Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorGuerrero Fonseca, Carlos Arturo
dc.contributor.authorCely Rodríguez, Wilder Lisandro
dc.date.accessioned2020-03-05T20:52:53Z
dc.date.available2020-03-05T20:52:53Z
dc.date.issued2019-10-16
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75901
dc.description.abstractLos rotavirus causan gastroenteritis aguda con gran impacto en la morbilidad y mortalidad de la población infantil. La estrategia terapéutica a nivel mundial utilizada hasta el momento es la vacunación, pero no asegura que los síntomas desaparezcan completamente. Por tal razón, en el Laboratorio de Biología Molecular de Virus de la Universidad Nacional de Colombia se investiga sobre las interacciones del rotavirus y la célula huésped, evaluando con fármacos la modulación de moléculas celulares como ROS, NF-kB, PPARγ y COX-2 entre otras, como promisorio mecanismo de mitigación de la infección. Por consiguiente, en este trabajo se evaluó la infección por rotavirus (ECwt) en vellosidades intestinales aisladas de ratón ICR tratadas con inhibidores específicos de NF-kB como curcumina, dietilcarbamato y dietil-maleato, analizando la variación en la expresión de está y la infección por técnicas de ELISA, inmunofluorescencia y Western Blotting. Se encontró que la expresión de la proteína NF-kB medida en intensidad media de fluorescencia y los antígenos virales, incrementaban con la infección, pero al tratar con los inhibidores la expresión de la proteína disminuye al igual que los porcentajes de absorbancia del antígeno viral. Las vellosidades aisladas de ratón ICR al ser inoculadas in vitro con el rotavirus ECwt, incrementan la expresión de la proteína NF-kB y de proteínas relacionadas en las vías proinflamatorias, tales como PPARγ y COX-2 además de los niveles de ROS. Por otro lado, el uso de inhibidores de NF-kB tales como curcumina, dietil-carbamato y dietil-maleato disminuyen la expresión de estas proteínas, como también los niveles de ROS y reduce la producción de antígenos virales.
dc.description.abstractRotaviruses cause acute gastroenteritis with great impact on the morbidity and mortality of children. The worldwide therapeutic strategy used so far is vaccination, but it does not ensure that the symptoms disappear completely. For such a motive in the Laboratory of Molecular Biology of Virus of the National University of Colombia is investigating between interactions of the rotavirus and the host cell, evaluating the modulation of cellular molecules with reagents such as ROS, NF-kB, PPARγ and COX-2 among others, as a promising mechanism to mitigate the infection. Therefore, the aim of this work was evaluate rotavirus (ECwt) infection on in vitro model system consisting of intestinal villi isolated from ICR adult mice, infected with ECwt and treated with specific NF-kB inhibitors such as curcumin, Diethyldithiocarbamate and diethyl maleate, analyzing the variation in NF-kB expression and rotavirus infection by ELISA, immunofluorescence and Western Blotting techniques. We found that NF-kB protein expression measured in mean fluorescence intensity and viral antigens to increase with infection, but when intestinal villi isolated - infected with rotavirus were treated with inhibitors, the protein expression decreases as did the percentages of viral antigen absorbance. The isolated villi of mouse ICR when inoculated in vitro with the ECwt rotavirus, increase the expression of NF-kB protein and related proteins in pro-inflammatory pathways, such as PPARγ and COX-2 in addition increase to ROS levels. In addition, the use of NF-kB inhibitors such as curcumin, diethyl-carbamate and diethyl-maleate decrease the expression of these proteins, as well as ROS levels and reduce viral antigen production. On the other hand, the use of NF-kB inhibitors such as curcumin, diethyl carbamate and diethyl maleate decrease the expression of these proteins, as well as ROS levels and reduce the production of viral antigens.
dc.format.extent98
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.titleEvaluación de la infectividad de rotavirus (ECwt) en vellosidades intestinales de ratones adultos ICR, tratados con inhibidores de NF-kB.
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ciencias farmacéuticas.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupBiología Molecular de virus
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Farmacia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Organization, W.H., Weekly epidemiological record Relevé épidémiologique hebdomadaire. 2017. 44(92): p. 661–680. 2. Burnett, E., et al., Estimated impact of rotavirus vaccine on hospitalizations and deaths from rotavirus diarrhea among children <5 in Asia. Expert review of vaccines, 2018. 17(5): p. 453-460. 3. Parashar, U.D., et al., Rotavirus and severe childhood diarrhea. Emerging infectious diseases, 2006. 12(2): p. 304-6. 4. Dennehy, P.H., Rotavirus vaccines: an overview. Clinical microbiology reviews, 2008. 21(1): p. 198-208. 5. Calderón, M.G., F. Acosta, O. Guerrero, C. A., Rotavirus VP4 and VP7-derived synthetic peptides as potential substrates of protein disulfide isomerase lead to inhibition of rotavirus infection. Int J Pept Res Ther, 2012. 18(4): p. 373–382. 6. Rodriguez, A.V.H., Determinación del cambio en la expresión de las proteinas COX, PDI, Hsc70, Hsp70, ERp57 y PPARγ en células intestinales aisladas de ratones ICR lactantes infectados con Rotavirus ECwt y posteriormente tratados con N-Acetilcisteina, in Facultad de Medicina 2012, Universidad Nacional de Colombia: Bogotá. p. 67. 7. Guerrero, C.A., V.R. Paula Pardo, and O.A. Rafael Guerrero, Inhibition of rotavirus ECwt infection in ICR suckling mice by N-acetylcysteine, peroxisome proliferator-activated receptor gamma agonists and cyclooxygenase-2 inhibitors. Mem Inst Oswaldo Cruz, 2013. 108(6): p. 741-54. 8. Guerrero, C.A., A. Murillo, and O. Acosta, Inhibition of rotavirus infection in cultured cells by N-acetyl-cysteine, PPARgamma agonists and NSAIDs. Antiviral Res, 2012. 96(1): p. 1-12. 9. Santana, A.Y., C.A. Guerrero, and O. Acosta, Implication of Hsc70, PDI and integrin alphavbeta3 involvement during entry of the murine rotavirus ECwt into small-intestinal villi of suckling mice. Arch Virol, 2013. 158(6): p. 1323-36. 10. Santoro, M.G., A. Rossi, and C. Amici, NF-kappaB and virus infection: who controls whom. EMBO J, 2003. 22(11): p. 2552-60. 11. Barnes, P.J. and M. Karin, Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. The New England journal of medicine, 1997. 336(15): p. 1066-71. 12. Decramer, M., et al., Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet, 2005. 365(9470): p. 1552-60. 13. Ruffmann, R.W., A., GSH rescue by N-acetylcysteine. J Mol Med, 1991. 69(18): p. 857. 14. Gualtero, D.F., et al., Amino acid domains 280-297 of VP6 and 531-554 of VP4 are implicated in heat shock cognate protein hsc70-mediated rotavirus infection. Arch Virol, 2007. 152(12): p. 2183-96. 15. Calderon, M.N., et al., Inhibiting rotavirus infection by membrane-impermeant thiol/disulfide exchange blockers and antibodies against protein disulfide isomerase. Intervirology, 2012. 55(6): p. 451-64. 16. Gómez, M.D.L., Evaluación de la expresión de las proteínas PPARγ Y NFκB en vellosidades intestinales de ratones adultos ICR infectados con Rotavirus ECwt y tratados con pioglitazona, in Facultad de Medicina2013, Universidad Nacional de Colombia 17. Gomez, D., et al., PPARgamma Agonists as an Anti-Inflammatory Treatment Inhibiting Rotavirus Infection of Small Intestinal Villi. PPAR Res, 2016. 2016: p. 4049373. 18. Youssef, J. and M. Badr, Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control. J Biomed Biotechnol, 2004. 2004(3): p. 156-166. 19. Buttery, J.P., et al., Intussusception following rotavirus vaccine administration: postmarketing surveillance in the National Immunization Program in Australia. Vaccine, 2011. 29(16): p. 3061-6. 20. Shui, I.M., et al., Risk of intussusception following administration of a pentavalent rotavirus vaccine in US infants. JAMA : the journal of the American Medical Association, 2012. 307(6): p. 598-604. 21. Weintraub, E.S., et al., Risk of intussusception after monovalent rotavirus vaccination. N Engl J Med, 2014. 370(6): p. 513-9. 22. Rossen, J.W., et al., Inhibition of cyclooxygenase activity reduces rotavirus infection at a postbinding step. J Virol, 2004. 78(18): p. 9721-30. 23. Hong, C. and P. Tontonoz, Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev, 2008. 18(5): p. 461-7. 24. Romero, C.R., Microbiología y parasitología humana. 3ª ed, ed. Panamericana. 2007. 1727. 25. Pesavento, J.B., et al., Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol, 2006. 309: p. 189-219. 26. Estes, M.K. and J. Cohen, Rotavirus gene structure and function. Microbiol Rev, 1989. 53(4): p. 410-49. 27. McClain, B., et al., X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution. J Mol Biol, 2010. 397(2): p. 587-99. 28. Arnoldi, F., et al., Interaction of rotavirus polymerase VP1 with nonstructural protein NSP5 is stronger than that with NSP2. J Virol, 2007. 81(5): p. 2128-37. 29. Svensson, L., et al., Intracellular manipulation of disulfide bond formation in rotavirus proteins during assembly. J Virol, 1994. 68(8): p. 5204-15. 30. Lopez, S. and C.F. Arias, Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol, 2004. 12(6): p. 271-8. 31. Arias, C.F., et al., Trypsin activation pathway of rotavirus infectivity. J Virol, 1996. 70(9): p. 5832-9. 32. Ludert, J.E., et al., Cleavage of rotavirus VP4 in vivo. J Gen Virol, 1996. 77 ( Pt 3): p. 391-5. 33. Zarate, S., et al., The VP5 domain of VP4 can mediate attachment of rotaviruses to cells. J Virol, 2000. 74(2): p. 593-9. 34. Benureau, Y., et al., Trypsin is associated with the rotavirus capsid and is activated by solubilization of outer capsid proteins. J Gen Virol, 2005. 86(Pt 11): p. 3143-51. 35. Zarate, S., et al., VP7 mediates the interaction of rotaviruses with integrin alphavbeta3 through a novel integrin-binding site. J Virol, 2004. 78(20): p. 10839-47. 36. Contin, R., Arnoldi F., Campagna M. and Burrone O. R, Rotavirus NSP5 orchestrates recruitment of viroplasmic proteins. Journal of General Virology, 2010. 91(7): p. 1782–1793. 37. Crawford, S.E., et al., Rotavirus viremia and extraintestinal viral infection in the neonatal rat model. J Virol, 2006. 80(10): p. 4820-32. 38. Pavel, I.G., M, Arias, C.F., López, S., Rotavirus cell entry. Future Virol, 2008. 3 (2): p. 135-146. 39. Estes, M.K., et al., Simian rotavirus SA11 replication in cell cultures. J Virol, 1979. 31(3): p. 810-5. 40. Crawford, S.E., et al., Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol, 2001. 75(13): p. 6052-61. 41. Guerrero, C.A., et al., Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol, 2002. 76(8): p. 4096-102. 42. Wilkinson, B. and H.F. Gilbert, Protein disulfide isomerase. Biochim Biophys Acta, 2004. 1699(1-2): p. 35-44. 43. Gutierrez, M., et al., Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis. J Virol, 2010. 84(18): p. 9161-9. 44. Sanchez-San Martin, C., et al., Characterization of rotavirus cell entry. J Virol, 2004. 78(5): p. 2310-8. 45. Zarate, S., et al., Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol, 2003. 77(13): p. 7254-60. 46. Kim, I.S., et al., Effect of mutations in VP5 hydrophobic loops on rotavirus cell entry. J Virol, 2010. 84(12): p. 6200-7. 47. Fuentes-Panana, E.M., et al., Mapping the hemagglutination domain of rotaviruses. J Virol, 1995. 69(4): p. 2629-32. 48. Guerrero, C.A., et al., Biochemical characterization of rotavirus receptors in MA104 cells. J Virol, 2000. 74(20): p. 9362-71. 49. Estes, M.K., Graham, D.Y. Dimitrov, D.H., The molecular epidemiology of rotavirus gastroenteritis. . Prog Med Virol, 1984. 29: p. 1-22 50. Fernandes, J., et al., Binding of reovirus to receptor leads to conformational changes in viral capsid proteins that are reversible upon virus detachment. J Biol Chem, 1994. 269(25): p. 17043-7. 51. Gruber, C.W., et al., Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci, 2006. 31(8): p. 455-64. 52. Ellgaard, L. and L.W. Ruddock, The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep, 2005. 6(1): p. 28-32. 53. Maruri-Avidal, L., S. Lopez, and C.F. Arias, Endoplasmic reticulum chaperones are involved in the morphogenesis of rotavirus infectious particles. J Virol, 2008. 82(11): p. 5368- 80. 54. Calderón, M.N., Acosta, O., Guzman, F., Guerrero, C. A, Protein disulfide isomerase activity is involved in rotavirus entry to MA104 cells. Intervirology, 2011. 31(70-81). 55. Sharma, D. and D.C. Masison, Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett, 2009. 16(6): p. 571-81. 56. de Jong, P.R., et al., Hsp70 and cardiac surgery: molecular chaperone and inflammatory regulator with compartmentalized effects. Cell Stress Chaperones, 2009. 14(2): p. 117-31. 57. Pulido, D., Acosta O, Guerrero CA, Increase of heat shock cognate protein, HSC70, in MA104 cells following rotavirus infection. Rev.Fac.Med, 2007. 55: p. 224-239. 58. Guerrero, C.A., A.Y. Santana, and O. Acosta, Mouse intestinal villi as a model system for studies of rotavirus infection. J Virol Methods, 2010. 168(1-2): p. 22-30. 59. FitzGerald, G.A., COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov, 2003. 2(11): p. 879-90. 60. Mbonye, U.R. and I. Song, Posttranscriptional and posttranslational determinants of cyclooxygenase expression. BMB Rep, 2009. 42(9): p. 552-60. 61. Butterfield, D.A., B.J. Howard, and M.A. LaFontaine, Brain oxidative stress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer's disease and Huntington's disease. Curr Med Chem, 2001. 8(7): p. 815-28. 62. Krishnan, A., S.A. Nair, and M.R. Pillai, Biology of PPAR gamma in cancer: a critical review on existing lacunae. Curr Mol Med, 2007. 7(6): p. 532-40. 63. Fajas, L., M.B. Debril, and J. Auwerx, Peroxisome proliferator-activated receptorgamma: from adipogenesis to carcinogenesis. J Mol Endocrinol, 2001. 27(1): p. 1-9. 64. Mangelsdorf, D.J., et al., The nuclear receptor superfamily: the second decade. Cell, 1995. 83(6): p. 835-9. 65. Kliewer, S.A., et al., A prostaglandin J2 metabolite binds peroxisome proliferatoractivated receptor gamma and promotes adipocyte differentiation. Cell, 1995. 83(5): p. 813- 9. 66. Lehmann, J.M., et al., Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem, 1997. 272(6): p. 3406-10. 67. Stumvoll, M. and H.U. Haring, Glitazones: clinical effects and molecular mechanisms. Ann Med, 2002. 34(3): p. 217-24. 68. Chinetti, G., J.C. Fruchart, and B. Staels, Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res, 2000. 49(10): p. 497-505. 69. Delerive, P., J.C. Fruchart, and B. Staels, Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol, 2001. 169(3): p. 453-9. 70. Ghosh, S., M.J. May, and E.B. Kopp, NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 1998. 16: p. 225-60. 71. Li, Q. and I.M. Verma, NF-kappaB regulation in the immune system. Nat Rev Immunol, 2002. 2(10): p. 725-34. 72. Bonizzi, G. and M. Karin, The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004. 25(6): p. 280-8. 73. Verma, I.M., et al., Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev, 1995. 9(22): p. 2723-35. 74. Memet, S., NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol, 2006. 72(9): p. 1180-95. 75. Echeverri, N.P.M., I, Factor nuclear kb (nf-kb): signalosoma y su importancia en enfermedades inflamatorias y cáncer. Revista Facultad de Medicina de la Universidad Nacional de Colombia, 2008. 56(2): p. 133-146. 76. Hayden, M.S. and S. Ghosh, Signaling to NF-kappaB. Genes Dev, 2004. 18(18): p. 2195-224. 77. Amir, R.E., K. Iwai, and A. Ciechanover, The NEDD8 pathway is essential for SCF(beta -TrCP)-mediated ubiquitination and processing of the NF-kappa B precursor p105. J Biol Chem, 2002. 277(26): p. 23253-9. 78. Mincheva, S., Estudio de la Función de la vía NF-kappaB en las motoneuronas espinales y su relación con la atrofia muscular espinal, in Departament de Ciencies2011, Universitat de Lleida: Tesis Doctoral. p. 226. 79. Beinke, S. and S.C. Ley, Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J, 2004. 382(Pt 2): p. 393-409. 80. Gilmore, T.D., Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 2006. 25(51): p. 6680-4. 81. Roman, J.A., Jiménez, S.A, El Factor Nuclear-kB como un blanco terapéutico en artrifis. Revista Peruana de Reumatología, 2004. 10(3): p. 43-48. 82. Sun, S.C., Non-canonical NF-kappaB signaling pathway. Cell Res, 2011. 21(1): p. 71-85. 83. Chen, F., et al., Phosphorylation of PPARgamma via active ERK1/2 leads to its physical association with p65 and inhibition of NF-kappabeta. J Cell Biochem, 2003. 90(4): p. 732-44. 84. LaMonica, R., et al., VP4 differentially regulates TRAF2 signaling, disengaging JNK activation while directing NF-kappa B to effect rotavirus-specific cellular responses. J Biol Chem, 2001. 276(23): p. 19889-96. 85. Peiris, J.S., K.P. Hui, and H.L. Yen, Host response to influenza virus: protection versus immunopathology. Curr Opin Immunol, 2010. 22(4): p. 475-81. 86. Treitinger, A., et al., Decreased antioxidant defence in individuals infected by the human immunodeficiency virus. Eur J Clin Invest, 2000. 30(5): p. 454-9. 87. Boya, P., et al., Antioxidant status and glutathione metabolism in peripheral blood mononuclear cells from patients with chronic hepatitis C. J Hepatol, 1999. 31(5): p. 808-14. 88. Dikici, I., et al., Investigation of oxidative stress and some antioxidants in patients with acute and chronic viral hepatitis B and the effect of interferon-alpha treatment. Clin Biochem, 2005. 38(12): p. 1141-4. 89. Dobmeyer, T.S., et al., Ex vivo induction of apoptosis in lymphocytes is mediated by oxidative stress: role for lymphocyte loss in HIV infection. Free Radic Biol Med, 1997. 22(5): p. 775-85. 90. Knobil, K., et al., Role of oxidants in influenza virus-induced gene expression. Am J Physiol, 1998. 274(1 Pt 1): p. L134-42. 91. Korenaga, M., et al., Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem, 2005. 280(45): p. 37481-8. 92. Skulachev, V.P., Possible role of reactive oxygen species in antiviral defense. Biochemistry (Mosc), 1998. 63(12): p. 1438-40. 93. Prasad, S., A.K. Tyagi, and B.B. Aggarwal, Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat, 2014. 46(1): p. 2-18. 94. Anand, P., et al., Bioavailability of curcumin: problems and promises. Mol Pharm, 2007. 4(6): p. 807-18. 95. Gupta, S.C., et al., Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev, 2010. 29(3): p. 405-34. 96. Cheng, A.L., et al., Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res, 2001. 21(4B): p. 2895-900. 97. Lao, C.D., et al., Dose escalation of a curcuminoid formulation. BMC Complement Altern Med, 2006. 6: p. 10. 98. Shoba, G., et al., Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med, 1998. 64(4): p. 353-6. 99. Singh, S. and B.B. Aggarwal, Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem, 1995. 270(42): p. 24995-5000. 100. (EMA), E.M.A., Assessment report on Curcuma xanthorrhiza Roxb. (C. xanthorrhiza D. Dietrich)., rhizoma European Medicines Agency (EMA), 2013. EMA/HMPC/604598/2012. 101. Eneanya, D.I., et al., The actions of metabolic fate of disulfiram. Annu Rev Pharmacol Toxicol, 1981. 21: p. 575-96. 102. Langeland, B.T. and J.S. McKinley-McKee, The effects of disulfiram on equine hepatic alcohol dehydrogenase and its efficiency against alcoholism: vinegar effect. Alcohol Alcohol, 1996. 31(1): p. 75-80. 103. Suh, J.J., et al., The status of disulfiram: a half of a century later. J Clin Psychopharmacol, 2006. 26(3): p. 290-302. 104. Schreck, R., et al., Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med, 1992. 175(5): p. 1181-94. 105. Matsuno, T., et al., Diethyldithiocarbamate induces apoptosis in HHV-8-infected primary effusion lymphoma cells via inhibition of the NF-kappaB pathway. Int J Oncol, 2012. 40(4): p. 1071-8. 106. Pang, H., et al., Sodium diethyldithiocarbamate, an AIDS progression inhibitor and a copper-binding compound, has proteasome-inhibitory and apoptosis-inducing activities in cancer cells. Int J Mol Med, 2007. 19(5): p. 809-16. 107. Cvek, B. and Z. Dvorak, Targeting of nuclear factor-kappaB and proteasome by dithiocarbamate complexes with metals. Curr Pharm Des, 2007. 13(30): p. 3155-67. 108. Rahden-Staron, I., et al., The effects of sodium diethyldithiocarbamate in fibroblasts V79 cells in relation to cytotoxicity, antioxidative enzymes, glutathione, and apoptosis. Arch Toxicol, 2012. 86(12): p. 1841-50. 109. Korablev, M.V., [Toxicological characteristic of dithiocarbamic acid derivatives used in the national economy and medicine. (Review)]. Farmakol Toksikol, 1969. 32(3): p. 356- 62. 110. Craven, M.R., D.K. Luscombe, and P.J. Nicholls, Absorption, elimination and duration of action of diethyldithiocarbamate in animals [proceedings]. J Pharm Pharmacol, 1976. 28 Suppl: p. 38P. 111. Horton, N.D., et al., Acrolein causes inhibitor kappaB-independent decreases in nuclear factor kappaB activation in human lung adenocarcinoma (A549) cells. J Biol Chem, 1999. 274(14): p. 9200-6.112. Smyth, H.F., Jr., C.P. Carpenter, and C.S. Weil, Range-finding toxicity data; list III. J Ind Hyg Toxicol, 1949. 31(1): p. 60-2. 113. Instituto Nacional de Salud. INS. [Online] Available from: www.ins.gov.co., 2012. 114. Henrotin, Y., et al., Biological actions of curcumin on articular chondrocytes. Osteoarthritis Cartilage, 2010. 18(2): p. 141-9. 115. Shishodia, S., et al., Curcumin (diferuloylmethane) down-regulates cigarette smokeinduced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis, 2003. 24(7): p. 1269-79. 116. Srikoon, P., et al., Diethyldithiocarbamate suppresses an NF-kappaB dependent metastatic pathway in cholangiocarcinoma cells. Asian Pac J Cancer Prev, 2013. 14(7): p. 4441-6. 117. Khoo, J.P., et al., EPR quantification of vascular nitric oxide production in genetically modified mouse models. Nitric Oxide, 2004. 10(3): p. 156-61. 118. Du, H., et al., Inhibition of COX-2 expression by endocannabinoid 2- arachidonoylglycerol is mediated via PPAR-gamma. Br J Pharmacol, 2011. 163(7): p. 1533- 49. 119. Rodriguez-Diaz, J., et al., Role of nitric oxide during rotavirus infection. J Med Virol, 2006. 78(7): p. 979-85. 120. Guerrero, C.A. and O. Acosta, Inflammatory and oxidative stress in rotavirus infection. World J Virol, 2016. 5(2): p. 38-62. 121. Poligone, B. and A.S. Baldwin, Positive and negative regulation of NF-kappaB by COX-2: roles of different prostaglandins. J Biol Chem, 2001. 276(42): p. 38658-64. 122. Lugo-Martinez, V.H., et al., Epidermal growth factor receptor is involved in enterocyte anoikis through the dismantling of E-cadherin-mediated junctions. Am J Physiol Gastrointest Liver Physiol, 2009. 296(2): p. G235-44. 123. Perkins, N.D. and T.D. Gilmore, Good cop, bad cop: the different faces of NFkappaB. Cell Death Differ, 2006. 13(5): p. 759-72. 124. Teramoto, S., et al., Hydrogen peroxide-induced apoptosis and necrosis in human lung fibroblasts: protective roles of glutathione. Jpn J Pharmacol, 1999. 79(1): p. 33-40. 125. Ginn-Pease, M.E. and R.L. Whisler, Optimal NF kappa B mediated transcriptional responses in Jurkat T cells exposed to oxidative stress are dependent on intracellular glutathione and costimulatory signals. Biochem Biophys Res Commun, 1996. 226(3): p. 695-702. 126. Balasubramanyam, M., et al., Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J Biosci, 2003. 28(6): p. 715-21. 127. Liu, J., et al., Antioxidant activity of diethyldithiocarbamate. Free Radic Res, 1996. 24(6): p. 461-72. 128. Garcia, M.A., et al., Activation of NF-kB pathway by virus infection requires Rb expression. PLoS One, 2009. 4(7): p. e6422. 129. Wullaert, A., K. Heyninck, and R. Beyaert, Mechanisms of crosstalk between TNFinduced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol, 2006. 72(9): p. 1090-101. 130. Nakano, H., et al., Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ, 2006. 13(5): p. 730-7. 131. Papa, S., et al., The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ, 2006. 13(5): p. 712-29. 132. Graff, J.W., K. Ettayebi, and M.E. Hardy, Rotavirus NSP1 inhibits NFkappaB activation by inducing proteasome-dependent degradation of beta-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog, 2009. 5(1): p. e1000280. 133. Arnold, M.M., M. Barro, and J.T. Patton, Rotavirus NSP1 mediates degradation of interferon regulatory factors through targeting of the dimerization domain. J Virol, 2013. 87(17): p. 9813-21. 134. Hu, L., et al., Rotavirus non-structural proteins: structure and function. Curr Opin Virol, 2012. 2(4): p. 380-8. 135. Gac, M., J. Bigda, and T.W. Vahlenkamp, Increased mitochondrial superoxide dismutase expression and lowered production of reactive oxygen species during rotavirus infection. Virology, 2010. 404(2): p. 293-303. 136. Hwang, C., A.J. Sinskey, and H.F. Lodish, Oxidized redox state of glutathione in the endoplasmic reticulum. Science, 1992. 257(5076): p. 1496-502. 137. Luo, K. and S.S. Cao, Endoplasmic reticulum stress in intestinal epithelial cell function and inflammatory bowel disease. Gastroenterol Res Pract, 2015. 2015: p. 328791. 138. Sharma, O.P., Antioxidant activity of curcumin and related compounds. Biochem Pharmacol, 1976. 25(15): p. 1811-2. 139. Surh, Y.J., et al., Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res, 2001. 480-481: p. 243-68. 140. Zhu, Z., et al., Rhinovirus stimulation of interleukin-6 in vivo and in vitro. Evidence for nuclear factor kappa B-dependent transcriptional activation. J Clin Invest, 1996. 97(2): p. 421-30. 141. Kil, I.S., S.Y. Kim, and J.W. Park, Glutathionylation regulates IkappaB. Biochem Biophys Res Commun, 2008. 373(1): p. 169-73. 142. Shin, S.W., I.S. Kil, and J.W. Park, Silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase by small interfering RNA enhances heat shock-induced apoptosis. Biochem Biophys Res Commun, 2008. 366(4): p. 1012-8. 143. Wu, M., et al., Sustained oxidative stress inhibits NF-kappaB activation partially via inactivating the proteasome. Free Radic Biol Med, 2009. 46(1): p. 62-9. 144. Nowak, D.E., et al., RelA Ser276 phosphorylation is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes. Mol Cell Biol, 2008. 28(11): p. 3623-38. 145. Saito, Y., et al., Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic Res, 2006. 40(6): p. 619-30.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalRotavirus ECwt; NF-KB; inhibitors; adult ICR mice; intestinal villi.
dc.subject.proposalRotavirus ECwt
dc.subject.proposalNF-kB
dc.subject.proposalRotavirus ECwt
dc.subject.proposalInhibidores
dc.subject.proposalNF-KB
dc.subject.proposalInhibitors
dc.subject.proposalRatones adultos ICR
dc.subject.proposalAdult ICR mice
dc.subject.proposalVellosidades intestinales
dc.subject.proposalIntestinal villi
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito