Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorAristizábal Gutiérrez, Fabio Ancízar
dc.contributor.authorCalderón Ospina, Carlos Alberto
dc.date.accessioned2020-03-05T21:03:26Z
dc.date.available2020-03-05T21:03:26Z
dc.date.issued2019-03-13
dc.identifier.citationCalderón-Ospina CA. Estudio de genes candidatos sobre la efectividad y seguridad de la medicación anticonvulsiva en un grupo de pacientes colombianos afectados de epilepsia [tesis de doctorado]. Bogotá: Universidad Nacional de Colombia; 2019. 161 p.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75902
dc.description.abstractObjectives: to explore possible genetic determinants of response to anticonvulsant treatment in a group of Colombian epileptic patients. Design: prospective cohort analytical observational study. We included 77 adult Colombian epileptic patients, from the Liga Central Contra la Epilepsia and Méderi, to evaluate the following genetic polymorphisms: CYP2C9 * 2 (rs1799853), CYP2C9 * 3 (rs1057910), C3435T (rs1045642) and IVS5-91 G > A (rs3812718), and the association with treatment response. Patients were followed long enough to confirm the existence of drug-resistant epilepsy (EFR) or treatment response, and the occurrence of adverse drug reactions (ADR). These were evaluated according to the causality, preventability, intensity and clinical presentation by predetermined criteria. Results: 53.2% of the patients had EFR and 87% of them used phenytoin. There was no association between the genetic variants evaluated and EFR, or the maintenance dose of phenytoin. An association was found between the presence of mutant alleles of CYP2C9 and adverse neuro-ophthalmological reactions (p = 0.001). 78% of the patients presented at least one ADR, the most frequent being those that affected the central nervous system (57%). 30% of the ADRs were associated with the patient's genetic factors and 69% of them were classified as preventable. 36.6% of the cases of therapeutic failure could be explained by drug interactions, so in fact, they could correspond to cases of "pseudo resistance". Conclusions: the alleles * 2 and * 3 of CYP2C9 were significantly associated with neuro- ophthalmologic ADRs in a sample of Colombian epileptic patients. It is possible that the ABCB1 and SCN1A genes not only play a role as pharmacogenes but as biomarkers of disease. It is necessary to implement pharmacovigilance programs in epileptic patients in order to optimize the benefit-risk ratio of antiepileptic drugs.
dc.description.abstractObjetivos: explorar posibles determinantes genéticos de respuesta al tratamiento anticonvulsivante, en un grupo de pacientes epilépticos colombianos. Diseño: estudio observacional analítico prospectivo de cohorte. Se incluyeron 77 pacientes epilépticos colombianos adultos, procedentes de la Liga Central Contra la Epilepsia y de Méderi, para evaluar los siguientes polimorfismos genéticos: CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910), C3435T (rs1045642) y IVS5-91 G>A (rs3812718), y la asociación con la respuesta al tratamiento. Los pacientes fueron seguidos durante el tiempo suficiente para confirmar la existencia de epilepsia farmacorresistente (EFR) o de respuesta al tratamiento, y la ocurrencia de reacciones adversas al medicamento (RAM). Estas fueron evaluadas de acuerdo con la causalidad, prevenibilidad, intensidad y presentación clínica mediante criterios predeterminados. Resultados: 53,2% de los pacientes padecía EFR y el 87% de ellos empleaba fenitoína. No hubo asociación entre las variantes genéticas evaluadas y EFR, o la dosis de mantenimiento de fenitoína. Se encontró asociación entre la presencia de alelos mutantes de CYP2C9 y el desarrollo de reacciones adversas vestíbulo-cerebelosas (p = 0,001). El 78% de los pacientes presentó por lo menos una RAM, siendo las más frecuentes las que afectaron el sistema nervioso central (57%). El 30% de las RAM se asociaron con factores genéticos del paciente y el 69% de ellas se catalogaron como prevenibles. 36,6% de los casos de fallo terapéutico pudieron explicarse por interacciones medicamentosas, por lo que en realidad pudieron corresponder a casos de “pseudorresistencia”. Conclusiones: los alelos *2 y *3 de CYP2C9 se asociaron significativamente con RAM vestíbulo-cerebelosas en una muestra de pacientes epilépticos colombianos. Es posible que los genes ABCB1 y SCN1A no solo cumplan un rol como farmacogenes sino como biomarcadores de enfermedad. Es necesario implementar programas de farmacovigilancia en pacientes epilépticos con el fin de optimizar la relación beneficio – riesgo de la medicación antiepiléptica.
dc.format.extent161
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddcMedicina y salud
dc.titleEstudio de genes candidatos sobre la efectividad y seguridad de la medicación anticonvulsiva en un grupo de pacientes colombianos afectados de epilepsia
dc.title.alternativeStudy of candidate genes on the effectiveness and safety of anticonvulsant medication in a group of Colombian patients affected by epilepsy
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalDoctor en Ciencias Farmacéuticas.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupFarmacogenética del Cáncer
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Farmacia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] Pradilla A. G, Vesga A. BE, León-Sarmiento FE. Estudio neuroepidemiológico nacional (EPINEURO) colombiano. Rev Panam Salud Pública 2003;14:104–11. doi:10.1590/S1020-49892003000700005. [2] Cavalleri GL, McCormack M, Alhusaini S, Chaila E, Delanty N. Pharmacogenomics and epilepsy: the road ahead. Pharmacogenomics 2011;12:1429–47. doi:10.2217/pgs.11.85. [3] Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett 2018;667:27–39. doi:10.1016/j.neulet.2017.01.014. [4] Chouchi M, Kaabachi W, Klaa H, Tizaoui K, Turki IB-Y, Hila L. Relationship between ABCB1 3435TT genotype and antiepileptic drugs resistance in Epilepsy: updated systematic review and meta-analysis. BMC Neurol 2017;17. doi:10.1186/s12883-017-0801-x. [5] Haerian BS, Roslan H, Raymond AA, Tan CT, Lim KS, Zulkifli SZ, et al. ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: A systematic review and meta-analysis. Seizure 2010;19:339–46. doi:10.1016/j.seizure.2010.05.004. [6] Lv W-P, Han R-F, Shu Z-R. Associations between the C3435T polymorphism of the ABCB1 gene and drug resistance in epilepsy: a meta-analysis n.d.:9. [7] Balan S, Bharathan SP, Vellichiramal NN, Sathyan S, Joseph V, Radhakrishnan K, et al. Genetic Association Analysis of ATP Binding Cassette Protein Family Reveals a Novel Association of ABCB1 Genetic Variants with Epilepsy Risk, but Not with Drug-Resistance. PLoS ONE 2014;9:e89253. doi:10.1371/journal.pone.0089253. [8] Bournissen FG, Moretti ME, Juurlink DN, Koren G, Walker M, Finkelstein Y. Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs: A meta-analysis. Epilepsia 2009;50:898–903. doi:10.1111/j.1528-1167.2008.01858.x. [9] McDonagh EM, Whirl-Carrillo M, Garten Y, Altman RB, Klein TE. From pharmacogenomic knowledge acquisition to clinical applications: the PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark Med 2011;5:795–806. doi:10.2217/bmm.11.94. [10] Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies: Definition of Drug Resistant Epilepsy. Epilepsia 2009;51:1069–77. doi:10.1111/j.1528-1167.2009.02397.x. [11] van Vliet EA, Zibell G, Pekcec A, Schlichtiger J, Edelbroek PM, Holtman L, et al. COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology 2010;58:404–12. doi:10.1016/j.neuropharm.2009.09.012. [12] Zhang C, Kwan P, Zuo Z, Baum L. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 2012;64:930–42. doi:10.1016/j.addr.2011.12.003. [13] Caudle KE, Rettie AE, Whirl-Carrillo M, Smith LH, Mintzer S, Lee MTM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and HLA-B Genotypes and Phenytoin Dosing. Clin Pharmacol Ther 2014;96:542–8. doi:10.1038/clpt.2014.159. [14] Calderón-Ospina C. Fármacos Antiepilépticos. En: Velásquez-Torres A, Palacios-Sánchez L. Actividades Integradoras del Aprendizaje por Sistemas, AIAS del sistema nervioso. Bogotá: Editorial Universidad del Rosario, 2017. [15] Abe T, Seo T, Ishitsu T, Nakagawa T, Hori M, Nakagawa K. Association between SCN1A polymorphism and carbamazepine-resistant epilepsy. Br J Clin Pharmacol 2008;66:304–7. doi:10.1111/j.1365-2125.2008.03203.x. [16] Angelopoulou C, Veletza S, Heliopoulos I, Vadikolias K, Tripsianis G, Stathi C, et al. Association of SCN1A gene polymorphism with antiepileptic drug responsiveness in the population of Thrace, Greece. Arch Med Sci 2017;1:138–47. doi:10.5114/aoms.2016.59737. [17] Fendri-Kriaa N, Boujilbene S, Kammoun F, Mkaouar-Rebai E, Mahmoud AB, Hsairi I, et al. A putative disease-associated haplotype within the SCN1A gene in Dravet syndrome. Biochem Biophys Res Commun 2011;408:654–7. doi:10.1016/j.bbrc.2011.04.079. [18] Kumari R, Lakhan R, Kumar S, Garg RK, Misra UK, Kalita J, et al. SCN1AIVS5-91G>A polymorphism is associated with susceptibility to epilepsy but not with drug responsiveness. Biochimie 2013;95:1350–3. doi:10.1016/j.biochi.2013.02.006. [19] Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017;58:512–21. doi:10.1111/epi.13709. [20] Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 2010;51:676–85. doi:10.1111/j.1528-1167.2010.02522.x. [21] Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, et al. Standards for epidemiologic studies and surveillance of epilepsy: Standards for Epidemiologic Studies and Surveillance of Epilepsy. Epilepsia 2011;52:2–26. doi:10.1111/j.1528-1167.2011.03121.x. [22] Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Incidence of epilepsy: A systematic review and meta-analysis. Neurology 2011;77:1005–12. doi:10.1212/WNL.0b013e31822cfc90. [23] World Health Organization. Epilepsy a Public Health Imperative. Ginebra: WHO, 2019. [24] Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM, Abera SF, et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 2017;16:877–97. doi:10.1016/S1474-4422(17)30299-5. [25] Galindo-Mendez B, Mayor LC, Velandia-Hurtado F, Calderon-Ospina C. Failure of antiepileptic drugs in controlling seizures in epilepsy: What do we do next? Epilepsy Behav Case Rep 2015;4:6–8. doi:10.1016/j.ebcr.2015.03.004. [26] Escalaya AL, Tellez-Zenteno JF, Steven DA, Burneo JG. Epilepsy and mortality in Latin America. Seizure 2015;25:99–103. doi:10.1016/j.seizure.2014.09.012. [27] Kwan P, Schachter SC, Brodie MJ. Drug-Resistant Epilepsy. N Engl J Med 2011;365:919–26. doi:10.1056/NEJMra1004418. [28] Vincent A, Irani SR, Lang B. The growing recognition of immunotherapy-responsive seizure disorders with autoantibodies to specific neuronal proteins: Curr Opin Neurol 2010;23:144–50. doi:10.1097/WCO.0b013e32833735fe. [29] Schinkel AH. P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev 1999;36:179–94. doi:10.1016/S0169-409X(98)00085-4. [30] Wang G-X, Wang D-W, Liu Y, Ma Y-H. Intractable epilepsy and the P-glycoprotein hypothesis. Int J Neurosci 2016;126:385–92. doi:10.3109/00207454.2015.1038710. [31] Elkhayat HA, Aly RH, Elagouza IA, El-Kabarity RH, Galal YI. Role of P-glycoprotein inhibitors in children with drug-resistant epilepsy. Acta Neurol Scand 2017;136:639–44. doi:10.1111/ane.12778. [32] Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 1995;36:1–6. [33] Potschka H. Multidrug Resistance Protein MRP2 Contributes to Blood-Brain Barrier Function and Restricts Antiepileptic Drug Activity. J Pharmacol Exp Ther 2003;306:124–31. doi:10.1124/jpet.103.049858. [34] Luna-Tortós C, Fedrowitz M, Löscher W. Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overexpressed in pharmacoresistant epilepsy. Neuropharmacology 2010;58:1019–32. doi:10.1016/j.neuropharm.2010.01.007. [35] Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB, et al. Association of Multidrug Resistance in Epilepsy with a Polymorphism in the Drug-Transporter Gene ABCB1. N Engl J Med 2003;348:1442–8. doi:10.1056/NEJMoa021986. [36] Zimprich F, Sunder-Plassmann R, Stogmann E, Gleiss A, Dal-Bianco A, Zimprich A, et al. Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy. Neurology 2004;63:1087–9. doi:10.1212/01.WNL.0000141021.42763.F6. [37] Tan NCK, Heron SE, Scheffer IE, Pelekanos JT, McMahon JM, Vears DF, et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy. Neurology 2004;63:1090–2. doi:10.1212/01.WNL.0000137051.33486.C7. [38] Szoeke C, Sills GJ, Kwan P, Petrovski S, Newton M, Hitiris N, et al. Multidrug-resistant genotype ( ABCB1 ) and seizure recurrence in newly treated epilepsy: Data from international pharmacogenetic cohorts. Epilepsia 2009;50:1689–96. doi:10.1111/j.1528-1167.2009.02059.x. [39] Hajnsek S, Basic S, Poljakovic Z, Bozina. UTJECAJ C3435T POLIMORFIZMA MDR1 GENA NA UCINKOVITOST MEDIKAMENTNOG LIJECENJA EPILEPSIA. Neurol Croat n.d.;53:69–78. [40] Sills GJ, Mohanraj R, Butler E, McCrindle S, Collier L, Wilson EA, et al. Lack of Association between the C3435T Polymorphism in the Human Multidrug Resistance (MDR1) Gene and Response to Antiepileptic Drug Treatment 2005;46:5. [41] Seo T, Ishitsu T, Ueda N, Nakada N, Yurube K, Ueda K, et al. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics 2006;7:551–61. doi:10.2217/14622416.7.4.551. [42] Kim DW, Kim M, Lee SK, Kang R, Lee S-Y. Lack of association between C3435T nucleotide MDR1 genetic polymorphism and multidrug-resistant epilepsy. Seizure 2006;15:344–7. doi:10.1016/j.seizure.2006.02.015. [43] Mohammed Ebid A-HI, Ahmed MMM, Mohammed SA. Therapeutic Drug Monitoring and Clinical Outcomes in Epileptic Egyptian Patients: A Gene Polymorphism Perspective Study: Ther Drug Monit 2007;29:305–12. doi:10.1097/FTD.0b013e318067ce90. [44] Hung C-C, Jen Tai J, Kao P-J, Lin M-S, Liou H-H. Association of polymorphisms in NR1I2 and ABCB1 genes with epilepsy treatment responses. Pharmacogenomics 2007;8:1151–8. doi:10.2217/14622416.8.9.1151. [45] Kwan P, Baum L, Wong V, Ng PW, Lui CH, Sin NC, et al. Association between ABCB1 C3435T polymorphism and drug-resistant epilepsy in Han Chinese. Epilepsy Behav 2007;11:112–7. doi:10.1016/j.yebeh.2007.04.013. [46] Chen L, Liu C-Q, Hu Y, Xiao Z-T, Chen Y, Liao J-X. [Association of a polymorphism in MDR1 C3435T with response to antiepileptic drug treatment in ethic Han Chinese children with epilepsy]. Zhongguo Dang Dai Er Ke Za Zhi Chin J Contemp Pediatr 2007;9:11–4. [47] Shahwan A, Murphy K, Doherty C, Cavalleri GL, Muckian C, Dicker P, et al. The controversial association of ABCB1 polymorphisms in refractory epilepsy: an analysis of multiple SNPs in an Irish population. Epilepsy Res 2007;73:192–8. doi:10.1016/j.eplepsyres.2006.10.004. [48] Leschziner GD, Andrew T, Leach JP, Chadwick D, Coffey AJ, Balding DJ, et al. Common ABCB1 polymorphisms are not associated with multidrug resistance in epilepsy using a gene-wide tagging approach. Pharmacogenet Genomics 2007;17:217–20. doi:10.1097/01.fpc.0000230408.23146.b1. [49] Dericioglu N, Babaoglu MO, Yasar U, Bal IB, Bozkurt A, Saygi S. Multidrug resistance in patients undergoing resective epilepsy surgery is not associated with C3435T polymorphism in the ABCB1 (MDR1) gene. Epilepsy Res 2008;80:42–6. doi:10.1016/j.eplepsyres.2008.03.004. [50] Basic S, Hajnsek S, Bozina N, Filipcic I, Sporis D, Mislov D, et al. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy. Seizure 2008;17:524–30. doi:10.1016/j.seizure.2008.01.003. [51] Ozgon GO, Bebek N, Gul G, Cine N. Association of MDR1 (C3435T) polymorphism and resistance to carbamazepine in epileptic patients from Turkey. Eur Neurol 2008;59:67–70. doi:10.1159/000109264. [52] Gao Xuan, Zhou Shui-Zhen, Qian Sun Dao-Kai. Polymorphism of multidrug-resistance gene in childhood refractory epilepsy--《Journal of Clinical Pediatrics》2009年11期 n.d. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LCAK200911005.htm (accessed November 7, 2018). [53] Kim DW, Lee SK, Chu K, Jang I-J, Yu K-S, Cho J-Y, et al. Lack of association between ABCB1, ABCG2, and ABCC2 genetic polymorphisms and multidrug resistance in partial epilepsy. Epilepsy Res 2009;84:86–90. doi:10.1016/j.eplepsyres.2008.12.001. [54] Lakhan R, Misra UK, Kalita J, Pradhan S, Gogtay NJ, Singh MK, et al. No association of ABCB1 polymorphisms with drug-refractory epilepsy in a north Indian population. Epilepsy Behav EB 2009;14:78–82. doi:10.1016/j.yebeh.2008.08.019. [55] Ufer M, Mosyagin I, Muhle H, Jacobsen T, Haenisch S, Häsler R, et al. Non-response to antiepileptic pharmacotherapy is associated with the ABCC2 −24C>T polymorphism in young and adult patients with epilepsy: Pharmacogenet Genomics 2009;19:353–62. doi:10.1097/FPC.0b013e328329940b. [56] Vahab SA, Sen S, Ravindran N, Mony S, Mathew A, Vijayan N, et al. Analysis of genotype and haplotype effects of ABCB1 (MDR1) polymorphisms in the risk of medically refractory epilepsy in an Indian population. Drug Metab Pharmacokinet 2009;24:255–60. [57] Alpman A, Ozkinay F, Tekgul H, Gokben S, Pehlivan S, Schalling M, et al. Multidrug resistance 1 (MDR1) gene polymorphisms in childhood drug-resistant epilepsy. J Child Neurol 2010;25:1485–90. doi:10.1177/0883073810368997. [58] Sánchez MB, Herranz JL, Leno C, Arteaga R, Oterino A, Valdizán EM, et al. Genetic factors associated with drug-resistance of epilepsy: relevance of stratification by patient age and aetiology of epilepsy. Seizure 2010;19:93–101. doi:10.1016/j.seizure.2009.12.004. [59] Maleki M, Sayyah M, Kamgarpour F, Karimipoor M, Arab A, Rajabi A, et al. Association between ABCB1-T1236C Polymorphism and Drug-Resistant Epilepsy in Iranian Female Patients. Iran Biomed J 2010;14:89–96. [60] Kumari R, Lakhan R, Garg RK, Kalita J, Misra UK, Mittal B. Pharmacogenomic association study on the role of drug metabolizing, drug transporters and drug target gene polymorphisms in drug-resistant epilepsy in a north Indian population. Indian J Hum Genet 2011;17:S32–40. doi:10.4103/0971-6866.80357. [61] Harvy Velasco-Parra, Luisa Rodríguez, Claudia González, Vladimir Zambrano, Eugenia Espinosa, Ávaro Izquierdo. Polimorfismo C3435T del Gen ABCB1 (MDR1) en pacientes con Epilepsia refractaria en tres centros de referencia Nacional en Colombia. Medicina (Bogotá) n.d.;33:249–59. [62] Sayyah M, Kamgarpour F, Maleki M, Karimipoor M, Gharagozli K, Shamshiri AR. Association analysis of intractable epilepsy with C3435T and G2677T/A ABCB1 gene polymorphisms in Iranian patients. Epileptic Disord Int Epilepsy J Videotape 2011;13:155–65. doi:10.1684/epd.2011.0443. [63] Dong L, Luo R, Tong Y, Cai X, Mao M, Yu D. Lack of association between ABCB1 gene polymorphisms and pharmacoresistant epilepsy: an analysis in a western Chinese pediatric population. Brain Res 2011;1391:114–24. doi:10.1016/j.brainres.2011.03.028. [64] Das A, Balan S, Banerjee M, Radhakrishnan K. Drug resistance in epilepsy and the ABCB1 gene: The clinical perspective. Indian J Hum Genet 2011;17:S12–21. doi:10.4103/0971-6866.80353. [65] Lazarowski A, Sevlever G, Taratuto A, Massaro M, Rabinowicz A. Tuberous sclerosis associated with MDR1 gene expression and drug-resistant epilepsy. Pediatr Neurol 1999;21:731–4. [66] Haerian BS, Lim KS, Mohamed EHM, Tan HJ, Tan CT, Raymond AA, et al. Lack of association of ABCB1 haplotypes on five loci with response to treatment in epilepsy. Seizure 2011;20:546–53. doi:10.1016/j.seizure.2011.04.003. [67] Subenthiran S, Abdullah NR, Joseph JP, Muniandy PK, Mok BT, Kee CC, et al. Linkage disequilibrium between polymorphisms of ABCB1 and ABCC2 to predict the treatment outcome of Malaysians with complex partial seizures on treatment with carbamazepine mono-therapy at the Kuala Lumpur Hospital. PloS One 2013;8:e64827. doi:10.1371/journal.pone.0064827. [68] Emich-Widera E, Likus W, Kazek B, Sieroń AL, Urbanek K. Polymorphism of ABCB1/MDR1 C3435T in Children and Adolescents with Partial Epilepsy is due to Different Criteria for Drug Resistance – Preliminary Results. Med Sci Monit Int Med J Exp Clin Res 2014;20:1654–61. doi:10.12659/MSM.890633. [69] Shaheen U, Prasad DKV, Sharma V, Suryaprabha T, Ahuja YR, Jyothy A, et al. Significance of MDR1 gene polymorphism C3435T in predicting drug response in epilepsy. Epilepsy Res 2014;108:251–6. doi:10.1016/j.eplepsyres.2013.11.009. [70] Saygi S, Alehan F, Atac FB, Erol I, Verdi H, Erdem R. Multidrug resistance 1 (MDR1) 3435C/T genotyping in childhood drug-resistant epilepsy. Brain Dev 2014;36:137–42. doi:10.1016/j.braindev.2013.01.016. [71] Keangpraphun T, Towanabut S, Chinvarun Y, Kijsanayotin P. Association of ABCB1 C3435T polymorphism with phenobarbital resistance in Thai patients with epilepsy. J Clin Pharm Ther 2015;40:315–9. doi:10.1111/jcpt.12263. [72] Stasiołek M, Romanowicz H, Połatyńska K, Chamielec M, Skalski D, Makowska M, et al. Association between C3435T polymorphism of MDR1 gene and the incidence of drug-resistant epilepsy in the population of Polish children. Behav Brain Funct 2016;12:21. doi:10.1186/s12993-016-0106-z. [73] Sun G, Sun X, Guan L. Association of MDR1 gene C3435T polymorphism with childhood intractable epilepsy: a meta-analysis. J Neural Transm Vienna Austria 1996 2014;121:717–24. doi:10.1007/s00702-014-1169-3. [74] Taur SR, Kulkarni NB, Gandhe PP, Thelma BK, Ravat SH, Gogtay NJ, et al. Association of polymorphisms of CYP2C9, CYP2C19, and ABCB1, and activity of P-glycoprotein with response to anti-epileptic drugs. J Postgrad Med 2014;60:265–9. doi:10.4103/0022-3859.138739. [75] Skalski D, Wendorff J, Romanowicz H, Rysz A, Marchel A, Stasiołek M, et al. Associations between MDR1 C3435T polymorphism and drug-resistant epilepsy in the Polish population. Acta Neurol Belg 2017;117:153–8. doi:10.1007/s13760-016-0690-6. [76] Li M, Tan J, Yang X, Su L, Xie J, Liang B, et al. The ABCB1-C3435T polymorphism likely acts as a risk factor for resistance to antiepileptic drugs. Epilepsy Res 2014;108:1052–67. doi:10.1016/j.eplepsyres.2014.03.019. [77] Manna I, Gambardella A, Labate A, Mumoli L, Ferlazzo E, Pucci F, et al. Polymorphism of the multidrug resistance 1 gene MDR1/ABCB1 C3435T and response to antiepileptic drug treatment in temporal lobe epilepsy. Seizure 2015;24:124–6. doi:10.1016/j.seizure.2014.09.010. [78] Marchi N, Hallene KL, Kight KM, Cucullo L, Moddel G, Bingaman W, et al. Significance of MDR1 and multiple drug resistance in refractory human epileptic brain. BMC Med 2004;2:37. doi:10.1186/1741-7015-2-37. [79] Nurmohamed L, Garcia-Bournissen F, Buono RJ, Shannon MW, Finkelstein Y. Predisposition to epilepsy--does the ABCB1 gene play a role? Epilepsia 2010;51:1882–5. doi:10.1111/j.1528-1167.2010.02588.x. [80] Haerian BS, Lim KS, Tan CT, Raymond AA, Mohamed Z. Association of ABCB1 gene polymorphisms and their haplotypes with response to antiepileptic drugs: a systematic review and meta-analysis. Pharmacogenomics 2011;12:713–25. doi:10.2217/pgs.10.212. [81] Escalante-Santiago D, Feria-Romero IA, Ribas-Aparicio RM, Rayo-Mares D, Fagiolino P, Vázquez M, et al. MDR-1 and MRP2 Gene Polymorphisms in Mexican Epileptic Pediatric Patients with Complex Partial Seizures. Front Neurol 2014;5. doi:10.3389/fneur.2014.00184. [82] Qian L, Fang S, Yan Y-L, Zeng S-S, Xu Z-J, Gong Z-C. The ABCC2 c.-24C>T polymorphism increases the risk of resistance to antiepileptic drugs: A meta-analysis. J Clin Neurosci Off J Neurosurg Soc Australas 2017;37:6–14. doi:10.1016/j.jocn.2016.10.014. [83] Klarica Domjanović I, Lovrić M, Trkulja V, Petelin-Gadže Ž, Ganoci L, Čajić I, et al. Interaction between ABCG2 421C>A polymorphism and valproate in their effects on steady-state disposition of lamotrigine in adults with epilepsy. Br J Clin Pharmacol 2018;84:2106–19. doi:10.1111/bcp.13646. [84] Payandeh J, Scheuer T, Zheng N, Catterall WA. The crystal structure of a voltage-gated sodium channel. Nature 2011;475:353–8. doi:10.1038/nature10238. [85] Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, et al. Neurological perspectives on voltage-gated sodium channels. Brain J Neurol 2012;135:2585–612. doi:10.1093/brain/aws225. [86] Fujiwara T. Clinical spectrum of mutations in SCN1A gene: severe myoclonic epilepsy in infancy and related epilepsies. Epilepsy Res 2006;70 Suppl 1:S223-230. doi:10.1016/j.eplepsyres.2006.01.019. [87] Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 2005;115:2010–7. doi:10.1172/JCI25466. [88] Singh R, Andermann E, Whitehouse WPA, Harvey AS, Keene DL, Seni M-H, et al. Severe Myoclonic Epilepsy of Infancy: Extended Spectrum of GEFS+? Epilepsia 2001;42:837–44. doi:10.1046/j.1528-1157.2001.042007837.x. [89] Catterall WA, Kalume F, Oakley JC. NaV1.1 channels and epilepsy. J Physiol 2010;588:1849–59. doi:10.1113/jphysiol.2010.187484. [90] Heinzen EL, Yoon W, Tate SK, Sen A, Wood NW, Sisodiya SM, et al. Nova2 interacts with a cis-acting polymorphism to influence the proportions of drug-responsive splice variants of SCN1A. Am J Hum Genet 2007;80:876–83. doi:10.1086/516650. [91] Tate SK, Depondt C, Sisodiya SM, Cavalleri GL, Schorge S, Soranzo N, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A 2005;102:5507–12. doi:10.1073/pnas.0407346102. [92] Tang L, Lu X, Tao Y, Zheng J, Zhao P, Li K, et al. SCN1A rs3812718 polymorphism and susceptibility to epilepsy with febrile seizures: a meta-analysis. Gene 2014;533:26–31. doi:10.1016/j.gene.2013.09.071. [93] Pineda-Trujillo N, Carrizosa J, Cornejo W, Arias W, Franco C, Cabrera D, et al. A novel SCN1A mutation associated with severe GEFS+ in a large South American pedigree. Seizure 2005;14:123–8. doi:10.1016/j.seizure.2004.12.007. [94] Manna I, Gambardella A, Bianchi A, Striano P, Tozzi R, Aguglia U, et al. A functional polymorphism in the SCN1A gene does not influence antiepileptic drug responsiveness in Italian patients with focal epilepsy. Epilepsia 2011;52:e40-44. doi:10.1111/j.1528-1167.2011.03097.x. [95] Haerian BS, Baum L, Kwan P, Tan HJ, Raymond AA, Mohamed Z. SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to antiepileptic drugs: a multicenter cohort study and meta-analysis. Pharmacogenomics 2013;14:1153–66. doi:10.2217/pgs.13.104. [96] Kwan P, Poon WS, Ng H-K, Kang DE, Wong V, Ng PW, et al. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression. Pharmacogenet Genomics 2008;18:989. doi:10.1097/FPC.0b013e3283117d67. [97] Deeb TZ, Maguire J, Moss SJ. Possible alterations in GABAA receptor signaling that underlie benzodiazepine-resistant seizures. Epilepsia 2012;53:79–88. doi:10.1111/epi.12037. [98] Molecular and cellular mechanisms of pharmacoresistance in epilepsy. - PubMed - NCBI n.d. https://www.ncbi.nlm.nih.gov/pubmed/16317026 (accessed November 11, 2018). [99] Loup F, Wieser HG, Yonekawa Y, Aguzzi A, Fritschy JM. Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. J Neurosci Off J Soc Neurosci 2000;20:5401–19. [100] Pirker S, Schwarzer C, Czech T, Baumgartner C, Pockberger H, Maier H, et al. Increased expression of GABA(A) receptor beta-subunits in the hippocampus of patients with temporal lobe epilepsy. J Neuropathol Exp Neurol 2003;62:820–34. [101] Kumari R, Lakhan R, Kalita J, Misra UK, Mittal B. Association of alpha subunit of GABAA receptor subtype gene polymorphisms with epilepsy susceptibility and drug resistance in north Indian population. Seizure 2010;19:237–41. doi:10.1016/j.seizure.2010.02.009. [102] Tang F, Hartz AMS, Bauer B. Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Front Neurol 2017;8. doi:10.3389/fneur.2017.00301. [103] Kerb R, Aynacioglu AS, Brockmöller J, Schlagenhaufer R, Bauer S, Szekeres T, et al. The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for phenytoin plasma levels. Pharmacogenomics J 2001;1:204–10. [104] Simon C, Stieger B, Kullak-Ublick GA, Fried M, Mueller S, Fritschy J-M, et al. Intestinal expression of cytochrome P450 enzymes and ABC transporters and carbamazepine and phenytoin disposition. Acta Neurol Scand 2007;115:232–42. doi:10.1111/j.1600-0404.2006.00761.x. [105] Johnson J, Gong L, Whirl-Carrillo M, Gage B, Scott S, Stein C, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 Genotypes and Warfarin Dosing. Clin Pharmacol Ther 2011;90:625–9. doi:10.1038/clpt.2011.185. [106] Ross KA, Bigham AW, Edwards M, Gozdzik A, Suarez-Kurtz G, Parra EJ. Worldwide allele frequency distribution of four polymorphisms associated with warfarin dose requirements. J Hum Genet 2010;55:582–9. doi:10.1038/jhg.2010.73. [107] Chung W-H, Chang W-C, Lee Y-S, Wu Y-Y, Yang C-H, Ho H-C, et al. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions. JAMA 2014;312:525–34. doi:10.1001/jama.2014.7859. [108] Contin M, Sangiorgi S, Riva R, Parmeggiani A, Albani F, Baruzzi A. Evidence of polymorphic CYP2C19 involvement in the human metabolism of N-desmethylclobazam. Ther Drug Monit 2002;24:737–41. [109] Kosaki K, Tamura K, Sato R, Samejima H, Tanigawara Y, Takahashi T. A major influence of CYP2C19 genotype on the steady-state concentration of N-desmethylclobazam. Brain Dev 2004;26:530–4. doi:10.1016/j.braindev.2004.02.010. [110] Seo T, Nagata R, Ishitsu T, Murata T, Takaishi C, Hori M, et al. Impact of CYP2C19 polymorphisms on the efficacy of clobazam therapy. Pharmacogenomics 2008;9:527–37. doi:10.2217/14622416.9.5.527. [111] Hashi S, Yano I, Shibata M, Masuda S, Kinoshita M, Matsumoto R, et al. Effect of CYP2C19 polymorphisms on the clinical outcome of low-dose clobazam therapy in Japanese patients with epilepsy. Eur J Clin Pharmacol 2015;71:51–8. doi:10.1007/s00228-014-1773-z. [112] Goto S, Seo T, Murata T, Nakada N, Ueda N, Ishitsu T, et al. Population estimation of the effects of cytochrome P450 2C9 and 2C19 polymorphisms on phenobarbital clearance in Japanese. Ther Drug Monit 2007;29:118–21. doi:10.1097/FTD.0b013e318030def0. [113] Kiang TKL, Ho PC, Anari MR, Tong V, Abbott FS, Chang TKH. Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci Off J Soc Toxicol 2006;94:261–71. doi:10.1093/toxsci/kfl096. [114] Posner J, Cohen AF, Land G, Winton C, Peck AW. The pharmacokinetics of lamotrigine (BW430C) in healthy subjects with unconjugated hyperbilirubinaemia (Gilbert’s syndrome). Br J Clin Pharmacol 1989;28:117–20. [115] Nakasa H, Nakamura H, Ono S, Tsutsui M, Kiuchi M, Ohmori S, et al. Prediction of drug-drug interactions of zonisamide metabolism in humans from in vitro data. Eur J Clin Pharmacol 1998;54:177–83. [116] Okada Y, Seo T, Ishitsu T, Wanibuchi A, Hashimoto N, Higa Y, et al. Population estimation regarding the effects of cytochrome P450 2C19 and 3A5 polymorphisms on zonisamide clearance. Ther Drug Monit 2008;30:540–3. doi:10.1097/FTD.0b013e31817d842a. [117] Eichelbaum M, Tomson T, Tybring G, Bertilsson L. Carbamazepine metabolism in man. Induction and pharmacogenetic aspects. Clin Pharmacokinet 1985;10:80–90. doi:10.2165/00003088-198510010-00004. [118] Klein K, Thomas M, Winter S, Nussler AK, Niemi M, Schwab M, et al. PPARA: a novel genetic determinant of CYP3A4 in vitro and in vivo. Clin Pharmacol Ther 2012;91:1044–52. doi:10.1038/clpt.2011.336. [119] Kang P, Liao M, Wester MR, Leeder JS, Pearce RE, Correia MA. CYP3A4-Mediated carbamazepine (CBZ) metabolism: formation of a covalent CBZ-CYP3A4 adduct and alteration of the enzyme kinetic profile. Drug Metab Dispos Biol Fate Chem 2008;36:490–9. doi:10.1124/dmd.107.016501. [120] Pearce RE, Vakkalagadda GR, Leeder JS. Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites. Drug Metab Dispos Biol Fate Chem 2002;30:1170–9. [121] Yun W, Zhang F, Hu C, Luo X, Xue P, Wang J, et al. Effects of EPHX1, SCN1A and CYP3A4 genetic polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy Res 2013;107:231–7. doi:10.1016/j.eplepsyres.2013.09.011. [122] Daci A, Beretta G, Vllasaliu D, Shala A, Govori V, Norata GD, et al. Polymorphic Variants of SCN1A and EPHX1 Influence Plasma Carbamazepine Concentration, Metabolism and Pharmacoresistance in a Population of Kosovar Albanian Epileptic Patients. PLOS ONE 2015;10:e0142408. doi:10.1371/journal.pone.0142408. [123] Hermann R, Borlak J, Munzel U, Niebch G, Fuhr U, Maus J, et al. The role of Gilbert’s syndrome and frequent NAT2 slow acetylation polymorphisms in the pharmacokinetics of retigabine. Pharmacogenomics J 2006;6:211–9. doi:10.1038/sj.tpj.6500359. [124] Ma C-L, Wu X-Y, Jiao Z, Hong Z, Wu Z-Y, Zhong M-K. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy. Pharmacogenomics 2015;16:347–60. doi:10.2217/pgs.14.186. [125] Grover S, Talwar P, Gourie-Devi M, Gupta M, Bala K, Sharma S, et al. Genetic polymorphisms in sex hormone metabolizing genes and drug response in women with epilepsy. Pharmacogenomics 2010;11:1525–34. doi:10.2217/pgs.10.120. [126] Talwar P, Kanojia N, Mahendru S, Baghel R, Grover S, Arora G, et al. Genetic contribution of CYP1A1 variant on treatment outcome in epilepsy patients: a functional and interethnic perspective. Pharmacogenomics J 2017;17:242–51. doi:10.1038/tpj.2016.1. [127] Chaudhry AS, Urban TJ, Lamba JK, Birnbaum AK, Remmel RP, Subramanian M, et al. CYP2C9*1B promoter polymorphisms, in linkage with CYP2C19*2, affect phenytoin autoinduction of clearance and maintenance dose. J Pharmacol Exp Ther 2010;332:599–611. doi:10.1124/jpet.109.161026. [128] Leeder JS. Mechanisms of idiosyncratic hypersensitivity reactions to antiepileptic drugs. Epilepsia 1998;39 Suppl 7:S8-16. [129] Argikar UA, Cloyd JC, Birnbaum AK, Leppik IE, Conway J, Kshirsagar S, et al. Paradoxical urinary phenytoin metabolite (S)/(R) ratios in CYP2C19*1/*2 patients. Epilepsy Res 2006;71:54–63. doi:10.1016/j.eplepsyres.2006.05.015. [130] Claesen M, Moustafa MA, Adline J, Vandervorst D, Poupaert JH. Evidence for an arene oxide-NIH shift pathway in the metabolic conversion of phenytoin to 5-(4-hydroxyphenyl)-5-phenylhydantoin in the rat and in man. Drug Metab Dispos Biol Fate Chem 1982;10:667–71. [131] Calderon-Ospina CA, Dominguez-Dominguez CA. Sobre-anticoagulación por warfarina ocasionada por múltiples errores de medicación. Pharm Care Esp 2018;20:478–84. [132] Komatsu T, Yamazaki H, Asahi S, Gillam EM, Guengerich FP, Nakajima M, et al. Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4. Drug Metab Dispos Biol Fate Chem 2000;28:1361–8. [133] Cuttle L, Munns AJ, Hogg NA, Scott JR, Hooper WD, Dickinson RG, et al. Phenytoin metabolism by human cytochrome P450: involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug Metab Dispos Biol Fate Chem 2000;28:945–50. [134] Kinobe RT, Parkinson OT, Mitchell DJ, Gillam EMJ. P450 2C18 catalyzes the metabolic bioactivation of phenytoin. Chem Res Toxicol 2005;18:1868–75. doi:10.1021/tx050181o. [135] Yamanaka H, Nakajima M, Hara Y, Katoh M, Tachibana O, Yamashita J, et al. Urinary excretion of phenytoin metabolites, 5-(4’-hydroxyphenyl)-5-phenylhydantoin and its O-glucuronide in humans and analysis of genetic polymorphisms of UDP-glucuronosyltransferases. Drug Metab Pharmacokinet 2005;20:135–43. [136] Nakajima M, Yamanaka H, Fujiwara R, Katoh M, Yokoi T. Stereoselective glucuronidation of 5-(4’-hydroxyphenyl)-5-phenylhydantoin by human UDP-glucuronosyltransferase (UGT) 1A1, UGT1A9, and UGT2B15: effects of UGT-UGT interactions. Drug Metab Dispos Biol Fate Chem 2007;35:1679–86. doi:10.1124/dmd.107.015909. [137] Rawlins MD. Clinical pharmacology. Adverse reactions to drugs. Br Med J Clin Res Ed 1981;282:974–6. [138] Domínguez CD, Briceño JFB, Marín CB, Ospina CAC. Síndrome de Stevens–Johnson asociado a PHT en una paciente colombiana con síndrome convulsivo focal. Rev Médicas UIS 2012;25. [139] Abdelsayed M, Sokolov S. Voltage-gated sodium channels. Channels 2013;7:146–52. doi:10.4161/chan.24380. [140] Meisler MH, O’Brien JE, Sharkey LM. Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. J Physiol 2010;588:1841–8. doi:10.1113/jphysiol.2010.188482. [141] Lipkind GM, Fozzard HA. Molecular model of anticonvulsant drug binding to the voltage-gated sodium channel inner pore. Mol Pharmacol 2010;78:631–8. doi:10.1124/mol.110.064683. [142] Segal MM, Douglas AF. Late sodium channel openings underlying epileptiform activity are preferentially diminished by the anticonvulsant phenytoin. J Neurophysiol 1997;77:3021–34. doi:10.1152/jn.1997.77.6.3021. [143] Albani F, Riva R, Baruzzi A. Carbamazepine clinical pharmacology: a review. Pharmacopsychiatry 1995;28:235–44. doi:10.1055/s-2007-979609. [144] Hung S-I, Chung W-H, Liu Z-S, Chen C-H, Hsih M-S, Hui RC, et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 2010;11:349–56. doi:10.2217/pgs.09.162. [145] Ganeva M, Gancheva T, Lazarova R, Troeva J, Baldaranov I, Vassilev I, et al. Carbamazepine-induced drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: report of four cases and brief review. Int J Dermatol 2008;47:853–60. doi:10.1111/j.1365-4632.2008.03637.x. [146] Shear NH, Spielberg SP. Anticonvulsant hypersensitivity syndrome. In vitro assessment of risk. J Clin Invest 1988;82:1826–32. doi:10.1172/JCI113798. [147] Kim K-A, Oh SO, Park P-W, Park J-Y. Effect of probenecid on the pharmacokinetics of carbamazepine in healthy subjects. Eur J Clin Pharmacol 2005;61:275–80. doi:10.1007/s00228-005-0940-7. [148] Kerr BM, Thummel KE, Wurden CJ, Klein SM, Kroetz DL, Gonzalez FJ, et al. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 1994;47:1969–79. [149] Lu W, Uetrecht JP. Peroxidase-mediated bioactivation of hydroxylated metabolites of carbamazepine and phenytoin. Drug Metab Dispos Biol Fate Chem 2008;36:1624–36. doi:10.1124/dmd.107.019554. [150] Pippenger CE. Clinically significant carbamazepine drug interactions: an overview. Epilepsia 1987;28 Suppl 3:S71-76. [151] Oscarson M, Zanger UM, Rifki OF, Klein K, Eichelbaum M, Meyer UA. Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin Pharmacol Ther 2006;80:440–56. doi:10.1016/j.clpt.2006.08.013. [152] Mo S-L, Liu Y-H, Duan W, Wei MQ, Kanwar JR, Zhou S-F. Substrate specificity, regulation, and polymorphism of human cytochrome P450 2B6. Curr Drug Metab 2009;10:730–53. [153] Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000;38:41–57. doi:10.2165/00003088-200038010-00003. [154] Zhu M, Kaul S, Nandy P, Grasela DM, Pfister M. Model-based approach to characterize efavirenz autoinduction and concurrent enzyme induction with carbamazepine. Antimicrob Agents Chemother 2009;53:2346–53. doi:10.1128/AAC.01120-08. [155] Hara Y, Nakajima M, Miyamoto K, Yokoi T. Morphine glucuronosyltransferase activity in human liver microsomes is inhibited by a variety of drugs that are co-administered with morphine. Drug Metab Pharmacokinet 2007;22:103–12. [156] Staines AG, Coughtrie MWH, Burchell B. N-glucuronidation of carbamazepine in human tissues is mediated by UGT2B7. J Pharmacol Exp Ther 2004;311:1131–7. doi:10.1124/jpet.104.073114. [157] Sisodiya SM, Goldstein DB. Drug resistance in epilepsy: more twists in the tale. Epilepsia 2007;48:2369–70. doi:10.1111/j.1528-1167.2007.01260_1.x. [158] Owen A, Pirmohamed M, Tettey JN, Morgan P, Chadwick D, Park BK. Carbamazepine is not a substrate for P-glycoprotein. Br J Clin Pharmacol 2001;51:345–9. [159] Zhang C, Zuo Z, Kwan P, Baum L. In vitro transport profile of carbamazepine, oxcarbazepine, eslicarbazepine acetate, and their active metabolites by human P-glycoprotein. Epilepsia 2011;52:1894–904. doi:10.1111/j.1528-1167.2011.03140.x. [160] Awasthi S, Hallene KL, Fazio V, Singhal SS, Cucullo L, Awasthi YC, et al. RLIP76, a non-ABC transporter, and drug resistance in epilepsy. BMC Neurosci 2005;6:61. doi:10.1186/1471-2202-6-61. [161] Kim W-J, Lee JH, Yi J, Cho Y-J, Heo K, Lee SH, et al. A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genomics 2010;20:249–56. doi:10.1097/FPC.0b013e328338073a. [162] Maan JS, Saadabadi A. Carbamazepine. StatPearls, Treasure Island (FL): StatPearls Publishing; 2018. [163] Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010;2010. doi:10.1155/2010/479364. [164] Terbach N, Williams RSB. Structure-function studies for the panacea, valproic acid. Biochem Soc Trans 2009;37:1126–32. doi:10.1042/BST0371126. [165] Tan J, Cang S, Ma Y, Petrillo RL, Liu D. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol OncolJ Hematol Oncol 2010;3:5. doi:10.1186/1756-8722-3-5. [166] Blanco-Serrano B, Otero MJ, Santos-Buelga D, García-Sánchez MJ, Serrano J, Domínguez-Gil A. Population estimation of valproic acid clearance in adult patients using routine clinical pharmacokinetic data. Biopharm Drug Dispos 1999;20:233–40. [167] Stewart JD, Horvath R, Baruffini E, Ferrero I, Bulst S, Watkins PB, et al. Polymerase γ gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatol Baltim Md 2010;52:1791–6. doi:10.1002/hep.23891. [168] Price KE, Pearce RE, Garg UC, Heese BA, Smith LD, Sullivan JE, et al. Effects of valproic acid on organic acid metabolism in children: a metabolic profiling study. Clin Pharmacol Ther 2011;89:867–74. doi:10.1038/clpt.2011.47. [169] Wilffert B, Altena J, Tijink L, van Gelder MMHJ, de Jong-van den Berg LTW. Pharmacogenetics of drug-induced birth defects: what is known so far? Pharmacogenomics 2011;12:547–58. doi:10.2217/pgs.10.201. [170] Sinclair DB, Berg M, Breault R. Valproic acid-induced pancreatitis in childhood epilepsy: case series and review. J Child Neurol 2004;19:498–502. doi:10.1177/08830738040190070401. [171] Dreifuss FE, Santilli N, Langer DH, Sweeney KP, Moline KA, Menander KB. Valproic acid hepatic fatalities: a retrospective review. Neurology 1987;37:379–85. [172] Aires CCP, van Cruchten A, Ijlst L, de Almeida IT, Duran M, Wanders RJA, et al. New insights on the mechanisms of valproate-induced hyperammonemia: inhibition of hepatic N-acetylglutamate synthase activity by valproyl-CoA. J Hepatol 2011;55:426–34. doi:10.1016/j.jhep.2010.11.031. [173] Yagi M, Nakamura T, Okizuka Y, Oyazato Y, Kawasaki Y, Tsuneishi S, et al. Effect of CPS14217C>A genotype on valproic-acid-induced hyperammonemia. Pediatr Int Off J Jpn Pediatr Soc 2010;52:744–8. doi:10.1111/j.1442-200X.2010.03157.x. [174] FDA. Depakene (valproic acid) Solution Depakene (valproic acid) Capsule, Liquid Fille. Box warning. Hepatotoxicity n.d. [175] Ito M, Ikeda Y, Arnez JG, Finocchiaro G, Tanaka K. The enzymatic basis for the metabolism and inhibitory effects of valproic acid: dehydrogenation of valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase. Biochim Biophys Acta 1990;1034:213–8. [176] Argikar UA, Remmel RP. Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab Dispos Biol Fate Chem 2009;37:229–36. doi:10.1124/dmd.108.022426. [177] Ethell BT, Anderson GD, Burchell B. The effect of valproic acid on drug and steroid glucuronidation by expressed human UDP-glucuronosyltransferases. Biochem Pharmacol 2003;65:1441–9. [178] Luís PBM, Ruiter JP, Ofman R, Ijlst L, Moedas M, Diogo L, et al. Valproic acid utilizes the isoleucine breakdown pathway for its complete β-oxidation. Biochem Pharmacol 2011;82:1740–6. doi:10.1016/j.bcp.2011.07.103. [179] Luís PBM, Ruiter JPN, Ijlst L, Tavares de Almeida I, Duran M, Mohsen A-W, et al. Role of isovaleryl-CoA dehydrogenase and short branched-chain acyl-CoA dehydrogenase in the metabolism of valproic acid: implications for the branched-chain amino acid oxidation pathway. Drug Metab Dispos Biol Fate Chem 2011;39:1155–60. doi:10.1124/dmd.110.037606. [180] Silva MFB, Ijlst L, Allers P, Jakobs C, Duran M, de Almeida IT, et al. Valproyl-dephosphoCoA: a novel metabolite of valproate formed in vitro in rat liver mitochondria. Drug Metab Dispos Biol Fate Chem 2004;32:1304–10. doi:10.1124/dmd... [181] Li J, Norwood DL, Mao LF, Schulz H. Mitochondrial metabolism of valproic acid. Biochemistry 1991;30:388–94. [182] Silva MFB, Ruiter JPN, Overmars H, Bootsma AH, van Gennip AH, Jakobs C, et al. Complete beta-oxidation of valproate: cleavage of 3-oxovalproyl-CoA by a mitochondrial 3-oxoacyl-CoA thiolase. Biochem J 2002;362:755–60. [183] Kassahun K, Farrell K, Abbott F. Identification and characterization of the glutathione and N-acetylcysteine conjugates of (E)-2-propyl-2,4-pentadienoic acid, a toxic metabolite of valproic acid, in rats and humans. Drug Metab Dispos Biol Fate Chem 1991;19:525–35. [184] Kassahun K, Hu P, Grillo MP, Davis MR, Jin L, Baillie TA. Metabolic activation of unsaturated derivatives of valproic acid. Identification of novel glutathione adducts formed through coenzyme A-dependent and -independent processes. Chem Biol Interact 1994;90:253–75. [185] Gopaul SV, Farrell K, Abbott FS. Identification and characterization of N-acetylcysteine conjugates of valproic acid in humans and animals. Drug Metab Dispos Biol Fate Chem 2000;28:823–32. [186] Baillie TA. Metabolic activation of valproic acid and drug-mediated hepatotoxicity. Role of the terminal olefin, 2-n-propyl-4-pentenoic acid. Chem Res Toxicol 1988;1:195–9. [187] Rettenmeier AW, Prickett KS, Gordon WP, Bjorge SM, Chang SL, Levy RH, et al. Studies on the biotransformation in the perfused rat liver of 2-n-propyl-4-pentenoic acid, a metabolite of the antiepileptic drug valproic acid. Evidence for the formation of chemically reactive intermediates. Drug Metab Dispos Biol Fate Chem 1985;13:81–96. [188] Sadeque AJ, Fisher MB, Korzekwa KR, Gonzalez FJ, Rettie AE. Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J Pharmacol Exp Ther 1997;283:698–703. [189] Ho PC, Abbott FS, Zanger UM, Chang TKH. Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes. Pharmacogenomics J 2003;3:335–42. doi:10.1038/sj.tpj.6500210. [190] Voso MT, Santini V, Finelli C, Musto P, Pogliani E, Angelucci E, et al. Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res Off J Am Assoc Cancer Res 2009;15:5002–7. doi:10.1158/1078-0432.CCR-09-0494. [191] Baltes S, Fedrowitz M, Tortós CL, Potschka H, Löscher W. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharmacol Exp Ther 2007;320:331–43. doi:10.1124/jpet.106.102491. [192] Kwan P, Wong V, Ng PW, Lui CHT, Sin NC, Poon WS, et al. Gene-wide tagging study of association between ABCB1 polymorphisms and multidrug resistance in epilepsy in Han Chinese. Pharmacogenomics 2009;10:723–32. doi:10.2217/pgs.09.32. [193] Johannessen CU, Johannessen SI. Valproate: past, present, and future. CNS Drug Rev 2003;9:199–216. [194] Van den Berg RJ, Kok P, Voskuyl RA. Valproate and sodium currents in cultured hippocampal neurons. Exp Brain Res 1993;93:279–87. [195] VanDongen AM, VanErp MG, Voskuyl RA. Valproate reduces excitability by blockage of sodium and potassium conductance. Epilepsia 1986;27:177–82. [196] Kacevska M, Ivanov M, Ingelman-Sundberg M. Perspectives on epigenetics and its relevance to adverse drug reactions. Clin Pharmacol Ther 2011;89:902–7. doi:10.1038/clpt.2011.21. [197] Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001;276:36734–41. doi:10.1074/jbc.M101287200. [198] Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001;20:6969–78. doi:10.1093/emboj/20.24.6969. [199] Morisky DE, Green LW, Levine DM. Concurrent and predictive validity of a self-reported measure of medication adherence. Med Care 1986;24:67–74. [200] Calderón-Ospina CA, Urbina-Bonilla A. La Farmacovigilancia en los últimos 10 años: actualización de conceptos y clasificaciones. Logros y retos para el futuro en Colombia. Méd UIS. 2011;24(1):53-66. [201] Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981;30:239–45. [202] Schumock GT, Thornton JP. Focusing on the preventability of adverse drug reactions. Hosp Pharm 1992;27:538. [203] Aronson JK, Ferner RE. Joining the DoTS: new approach to classifying adverse drug reactions. BMJ 2003;327:1222–5. [204] Aronson JK, Ferner RE. Clarification of terminology in drug safety. Drug Saf 2005;28:851–70. doi:10.2165/00002018-200528100-00003. [205] Everard M, di Felici AP, Henry D, Hutin Y, Kopp S, Ondari C, et al. con contribuciones de: Edelisa Carandang,1 Hans Hogerzeil,1 Richard Laing3 y David Lee.2 n.d.:163. [206] Rodríguez Chamorro MÁ, García-Jiménez E, Amariles P, Rodríguez Chamorro A, José Faus M. Revisión de tests de medición del cumplimiento terapéutico utilizados en la práctica clínica. Aten Primaria 2008;40:413–8. doi:10.1157/13125407. [207] Lexicomp Drug Interactions n.d. [208] Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16:1215. [209] Genome Reference Consortium - The NCBI Handbook - NCBI Bookshelf n.d. https://www.ncbi.nlm.nih.gov/books/NBK153600/ (accessed November 12, 2018). [210] Ministerio de Salud Colombiano. Resolución 8430 de 1993 1993. [211] WMA - The World Medical Association-WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects n.d. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ (accessed November 12, 2018). [212] Galvez JM, Restrepo CM, Contreras NC, Alvarado C, Calderón-Ospina C-A, Peña N, et al. Creating and validating a warfarin pharmacogenetic dosing algorithm for Colombian patients. Pharmacogenomics Pers Med 2018;11:169–78. doi:10.2147/PGPM.S170515. [213] Caudle KE, Rettie AE, Whirl-Carrillo M, Smith LH, Mintzer S, Lee MTM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and HLA-B Genotypes and Phenytoin Dosing. Clin Pharmacol Ther 2014;96:542–8. doi:10.1038/clpt.2014.159. [214] Drescher S, Schaeffeler E, Hitzl M, Hofmann U, Schwab M, Brinkmann U, et al. MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J Clin Pharmacol 2002;53:526–34. doi:10.1046/j.1365-2125.2002.01591.x. [215] Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000;97:3473–8. doi:10.1073/pnas.050585397. [216] MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. - PubMed - NCBI n.d. https://www.ncbi.nlm.nih.gov/pubmed/16883550 (accessed March 7, 2019). [217] Tang K, Ngoi S-M, Gwee P-C, Chua JMZ, Lee EJD, Chong SS, et al. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics 2002;12:437–50. [218] Horinouchi M, Sakaeda T, Nakamura T, Morita Y, Tamura T, Aoyama N, et al. Significant genetic linkage of MDR1 polymorphisms at positions 3435 and 2677: functional relevance to pharmacokinetics of digoxin. Pharm Res 2002;19:1581–5. [219] Kimchi-Sarfaty C, Oh JM, Kim I-W, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 2007;315:525–8. doi:10.1126/science.1135308. [220] Perloff MD, von Moltke LL, Störmer E, Shader RI, Greenblatt DJ. Saint John’s wort: an in vitro analysis of P-glycoprotein induction due to extended exposure. Br J Pharmacol 2001;134:1601–8. doi:10.1038/sj.bjp.0704399. [221] Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx J Am Soc Exp Neurother 2005;2:86–98. doi:10.1602/neurorx.2.1.86. [222] Hilton EJR, Hosking SL, Betts T. The effect of antiepileptic drugs on visual performance. Seizure 2004;13:113–28. [223] Hung C-C, Chen C-C, Lin C-J, Liou H-H. Functional evaluation of polymorphisms in the human ABCB1 gene and the impact on clinical responses of antiepileptic drugs. Pharmacogenet Genomics 2008;18:390–402. doi:10.1097/FPC.0b013e3282f85e36. [224] Dorado P, López-Torres E, Peñas-Lledó EM, Martínez-Antón J, Llerena A. Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy: influence of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms. Pharmacogenomics J 2013;13:359–61. doi:10.1038/tpj.2012.19. [225] Szoeke CEI, Newton M, Wood JM, Goldstein D, Berkovic SF, OBrien TJ, et al. Update on pharmacogenetics in epilepsy: a brief review. Lancet Neurol 2006;5:189–96. doi:10.1016/S1474-4422(06)70352-0. [226] Silvado CE, Terra VC, Twardowschy CA. CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment. Pharmacogenomics Pers Med 2018;11:51–8. doi:10.2147/PGPM.S108113. [227] Research C for DE and. Science & Research (Drugs) - Table of Pharmacogenomic Biomarkers in Drug Labeling n.d. https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm (accessed December 21, 2018). [228] Chmielewska B, Lis K, Rejdak K, Balcerzak M, Steinborn B. Pattern of adverse events of antiepileptic drugs: results of the aESCAPE study in Poland. Arch Med Sci AMS 2013;9:858–64. doi:10.5114/aoms.2013.38679. [229] Almohammadi AM, Huzaim RM. Level of physicians’ awareness of antiepileptic drug adverse effects. Epilepsy Behav EB 2018;89:59–62. doi:10.1016/j.yebeh.2018.09.047. [230] Dickson M, Bramley TJ, Kozma C, Doshi D, Rupnow MFT. Potential drug-drug interactions with antiepileptic drugs in Medicaid recipients. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm 2008;65:1720–6. doi:10.2146/ajhp070508. [231] Losada-Camacho M. Impacto de la intervención farmacéutica en el tratamiento y calidad de vida de la mujer con epilepsia: Ensayo clínico. Universidad de Granada; 2016. [232] Rediguieri CF, Zeredo JL. Assessing bioequivalence of antiepileptic drugs: are the current requirements too permissive? J Pharm Pharm Sci Publ Can Soc Pharm Sci Soc Can Sci Pharm 2014;17:220–8. [233] Gidal BE. Bioequivalence of antiepileptic drugs: how close is close enough? Curr Neurol Neurosci Rep 2009;9:333–7. [234] Silva-Alves MS, Secolin R, Carvalho BS, et al. A Prediction Algorithm for Drug Response in Patients with Mesial Temporal Lobe Epilepsy Based on Clinical and Genetic Information. PLoS One. 2017;12(1):e0169214. doi:10.1371/journal.pone.0169214 [235] Kobow K, Blümcke I. Epigenetics in epilepsy. Neurosci Lett. 2018;667: 40-6.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPolimorfismo genético
dc.subject.proposalGenetic polymorphism
dc.subject.proposalAdverse drug reaction
dc.subject.proposalReacción adversa a medicamento
dc.subject.proposalEpilepsy
dc.subject.proposalEpilepsia
dc.subject.proposalPhenytoin
dc.subject.proposalFenitoína
dc.subject.proposalPharmacogenetics
dc.subject.proposalFarmacogenética
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito