinje por causa de la infección, lo cual evidencia patología dendrítica de estas neuronas en los animales infectados con el virus. En conjunto, los resultados del presente trabajo aportan al conocimiento de la dinámica de la infección celular en la patogénesis de la rabia. La evidencia de daño neuronal estructural podría explicar en parte la fisiopatología de esta enfermedad.
dc.description.abstractHuman rabies continues to be a major public health problem in underdeveloped countries due to lack of control of canine transmission and the presence of wild reservoirs (some bats and carnivores). In this paper, the effects of rabies virus on dendritic morphology and the expression of the MAP-2 protein in Purkinje neurons of the cerebellum were analyzed, using the Golgi technique and immunohistochemistry respectively. For this, ICR mice were inoculated with the rabies virus, intramuscularly or intracerebrally, and subsequently sacrificed in the terminal phase of the disease. The cerebellums were removed and cut sagittally in a vibratome, to subsequently apply the corresponding methodological battery for each technique. The changes found in the MAP-2 protein by immunohistochemistry were not statistically significant. Other markers previously evaluated by the research group in the cerebellum (calbindin and aldolase) generated similar results, suggesting a possible differential response of neuroprotection in these neurons to infection with the rabies virus. On the contrary, the results found by the Golgi technique showed significant changes in the structure of the dendritic pattern of Purkinje neurons due to infection, which evidences the dendritic pathology of these neurons in animals infected with the virus. Together, the results of this work contribute to the knowledge of the dynamics of cellular infection in the pathogenesis of rabies. The evidence of structural neuronal damage could partly explain the pathophysiology of this disease.
dc.format.extent92
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcBiología::Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
dc.titleEfecto de la infección con virus de la rabia sobre la estructura dendrítica de las células de Purkinje en el cerebelo de ratones
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Neurociencias
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupMorfología Celular
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesWunner WH, Briggs DJ. Rabies in the 21th century. Plos Negl Trop Dis 2010;4(3):e591 doi:10.1371/journal.pntd.0000591.
dc.relation.referencesJackson AC. Update on rabies. Res Rep Trop Med 2011; 2:31-43.
dc.relation.referencesWorld Health Organization. WHO Expert consultation on rabies. En: WHO Technical Report Series 2013; 982:1-139.
dc.relation.referencesPáez A, Nuñez C, García C, Boshell J. Epidemiología molecular de epizootias de rabia en Colombia, 1994-2002: evidencia de rabia humana y canina asociada a quirópteros. Biomédica 2003; 23:19-30.
dc.relation.referencesPaéz A, Rey G, Agudelo C, Dulce A, Parra E, Díaz-Granados H, Agudelo C, et al. Brote de rabia urbana transmitida por perros en el distrito de Santa Marta, Colombia, 2006-2008. Biomédica 2009; 29:424-36.
dc.relation.referencesValderrama J, García I, Figueroa G, Rico E, Sanabria J, Rocha N, et al. Brotes de rabia humana transmitida por vampiros en los municipios de Bajo y Alto Baudó, departamento del Chocó, Colombia 2004-2005. Biomédica 2006; 26:387-96.
dc.relation.referencesRuiz M, Chávez CB. Rabies in Latin America. Neurol Res 2010;32:272-7.
dc.relation.referencesJackson A. Therapy of rabies encephalitis. Biomédica 2009; 29.
dc.relation.referencesKristensson K, Dastur DK, Manghani DK, Tsiang H, Bentivoglio M. Rabies: interactions between neurons and viruses. A review of Negri inclusion bodies. Neuropathol Appl Neurobiol 1996; 22:179-87.
dc.relation.referencesLlamas L, Orozco E. Rabia: infección viral del sistema nervioso central. Rev Mex Neuroci 2009; 10:212-19.
dc.relation.referencesCarrada-Bravo T. Rabia: Visión nueva de un mal milenario. Rev Mex Patol Cli 2004; 51:53-166.
dc.relation.referencesCastellanos J, Hurtado H. Receptores para el virus de la rabia. Biomedica 2001; 21:389-401. 13.
dc.relation.referencesUgolini G. Rabies virus as a transneuronal tracer of neuronal connections. Adv Virus Res 2011; 79:165-202.
dc.relation.referencesIwasaki Y, Tobita M. Pathology. En: Jackson A, Wunner H, Editors. Rabies. San Diego: Academic Press 2002; 283-307.
dc.relation.referencesBlondel D, Harper F. Functional Characterization of Negri Bodies (NBs) in Rabies Virus-Infected Cells: Evidence that NBs Are Sites of Viral Transcription and Replication. J Virol 2009; 83:7948-58.
dc.relation.referencesSong Y, Hou J, Qiao B, Li Y, Xu Y, Duan M. Street rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus. J Gen Virol 2013; 94:276-83.
dc.relation.referencesMediavilla C, Molina F, Puerto A. Funciones no motoras del cerebelo. Psicothema 1996; 8:669-83.
dc.relation.referencesRokni D, Llinás R, Yarom Y. The morpho/functional discrepancy in the cerebellar cortex: looks alone are deceptive. Front Neurosci. 2008; 2:192-8.
dc.relation.referencesDelgado-García JM. Estructura y función del cerebelo. Rev Neurol. 2001; 33:635- 42.
dc.relation.referencesVoogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci 1998; 21:370-75.
dc.relation.referencesTirapu-Ustarroz J, Luna-Lario P, Iglesias-Fernández MD, Hernáez-Goñi P. Contribución del cerebelo a los procesos cognitivos: avances actuales. Rev Neurol 2011; 53:301-15.
dc.relation.referencesBarrios M, Guardia J. Relación del cerebelo con las funciones cognitivas: evidencias neuroanatómicas, clínicas y de neuroimagen. Rev Neurol 2001; 33:582-91.
dc.relation.referencesSchmahmann J, Caplan D. Cognition, emotion and the cerebellum. Brain 2006; 129:290-2.
dc.relation.referencesBastianelli E. Distribution of calcium binding proteins in the cerebellum. Cerebellum 2003; 2:242-62.
dc.relation.referencesPorras_Garcia E, Cendelin J. Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur J Neurosci 2005; 21:979–88.
dc.relation.referencesMonroy-Gómez J, Torres-Fernández O. Distribución de calbindina y parvoalbúmina y efecto del virus de la rabia sobre su expresión en la médula espinal de ratones. Biomédica 2013; 33:564-73.
dc.relation.referencesNaizaque JR, Torres-Fernández O. La inmunorreactividad a calbindina en células de Purkinje del cerebelo de ratones no es afectada por la infección con virus de la rabia. Revista Biosalud 2016; 15:9-19.
dc.relation.referencesGauck V, Jaege D. The Control of Rate and Timing of Spikes in the Deep Cerebellar Nuclei by Inhibition. J Neurosci 2000; 20:3006-16.
dc.relation.referencesTorres-Fernández O, Yepes GE, Gómez JH, Pimienta HJ. Calbindin distribution in cortical and subcortical brain structures of normal and rabies infected mice. Int J Neurosci 2005; 115:1372-85.
dc.relation.referencesLyck L, Dalmau I, Chemnitz J, Finsen B, Daa Schrøder H. Immunohistochemical markers for quantitative studies of neurons and glia in human neocortex. J Histochem Cytochem 2008; 56:201-21.
dc.relation.referencesDeFelipe J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 1997; 14:1-19.
dc.relation.referencesTorres-Fernández O, Yepes GE, Gómez JH, Pimienta HJ. Efecto de la infección por el virus de la rabia sobre la expresión de parvoalbúmina, calbindina y calretinina en la corteza cerebral de ratones. Biomédica 2004; 24:63-78.
dc.relation.referencesKirkpatrick L, Brady S. Cytoskeleton of neurons and glia. En: Siegel G, Agranoff B, Albers W, Fisher S, Uhler M, editores. Basic Neurochemistry: molecular, cellular and medical aspects. Philadelphia: Lippincott- Raven Publishers; 1999; 155-73.
dc.relation.referencesEscobar M, Pimienta H, Caviness V, Jacobson M, Crandall J, Kosik K. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems. Neuroscience 1986; 17:975-89.
dc.relation.referencesJohnson G, Jope R. The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity and degeneration. J Neurosci Res 1992; 33:505-12.
dc.relation.referencesSchoenfeld TA, Obar RA. Diverse distribution and function of fibrous microtubuleassociated proteins in the nervous system. Int Rev Cytol 1994; 151:67-137.
dc.relation.referencesKaufmann WE, Naidu S, Budden S. Abnormal expression of microtubuleassociated protein 2 (MAP-2) in neocortex in Rett syndrome. Neuropediatrics 1995; 26:109-13.
dc.relation.referencesD’Andrea MR, Ilyin S, Plata-Salaman CR. Abnormal patterns of microtubuleassociated protein-2 (MAP-2) immunolabeling in neuronal nuclei and Lewy bodies in Parkinson’s disease substantia nigra brain tissues. Neurosci Lett 2001; 306:137-40.
dc.relation.referencesMontgomery MM, Dean AF, Taffs F, Stott EJ, Lantos PL, Luthert PJ. Progressive dendritic pathology in cynomolgus macaques infected with simian immunodeficiency virus. Neuropathol Appl Neurobiol 1999; 25:11-19.
dc.relation.referencesJones, L., Johnson, N., Byne, W. Alterations in MAP2 staining in area 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res. 2002; 114(3):137-48.
dc.relation.referencesDickson DW. Required techniques and useful molecular markers in the neuropathologic diagnosis of neurodegenerative diseases. Acta Neuropathol 2005; 109:14-24.
dc.relation.referencesRengifo A, Umbarila V, Garzón M, Torres-Fernández O. Differential effect of the64 route of inoculation of rabies virus on NeuN immunoreactivity in the cerebral cortex of mice. Int J Morphol 2016; 34:1362-68.
dc.relation.referencesAl-Bassam J, Ozer RS, Safer D, Halpain S, Milligan RA. MAP-2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J Cell Biol 2002; 157:1187-96.
dc.relation.referencesMatus A, Bernhardt R, Huber G. Differences in the Developmental Patterns of Three Microtubule-associated Proteins in the Rat Cerebellum. J Neurosci 1985;5:977-91.
dc.relation.referencesCáceres A, Payne M, Binder L. Steward O. Immunocytochemical localization of actin and microtubule associated protein MAP2 in dendritic spines. Proc NatL Acad Sci 1983; 80:1738-42.
dc.relation.referencesChamak B, Fellous A, Glowinski J , Prochiantz A. MAP-2 expression and neuritic outgrowth and branching are coregulated through region-specific neuro-astroglial interactions. J Neuroscience 1987; 7:3163-70.
dc.relation.referencesDinsmore JH, Solomon F. Inhibition of MAP-2 expression affects both morphological and cell division phenotypes of neuronal differentiation. Cell 1991; 64:817- 26.
dc.relation.referencesViereck C, Tucker RP, Matus A. The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain. J Neurosci 1989; 9:3547- 57.
dc.relation.referencesCaceres A, Busciglio J , Ferreira A, Steward O. An immunocytochemical and biochemical study of the microtubule-associated protein MAP-2 during post-lesion dendritic remodeling in the central nervous system of adult rats. Mol Brain Res 1988; 3:233-46.
dc.relation.referencesHurtado A, Rengifo A, Torres-Fernández O. Immunohistochemical overexpression of MAP-2 in the cerebral cortex of rabies-infected mice. Int J Morphol 2015; 33:465-70.
dc.relation.referencesLi, X, Sarmento L, Fu Z. Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J Virol 2005; 79:10063-68.
dc.relation.referencesFujisawa K, Nakamura A. The human Purkinje cells. A Golgi study in pathology. Acta Neuropathol 1982; 56(4):255-64.
dc.relation.referencesTorres-Fernández O. La técnica de impregnación argéntica de Golgi. Conmemoración del centenario del Premio Nobel de Medicina (1906) compartido por Camillo Golgi y Santiago Ramón y Cajal. Biomédica. 2006; 26:498-508.
dc.relation.referencesTorres-Fernández O, Yepes GE, Gómez JE. Alteraciones de la morfología dendrítica neuronal en la corteza cerebral de ratones infectados con rabia: un estudio con la técnica de Golgi. Biomédica 2007; 27:605-13.
dc.relation.referencesGolgi C. Ueber die pathologische histologie der rabies experimentalis. Berl Klinis Wochenschrift 1894; 31:325-31.
dc.relation.referencesJagadha V, Becker L. Dendritic pathology: an overview of Golgi studies in man. Can J Neurol Sci 1989; 16:41-50.
dc.relation.referencesBraak H, Braak E. Golgi preparations as a tool in neuropathology with particular reference to investigations of the human telencephalic cortex. Prog Neurobiol 1985; 25:93- 139.
dc.relation.referencesFiala J, Spacek J, Harris K. Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Rev 2002; 39:29-54.
dc.relation.referencesTorres-Fernández O, Monroy-Gómez G, Sarmiento L Ultraestructura dendrítica en neuronas piramidales de ratones inoculados con virus de la rabia. Biosalud 2016; 15 (1):9-16.
dc.relation.referencesTorres-Fernández O, Monroy-Gómez J, Sarmiento LE. Unusual ultrastructural findings in dendrites of pyramidal neurons in the cerebral cortex of rabies-infected mice: PeerJ PrePrints 2015. http://dx.doi.org/10.7287/ peerj.preprints.847v
dc.relation.referencesScott CA, Rossiter JP, Andrew RD, Jackson AC. Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein –expressing transgenic mice. J Virol 2008; 82:513-21.
dc.relation.referencesMaserang D, Leffingwell L. Single-Site Localization of Rabies Virus: Impact on Laboratory Reporting Policy. Am J Public Health 1981; 71:428-9.
dc.relation.referencesHamir A, Summers B, Rupprecht C. Concurrent rabies and canine distemper encephalitis in a raccoon (Procyon lotor). J Vet Diagn Invest 1998; 10:194-6.
dc.relation.referencesDietzschold B, Wiktor T, Trojanowski J, Macfarlan R, Wunner W, Torres-Anjel M, Koprowski H. Differences in Cell-to- Cell Spread of Pathogenic and Apathogenic Rabies. J Virol 1985; 56:12-8.
dc.relation.referencesJackson A, Phelan C, Rossiter J. Infection of Bergmann glia in the cerebellum of a skunk experimentally infected with street rabies virus. Can J Vet Res 2000; 64:226-8.
dc.relation.referencesHemachudha T, Thorner P, Wacharapluesadee S, Tepsumethanon V, Intarut, N, Jittmittraphap A, et al. Reduced viral burden in paralytic compared to furious canine rabies is associated with prominent inflammation at the brainstem level. Vet Res 2013; 9:31.
dc.relation.referencesCameron A, Conroy J. Rabies-Like Neuronal Inclusions Associated with a Neoplastic Reticulosis in a Dog Vet Path 1974; 11:29-37.
dc.relation.referencesPark C, Kondo M, Inoue S, Oyamada T. The Histopathogenesis of Paralytic Rabies in Six-Week-Old C57BL/6J Mice Following Inoculation of the CVS 11 Strain into the Right Triceps Surae Muscle. J Vet Med Sci 2006; 68: 589-95.
dc.relation.referencesJackson A, Park H. Apoptotic cell death in experimental rabies in suckling mice. Acta Neuropathol 1998; 95:159-64.
dc.relation.referencesSuja M, Mahadevan A, Madhusudana S, Shanka S. Role of Apoptosis in Rabies Viral Encephalitis: A Comparative Study in Mice, Canine, and Human Brain with a Review of Literature. Path Res Int 2011; 13.
dc.relation.referencesJackson A. Pathogenesis. En: Jackson A, Wunner H, Editors. Rabies. San Diego: Academic Press;2002; 245-82.
dc.relation.referencesSchindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. "Fiji: an open-source platform for biological-image analysis", Nature Methods 2012; 9:676-82.
dc.relation.referencesGómez-Villalobos MJ, Gordillo AC, López JR, Flores G. The utility of the GolgiCox method in the morphological characterization of the autonomic innervation in the rat heart. J Neurosci Methods 2009; 179:40-4.
dc.relation.referencesTorres-Fernández O, Santamaría G, Rengifo A, Monroy-Gomez J, Hurtado A, Rivera J, Sarmiento L. Patología dendritica en rabia: estudio neurohistologico, inmunohistoquimico y ultraestructural en ratones. Rev Asoc Col Cienc 2014; 26:96-107.
dc.relation.referencesTamayo-Orrego L, Torres-Fernández O. Cambios en la morfología del árbol dendrítico de células de Purkinje inducidos por la rabia en ratones: estudio con la técnica de Golgi. Salud UIS 2008; 40:258-59. (Memorias IV Congreso Colombiano deMorfología).
dc.relation.referencesFu ZF, Jackson AC. Neuronal dysfunction and death in rabies virus infection. J Neurovirol 2005; 11:101-6.
dc.relation.referencesMonroy-Gómez J, Santamaría G, Torres-Fernández O. Cambios en la expresión de proteínas de citoesqueleto asociados a la infección con virus de la rabia en médula espinal de ratón. Serie Memorias # 1. Primera Edición. Colegio colombiano de Neurociencias – COLNE 2016; 227-8. http://colne.org.co/wp-content/uploads/2016/01/MEMORIAS- CONGRESO-2016.pdf
dc.relation.referencesLamprea NP, Ortega LM, Santamaría G, Sarmiento L, Torres-Fernández O. Elaboración y evaluación de un antisuero para la detección inmunohistoquímica del virus de la rabia en tejido cerebral fijado en aldehídos. Biomédica 2010; 30:146-51.
dc.relation.referencesArendt T, Bruckner M, Bigl V, Marcova L. Dendritic reorganisation in the basal forebrain under degenerative conditions and its defects in Alzheimer’s disease. II. Ageing,66 Korsakoff’s disease, Parkinson’s disease and Alzheimer’s disease. J Comp Neurol 1995; 351:189-222.
dc.relation.referencesPatt S, Gertz H, Gerhard L, Cervos-Navarro J. Pathological changes in dendrites of substantia nigra neurons in Parkinson’s disease: a Golgi study. Histol Histopahtol 1991; 6:373-80.
dc.relation.referencesBroadbelt K, Byne W, Jones L. Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr Res 2002; 58:75-81.
dc.relation.referencesArmstrong D. Neuropathology of Rett syndrome. Ment Retard Dev Disabil Res Rev 2002; 8:72-6.
dc.relation.referencesMann DMA, Barton CM, Davies JS. Post-mortem changes in human central nervous tissue and the effects on quantitation of nucleic acids and enzymes. Histochem J. 1978; 10:127-35.
dc.relation.referencesStan AD, Ghose S, Gao SM, Roberts RC, Lewis-Amezcua K, Hatanpaa KJ, et al. Human postmortem tissue: What quality markers matter? Brain Res 2006; 1123:1-11.
dc.relation.referencesKoprowski H. The Mouse Inoculation Test. En: Meslin F, Kaplan M, Koprowski, editores. Laboratory Techniques in Rabies. Geneva: World Health Organization 1996; 80- 6.
dc.relation.referencesGibb R, Kolb B. A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods 1998; 79:1-4.
dc.relation.referencesMartínez-Téllez R, Gómez-Villalobos M de J, Flores G. Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin. Brain Res 2005; 1048:108-15.
dc.relation.referencesFlores G, Alquicer G, Silva-Gómez AB, Zaldivar G, Stewart J, Quirion R, Srivastava LK. Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience 2005; 133:463-70.
dc.relation.referencesValverde F. Golgi atlas of the postnatal mouse brain. Viena: Springer-Verlag; 1998. 48-51.
dc.relation.referencesPaxinos G, Franklin K. The mouse brain in stereotaxic coordinates. Cuarta Edition Londres: Academic Press 2001.
dc.relation.referencesBozzola J, Russell D. Specimen Preparation for Transmission Electron Microscopy. En: Bozzola J, Russell D. Electron microscopy: principles and techniques for biologists. Segunda Edición. Boston: Jones and Bartlett 1999; 21-31.
dc.relation.referencesHayat, M. Principles and techniques of electron microscopy: biological applications. Cambridge University Press 2000; 45-61.
dc.relation.referencesCholich V, García G, Martínez A, Evangelista A. Inmunomarcación de neuronas dopaminérgicas en cortes flotantes de hipotálamo de rata: preservación alternativa del tejido nervioso antes del corte. Acta Toxicol. Argent 2008; 1:1-4.
dc.relation.referencesLamprea N, Torres-Fernández O. Evaluación inmunohistoquímica de la expresión de calbindina en el cerebro de ratones en diferentes tiempos después de la inoculación con el virus de la rabia. Colomb Med 2008; 39 (Supl.3): 7-13.
dc.relation.referencesStrausfeld, N.J. The Golgi Method. En: Strausfeld N, Miller T. Neuroanatomical Techniques: Insect Nervous System. Nueva York: Springer-Verlag 1980; 132-85.
dc.relation.referencesMonroy-Gómez J, Santamaria G. Torres-Fernández O. Overexpression of MAP- 2 and NF-H associated with dendritic pathology in the spinal cord of mice infected with rabies virus. Viruses 2018; 10, 112. doi:10.3390/v10030112.
dc.relation.referencesSantamaría G., Monroy-Gómez J, Torres-Fernández O. Evidencia neuroanatómica del transporte del virus de la rabia por la vía propioespinal de la médula espinal de ratones. Biomédica 2018; 38:209-15.
dc.relation.referencesTorres-Fernández O, Daza NA, Santamaria G, Hurtado AP, Monroy-Gómez J. Entry of rabies virus in the olfactory bulb of mice and effect of infection on cell markers of neurons and astrocytes. Int J Morphol 2018; 36:670-6.
dc.relation.references99. Sholl DA. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat. 1953; 87:387-406.
dc.relation.referencesNaizaque J, Torres-Fernández O. Inmunorreactividad de la aldolasa C en cerebelo de ratones infectados y no infectados con rabia. Memorias del XI Congreso Nacional y XII Seminario Internacional de Neurociencias. Bogotá, abril 26-28 de 2018. Páginas 271-272. https://drive.google.com/file/d/1cdxeUZHrxaYq1jIbBP9WL9xCETpq2dtB/view
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPurkinje
dc.subject.proposalPurkinje
dc.subject.proposalRabia
dc.subject.proposalRabies
dc.subject.proposalVirus
dc.subject.proposalMice
dc.subject.proposalImmunohistochemistry
dc.subject.proposalGolgi
dc.subject.proposalSholl
dc.subject.proposalMAP-2
dc.subject.proposalInmunohistoquímica
dc.subject.proposalDendritas
dc.subject.proposalRatones
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito