Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorTorres Fernandez, Orlando
dc.contributor.advisorDueñas Gómez, Zulma
dc.contributor.authorNaizaque Gómez, Julián Ricardo
dc.date.accessioned2020-03-06T12:27:51Z
dc.date.available2020-03-06T12:27:51Z
dc.date.issued2019-12-08
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75905
dc.description.abstractLa rabia es transmitida por la mordedura de un animal infectado, generalmente mamíferos carnívoros o quirópteros. Los signos clínicos y la evidencia experimental en modelos in vitro e in vivo sugieren una posible alteración de la neurotransmisión gabaérgica durante la infección con rabia. La Calbindina (CB) y la Parvoalbúmina (PV) son proteínas de enlace de calcio que regulan el efecto de este ion en el metabolismo intracelular. Son marcadores de células gabaérgicas y la infección con rabia causa la pérdida de la inmunorreactividad a CB, pero el incremento de PV, en las diferentes regiones del sistema nervioso central de ratón. Sin embargo, en un estudio reciente en el cerebelo de ratones infectados no se evidenció pérdida de inmunorreactividad a CB, apartándose de la tendencia observada. En este estudio se evaluó a mayor profundidad el efecto de la infección con el virus de la rabia en el cerebelo de ratones estableciendo su influencia sobre la expresión de CB y PV a nivel de transcritos y de proteínas, dada la importancia de estas proteínas en la fisiología de las poblaciones neuronales del cerebelo. Se inocularon ratones de 4 semanas, por vía intramuscular, en las extremidades posteriores, con virus fijo CVS (Challenge Virus Standard) y ratones controles con solución vehículo. Cuando los animales alcanzaron la fase final de la enfermedad, se dividieron en tres grupos de acuerdo con los procedimientos a llevar a cabo: Inmunohistoquímica (IHQ), western blot y RT-qPCR. La IHQ mostró marcación positiva para PV en las células de Purkinje y células estrelladas/en cesta y CB exclusivamente para las células de Purkinje. No hubo diferencias evidentes en la distribución e inmunorreactividad entre ratones infectados y control. Se observó una disminución en el nivel de transcritos para CB y PV, así como la disminución del nivel de proteínas para CB y PV en ratones infectados, aunque para este último no fue significativo. Estos resultados sugieren que la infección por el virus de la rabia promueve una alteración en la homeostasis del calcio en el cerebelo lo cual, además, puede afectar la neurotransmisión del GABA.
dc.description.abstractRabies virus (RABV) is frequently transmitted from a bite or scratch of an infected animal, mostly dogs. Clinical signs of rabies, in vitro and in vivo models suggest a possible involvement of the gabaergic system during rabies virus infection. Calbindin (CB) and Parvalbumin (PV) are calcium binding proteins which regulate the effect of calcium ions on intracellular metabolism, both are markers of gabaergic cells and rabies infection caused loss of immunostaining for CB but increase of inmunoreactivity of PV in different regions from central nervous system (CNS) in mice. However, in a recent study in cerebellum from infected mice, there were not changes in CB immunostaining compared with controls, this result disagree with previous studies. Here, we evaluated deeply the effect of rabies virus infection in mice cerebellum stablishing its influence in CB and PV expression at transcript and protein levels, due to the importance of both in cerebellum physiology. Four-week-old mice were inoculated intramuscularly in the hindlimb with rabies fixed virus CVS (Challenge Virus Strain) and other mice only with vehicle. When the mice reached the terminal state of illness, the groups were divided according to the procedures: immunohistochemistry (IHC), western blot, RT-qPCR. The IHC showed clear PV-stain for Purkinje cells, and stellate/basket cells and CB stain only in Purkinje cells. No evidence of differences between CB and PV distribution in infected and control mice was found. CB and PV transcript levels were decreased and CB and PV protein levels were decreased in infected mice as well, however non-significant for PV protein levels. These results suggest that RABV infection promotes alterations in calcium ion homeostasis which could affect GABA neurotransmission.
dc.description.sponsorshipCOLCIENCIAS
dc.format.extent121
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcMedicina y salud
dc.titleEstudio del efecto de la infección con virus de la rabia sobre la expresión de calbindina y parvoalbúmina en el cerebelo de ratones
dc.title.alternativeEffect of rabies virus infection on the expression of calbindin and parvalbumin on mouse cerebellum: raising awareness to integrate neuroscience and virology
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagister en Neurociencias. Línea de Investigación: Vulnerabilidad selectiva neuronal
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesSchnell MJ, McGettigan JP, Wirblich C, Papaneri A. The cell biology of rabies virus: using stealth to reach the brain. Nat Rev Microbiol. 2010;8(1):51–61.
dc.relation.referencesHemachudha T, Ugolini G, Wacharapluesadee S, Sungkarat W, Shuangshoti S, Laothamatas J. Human rabies: Neuropathogenesis, diagnosis, and management. Lancet Neurol. 2013;12(5):498–513.
dc.relation.referencesDietzschold B, Li J, Faber M, Schnell M. Concepts in the pathogenesis of rabies. Future Virol. 2008;3(5):481–90.
dc.relation.referencesJackson AC. Update on rabies diagnosis and treatment. Curr Infect Dis Rep. 2009;11(4):296–301.
dc.relation.referencesTorres-Fernández O, Yepes GE, Gómez JE, Pimienta HJ. Calbindin distribution in cortical and subcortical brain structures of normal and rabies-infected mice. Int J Neurosci. 2005 Oct 7;115(10):1375–82.
dc.relation.referencesMonroy-Gómez J, Torres-Fernández O. Distribución de calbindina y parvoalbúmina y efecto del virus de la rabia sobre su expresión en la médula espinal de ratones. Biomédica. 2013;33(4):564–73.
dc.relation.referencesLamprea N, Torres-Fernández O. Evaluación inmunohistoquímica de la expresión de calbindina en el cerebro de ratones en diferentes tiempos después de la inoculación con el virus de la rabia. Colomb Med. 2008;39(3 SUPPL.):7–13.
dc.relation.referencesTorres-Fernández O, Daza NA, Santamaría G, Hurtado AP, Monroy-Gómez J. Entry of Rabies Virus in the Olfactory Bulb of Mice and Effect of Infection on Cell Markers of Neurons and Astrocytes. Int J Morphol. 2018;36(2):670–6.
dc.relation.referencesRengifo AC. Inmunorreactividad de neuronas gabaergicas y glutamatergicas en la corteza y el cerebelo de ratones infectados con rabia. Universidad Nacional de Colombia; 2012.
dc.relation.referencesRengifo AC, Torres-Fernández O. Cambios en los sistemas de neurotransmisión excitador e inhibitorio en el cerebelo de ratones infectados con virus de la rabia. Biomedica. 2013;33 (Supl.2:80–1.
dc.relation.referencesRengifo AC, Torres-Fernández O. Disminución del número de neuronas que expresan GABA en la corteza cerebral de ratones infectados con rabia. Biomedica. 2007;27(4):548–58.
dc.relation.referencesNaizaque JR, Torres-Fernández. O. La inmunorreactividad a calbindina en células de purkinje del cerebelo de ratones no es afectada por la infección con virus de la rabia. Biosalud. 2016 Dec 4;15(2):9–19.
dc.relation.referencesSchwaller B. Cytosolic Ca 2+ Buffers. Cold Spring Harb Perspect Biol. 2010;2(a004051):1–20.
dc.relation.referencesVigot R, Kado RT, Batini C. Increased calbindin-D28K immunoreactivity in rat cerebellar Purkinje cell with excitatory amino acids agonists is not dependent on protein synthesis. Arch Ital Biol. 2004 Feb;142(1):69–75.
dc.relation.referencesSchwaller B, Meyer M, Schiffmann S. “New” functions for “old” proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum. 2002;1:241–58.
dc.relation.referencesLadogana A, Bouzamondo E, Pocchiari M, Tsiang H. Modification of tritiated γ-amino-n-butyric acid transport in rabies virus-infected primary cortical cultures. J Gen Virol. 1994;75(3):623–7.
dc.relation.referencesIsaacson RL. The neuronal and behavioural mechanism of aggression and their alteration by rabies and other viral infections. In: Thraenhart O, Koprowski H, Bogel HK SP, editor. Progress in rabies control. Rochester: Wells Medical; 1989. p. 17–23.
dc.relation.referencesKhizhniakova T, LP G, Promyslov M. The influence of rabies immunization of gamma-aminobutyric acid metbolism in the brains of animals. Biull EKSP Biol Med. 1976;81:184–5.
dc.relation.referencesFooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. Current status of rabies and prospects for elimination. Lancet. 2014;384(9951):1389–99.
dc.relation.referencesWHO | Rabies [Internet]. WHO. World Health Organization; 2016 [cited 2016 Mar 15]. Available from: http://www.who.int/mediacentre/factsheets/fs099/en/
dc.relation.referencesHampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, et al. Estimating the Global Burden of Endemic Canine Rabies. PLoS Negl Trop Dis. 2015;9(4):1–20.
dc.relation.referencesVigilato MAN, Clavijo A, Knobl T, Silva HMT, Cosivi O, Schneider MC, et al. Progress towards eliminating canine rabies: policies and perspectives from Latin America and the Caribbean. Philos Trans R Soc Lond B Biol Sci [Internet]. 2013;368(1623):20120143. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23798691
dc.relation.referencesSchneider MC, Aguilera XP, da Silva Junior JB, Ault SK, Najera P, Martinez J, et al. Elimination of neglected diseases in Latin America and the Caribbean: A mapping of selected diseases. PLoS Negl Trop Dis. 2011;5(2).
dc.relation.referencesSchneider M, Belotto A, Adé M, Leanes L, Correa E, Tamayo H, et al. Situación epidemiológica de la rabia humana en America Latina en 2004. Bol Epidemiológico/OPS. 2005;26(1):1–16.
dc.relation.referencesSchneider MC, Romijn PC, Uieda W, Tamayo H, da Silva DF, Belotto A, et al. Rabies transmitted by vampire bats to humans: an emerging zoonotic disease in Latin America? Rev Panam Salud Publica. 2009 Mar;25(3):260–9.
dc.relation.referencesJackson AC. Rabies pathogenesis update. Rev Pan-Amazônica Saúde [Internet]. 2010;1(1):81–6. Available from: http://scielo.iec.pa.gov.br/scielo.php?script=sci_arttext&pid=S2176-62232010000100023&lng=pt&nrm=iso&tlng=es
dc.relation.referencesJackson AC. Rabies. Neurol Clin. 2008;26(3):717–26.
dc.relation.referencesWallace RM, Gilbert A, Slate D, Chipman R, Singh A, Cassie Wedd, et al. Right place, wrong species: a 20-year review of rabies virus cross species transmission among terrestrial mammals in the United States. Markotter W, editor. PLoS One. 2014 Oct 8;9(10):e107539.
dc.relation.referencesKaur M, Garg R, Singh S, Bhatnagar R. Rabies vaccines: where do we stand, where are we heading? Expert Rev Vaccines. 2014;13(2014):1–13.
dc.relation.referencesErtl HCJ. Novel vaccines to human rabies. PLoS Negl Trop Dis. 2009;3(9).
dc.relation.referencesJackson A. Update on rabies. Res Rep Trop Med [Internet]. 2011 Feb;2:31. Available from: http://www.dovepress.com/update-on-rabies-peer-reviewed-article-RRTM
dc.relation.referencesJackson AC. Advances in virus research 79: research advances in rabies. In: Jackson AC, editor. Advances in virus research 79: research advances in rabies [Internet]. 2011. p. 372. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1473309912701019
dc.relation.referencesHanlon CA, Orciari LA. Rabies Virus. In: Munir M, editor. Mononegaviruses of Veterinary Importance: Pathobiology and Molecular Diagnosis [Internet]. CAB intern. 2013. p. 209–23. Available from: http://www.els.net
dc.relation.referencesLafon M. Rabies virus receptors. J Neurovirol [Internet]. 2005 Feb;11(1):82–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15804965
dc.relation.referencesDavis BM, Rall GF, Schnell MJ. Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask). Annu Rev Virol [Internet]. 2015;2(1):451–71. Available from: http://www.annualreviews.org/doi/10.1146/annurev-virology-100114-055157
dc.relation.referencesFu ZF. Rabies and rabies research: past, present and future. Vaccine. 1997;15(96):s20–4.
dc.relation.referencesScott CA, Rossiter JP, Andrew RD, Jackson AC. Structural Abnormalities in Neurons Are Sufficient To Explain the Clinical Disease and Fatal Outcome of Experimental Rabies in Yellow Fluorescent Protein-Expressing Transgenic Mice. J Virol [Internet]. 2008;82(1):513–21. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.01677-07
dc.relation.referencesSuja MS, Mahadevan A, Madhusudana SN, Shankar SK. Role of Apoptosis in Rabies Viral Encephalitis: A Comparative Study in Mice, Canine, and Human Brain with a Review of Literature. Patholog Res Int [Internet]. 2011;2011:1–13. Available from: http://www.hindawi.com/journals/pri/2011/374286/
dc.relation.referencesFernandes ER, de Andrade HF, Lancellotti CLP, Quaresma JAS, Demachki S, da Costa Vasconcelos PF, et al. In situ apoptosis of adaptive immune cells and the cellular escape of rabies virus in CNS from patients with human rabies transmitted by Desmodus rotundus. Virus Res [Internet]. 2011;156(1–2):121–6. Available from: http://dx.doi.org/10.1016/j.virusres.2011.01.006
dc.relation.referencesCeccaldi PE, Fillion MP, Ermine A, Tsiang H, Fillion G. Rabies virus selectively alters 5-HT1 receptors subtypes in rat brain. Eur J Pharmacol Mol Pharmacol. 1993;245(2):129–38.
dc.relation.referencesJackson AC. Cholinergic system in experimental rabies in mice. Acta Virol. 1993;37(6):502–8.
dc.relation.referencesJackson AC, Kammouni W, Zherebitskaya E, Fernyhough P. Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. J Virol. 2010;84(9):4697–705.
dc.relation.referencesDhingra V, Li X, Liu Y, Fu ZF. Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system. J Neurovirol. 2007;13(772651700):107–17.
dc.relation.referencesProsniak M, Hooper DC, Dietzschold B, Koprowski H. Effect of rabies virus infection on gene expression in mouse brain. Proc Natl Acad Sci U S A [Internet]. 2001 Feb 27;98(5):2758–63. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.051630298
dc.relation.referencesFarahtaj F, Zandi F, Khalaj V, Biglari P, Fayaz A, Vaziri B. Proteomics analysis of human brain tissue infected by street rabies virus. Mol Biol Rep. 2013;40(11):6443–50.
dc.relation.referencesThanomsridetchai N, Singhto N, Tepsumethanon V, Shuangshoti S, Wacharapluesadee S, Sinchaikul S, et al. Comprehensive proteome analysis of hippocampus, brainstem, and spinal cord from paralytic and furious dogs naturally infected with rabies. J Proteome Res. 2011;10(11):4911–24.
dc.relation.referencesAndressen C, Blmcke I, Celio MR. Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res [Internet]. 1993 Feb;271(2):181–208. Available from: http://link.springer.com/10.1007/BF00318606
dc.relation.referencesSchwaller B. The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci. 2009;66(2):275–300.
dc.relation.referencesChin D, Means AR. Calmodulin : a prototypical calcium sensor. Trends Cell Biol. 2000;8924(00):322–8.
dc.relation.referencesSayer RJ. Intracellular Ca2+ handling. Adv Exp Med Biol [Internet]. 2002;513:183–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12575821
dc.relation.referencesHof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, et al. Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: Phylogenetic and developmental patterns. J Chem Neuroanat. 1999;16(2):77–116.
dc.relation.referencesScotti AL, Nitsch C. Differential Ca2+ binding properties in the human cerebellar cortex: distribution of parvalbumin and calbindin D-28k immunoreactivity. Anat Embryol (Berl). 1992;185(2):163–7.
dc.relation.referencesBastianelli E. Distribution of calcium-binding proteins in the cerebellum. Cerebellum [Internet]. 2003;2(4):242–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14964684
dc.relation.referencesWasserman RH, Taylor A. N. W and A. N. Vitamin D3-Induced Calcium-Binding Protein in Chick Intestinal Mucosa. Science (80- ). 1966;152(3723):791–3.
dc.relation.referencesBaimbridge KG, Celio MR, Rogers JH. Calcium-binding proteins in the nervous system. Trends Neurosci. 1992;15(8):303–8.
dc.relation.referencesBaimbridge KG, Miller JJ, Parkes CO. Calcium-binding protein distribution in the rat brain. Brain Res [Internet]. 1982 May 13;239(2):519–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7093699
dc.relation.referencesBae EJ, Chen BH, Shin BN, Cho JH, Kim IH, Park JH, et al. Comparison of immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the striatum between young, adult and aged mice, rats and gerbils. Neurochem Res [Internet]. 2015 Apr 13;40(4):864–72. Available from: http://link.springer.com/10.1007/s11064-015-1537-x
dc.relation.referencesIacopino AM, Rhoten WB, Christakos S. Calcium binding protein ( calbindin-D28k ) gene expression in the developing and aging mouse cerebellum. Mol Brain Res. 1990;8:283–90.
dc.relation.referencesFreund TF, Buzsáki G, Leon A, Baimbridge KG, Somogyi P. Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia. Exp Brain Res. 1990;83(1):55–66.
dc.relation.referencesToyoshima T, Yamagami S, Ahmed BY, Jin L, Miyamoto O, Itano T, et al. Expression of calbindin-D28K by reactive astrocytes in gerbil hippocampus after ischaemia. Neuroreport [Internet]. 1996 Sep 2;7(13):2087–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8930964
dc.relation.referencesBerman NEJ, Yong C, Raghavan R, Raymond LA, Joag S V., Narayan O, et al. Neurovirulent simian immunodeficiency virus induces calbindin-D-28K in astrocytes. Mol Chem Neuropathol. 1998;34(1):25–38.
dc.relation.referencesHeizmann CW. Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia [Internet]. 1984;40(9):910–21. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=6205895&retmode=ref&cmd=prlinks%5Cnfile:///Users/balarampooja/Library/Application Support/Papers2/Articles/1984/Heizmann/Experientia 1984 Heizmann.pdf%5Cnpapers2://publication/uuid/5
dc.relation.referencesMattson MP, Cheng B, Baldwin SA, Smith‐Swintosky VL, Keller J, Geddes JW, et al. Brain injury and tumor necrosis factors induce calbindin D‐28K in astrocytes: Evidence for a cytoprotective response. J Neurosci Res. 1995;42(3):357–70.
dc.relation.referencesRami A, Rabié A, Thomasset M, Krieglstein J. Calbindin-D 28K and ischemic damage of pyramidal cells in rat hippocampus. J Neurosci Res [Internet]. 1992;31(1):89–95. Available from: http://doi.wiley.com/10.1002/jnr.490310113
dc.relation.referencesDeFelipe J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat [Internet]. 1997 Dec;14(1):1–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9498163
dc.relation.referencesHashemi E, Ariza J, Rogers H, Noctor SC, Martínez-Cerdeño V. The Number of Parvalbumin-Expressing Interneurons Is Decreased in the Medial Prefrontal Cortex in Autism. Cereb Cortex. 2017;27(3):1931–43.
dc.relation.referencesVoogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21(9):370–5.
dc.relation.referencesSultan F, Glickstein M. The cerebellum : Comparative and animal studies. 2007;168–76.
dc.relation.referencesGowen E, Miall RC. The cerebellum and motor dysfunction in neuropsychiatric disorders. 2007;(13):268–79.
dc.relation.referencesChami M, Oulès B, Paterlini-Bréchot P. Cytobiological consequences of calcium-signaling alterations induced by human viral proteins. Biochim Biophys Acta - Mol Cell Res. 2006;1763(11):1344–62.
dc.relation.referencesMasliah E, Ge N, Achim CL, Wiley CA. Differential vulnerability of calbindin-immunoreactive neurons in HIV encephalitis. J Neuropathol Exp Neurol [Internet]. 1995 May;54(3):350–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7745434
dc.relation.referencesEisenman LM, Brothers R, Tran MH, Kean RB, Dickson GM, Dietzschold B, et al. Neonatal Borna disease virus infection in the rat causes a loss of Purkinje cells in the cerebellum. J Neurovirol [Internet]. 1999;5(2):181–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10321982
dc.relation.referencesHeimrich B, Hesse DA, Wu YJ, Schmid S, Schwemmle M. Borna disease virus infection alters synaptic input of neurons in rat dentate gyrus. Cell Tissue Res [Internet]. 2009;338(2):179–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19806365
dc.relation.referencesJackson AC. Diabolical effects of rabies encephalitis. J Neurovirol [Internet]. 2016 Feb 21;22(1):8–13. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.01677-07
dc.relation.referencesSantamaría G, Rengifo AC, Torres-Fernández O. Expresión de glutamato en la coteza cerebral de ratones normales y ratones infectados con el virus de la rabia. Rev Cient Unincca. 2010;15(2):67–81.
dc.relation.referencesMonroy-Gómez J, Santamaría G, Torres-Fernández O. Overexpression of MAP2 and NF-H associated with dendritic pathology in the spinal cord of mice infected with rabies virus. Viruses. 2018;10(3).
dc.relation.referencesCaterine Rengifo A, Jazmin Umbarila V, Janeth Garzón M, Torres-Fernández O. Differential Effect of the Route of Inoculation of Rabies Virus on NeuN Immunoreactivity in the Cerebral Cortex of Mice Efecto Diferencial de la Vía de Inoculación del Virus de la Rabia sobre la Inmunorreactividad de NeuN en la Corteza Cerebral de Ratones. Int J Morphol. 2016;34(4):1362–8.
dc.relation.referencesTorres-Fernández O, Yepes GE, Gómez JE. Alteraciones de la morfología dendrítica neuronal en la corteza cerebral de ratones infectados con rabia : un estudio con la técnica de Golgi. Biomédica. 2007;27(605):605–13.
dc.relation.referencesHurtado AP, Caterine Rengifo A, Torres-Fernández O. Immunohistochemical Overexpression of MAP-2 in the Cerebral Cortex of Rabies-Infected Mice. Int J Morphol. 2015;33(2):465–70.
dc.relation.referencesTorres-Fernández O, Monroy-Gómez JA, Sarmiento Lacera LE. Ultraestructura dendrítica en neuronas piramidales de ratones inoculados con virus de la rabia. Biosalud [Internet]. 2016;15(1):9–16. Available from: http://200.21.104.25/biosalud/downloads/Biosalud15(1)_2.pdf
dc.relation.referencesCelio MR. Parvalbumin in most gamma-aminobutyric acid- containing neurons of the rat cerebral cortex. Science (80- ). 1986;231(4741):995–7.
dc.relation.referencesKristensson K, Dasturt DK, Manghanit DK, Tsiangs H, Bentivoglio M. Review Rabies : interactions between neurons and viruses . A review of the history of Negri inclusion bodies. Neuropathol Appl Neurobiol. 1996;22:179–87.
dc.relation.referencesTangchai P. Central nervous system lesions in human rabies. A study of twenty- four cases. J Med Assoc Thail [Internet]. 1970;53(7):471–88. Available from: http://www.cabdirect.org/
dc.relation.referencesTsiang H. Pathophysiology of Rabies Virus Infection of the Nervous System. Adv Virus Res [Internet]. 1993;42:375–412. Available from: http://www.sciencedirect.com/science/article/pii/S0065352708600901
dc.relation.referencesMurphy FA. Rabies Pathogenesis. Arch Virol. 1977;297:279–97.
dc.relation.referencesLamprea NP, Ortega LM, Santamaría G, Sarmiento L, Torres-Fernández O. Elaboración y evaluación de un antisuero para la detección inmunohistoquímica del virus de la rabia en tejido cerebral fijado en aldehídos. Biomédica [Internet]. 2010 Mar 1;30(1):146. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-77956124349&partnerID=tZOtx3y1
dc.relation.referencesRuiz-Villalba A, Mattiotti A, Gunst Q, Cano-Ballesteros S, Van Den Hoff M, Ruijter JM. Reference genes for gene expression studies in the mouse heart. Sci Rep. 2017;7(1):1–9.
dc.relation.referencesZeng H, Li D, Qin X, Chen P, Tan H, Zeng X, et al. Hepatoprotective Effects of Schisandra sphenanthera Extract against Lithocholic Acid-Induced Cholestasis in Male Mice Are Associated with Activation of the Pregnane X Receptor Pathway and Promotion of Liver Regeneration. Drug Metab Dispos. 2016;44(3):337–42.
dc.relation.referencesZhang Y, Shen B, Zhang D, Wang Y, Tang Z, Ni N, et al. miR-29a regulates the proliferation and differentiation of retinal progenitors by targeting Rbm8a. Oncotarget. 2017;8(19):31993–2008.
dc.relation.referencesHellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. Open Access Method qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. 2007; Available from: http://genomebiology.com/2007/8/2/R19
dc.relation.referencesSchmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc [Internet]. 2008;3(6):1101–8. Available from: http://www.nature.com/doifinder/10.1038/nprot.2008.73
dc.relation.referencesRahman MM, Govindarajulu Z. A modification of the test of Shapiro and Wilk for normality. J Appl Stat [Internet]. 1997;24(2):219–36. Available from: http://www.tandfonline.com/doi/abs/10.1080/02664769723828
dc.relation.referencesHartinger J, Folz T, Institut P-E-. Klinische Endpunkte bei der Tollwutimpfstoffpriifung. ALTEX. 2001;18(1):37–40.
dc.relation.referencesPark CH, Kondo M, Inoue S, Noguchi A, Oyamada T, Yoshikawa H, et al. The histopathogenesis of paralytic rabies in six-week-old C57BL/6J mice following inoculation of the CVS-11 strain into the right triceps surae muscle. J Vet Med Sci. 2006;68(6):589–95.
dc.relation.referencesKojima D, Park C, Tsujikawa S, Kohara K, Hatai H. Lesions of the Central Nervous System Induced by Intracerebral Inoculation of BALB / c Mice with Rabies Virus ( CVS-11 ). J Vet Med Sci. 2010;72(8):1011–1016.
dc.relation.referencesJackson a C, Reimer DL. Pathogenesis of experimental rabies in mice: an immunohistochemical study. Acta Neuropathol. 1989;78(2):159–65.
dc.relation.referencesRuigrok TJH, van Touw S, Coulon P. Caveats in Transneuronal Tracing with Unmodified Rabies Virus: An Evaluation of Aberrant Results Using a Nearly Perfect Tracing Technique. Front Neural Circuits. 2016;
dc.relation.referencesBentivoglio M. The organization of the direct cerbellospinal projections. Prog Brain Res. 1982;57:279–91.
dc.relation.referencesVerdes JM, de SantAna FJF, Sabalsagaray MJ, Okada K, Calliari A, Morana JA, et al. Calbindin D28k distribution in neurons and reactive gliosis in cerebellar cortex of natural Rabies virus-infected cattle. J Vet Diagnostic Investig [Internet]. 2016; Available from: http://vdi.sagepub.com/lookup/doi/10.1177/1040638716644485
dc.relation.referencesJackson a C, Rossiter JP. Apoptosis plays an important role in experimental rabies virus infection. J Virol. 1997;71(7):5603–7.
dc.relation.referencesJackson AC, Randle E, Lawrance G, Rossiter JP. Neuronal apoptosis does not play an important role in human rabies encephalitis. J Neurovirol. 2008;14(5):368–75.
dc.relation.referencesGe Y, Belcher SM, Pierce DR, Light KE. Detection of Purkinje cell loss following drug exposures to developing rat pups using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for calbindin-D28k mRNA expression. Toxicol Lett. 2004;150(3):325–34.
dc.relation.referencesIacopino a M, Christakos S. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci U S A. 1990;87(11):4078–82.
dc.relation.referencesPei J-C, Liu C-M, Lai W-S. Distinct phenotypes of new transmembrane-domain neuregulin 1 mutant mice and the rescue effects of valproate on the observed schizophrenia-related cognitive deficits. Front Behav Neurosci. 2014;
dc.relation.referencesLee JC, Chung YH, Cho YJ, Kim J, Kim N, Cha CI, et al. Immunohistochemical study on the expre ssion of calcium binding proteins ( calbindin-D28k , calretinin , and parvalbumin ) in the cerebellum of the nNOS knock-out ( - / - ) mice. Anat Cell Biol. 2010;43:64–71.
dc.relation.referencesBäurle J, Hoshi M, Grüsser-Cornehls U. Dependence of Parvalbumin Expression on Purkinje Cell Input in the Deep Cerebellar Nuclei. J Comp Neurol. 1998;392(October 1997):499–514.
dc.relation.referencesKishimoto J, Tsuchiya T, Cox H, Emson PC, Nakayama Y. Age-related Changes of Calbindin-D28k , Calretinin , and Parvalbumin mRNAs in the Hamster Brain. 1998;19(1):77–82.
dc.relation.referencesDove LS, Nahm S, Murchison D, Abbott LC, Griffith WH, Leonard S, et al. Altered Calcium Homeostasis in Cerebellar Purkinje Cells of Leaner Mutant Mice. J Neurophysiol. 2000;84(1):513–24.
dc.relation.referencesArnold DB, Heintz N. A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells. Proc Natl Acad Sci U S A. 1997;94(16):8842–7.
dc.relation.referencesSoghomonian J, Zhang K, Reprakash S, Blatt GJ. Decreased Parvalbumin mRNA Levels in Cerebellar Purkinje Cells in Autism. 2017;1–10.
dc.relation.referencesLanoue AC, Blatt GJ, Soghomonian J-J. Decreased parvalbumin mRNA expression in dorsolateral prefrontal cortex in Parkinson′s disease. Brain Res [Internet]. 2013 Sep;1531(4):37–47. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006899313010123
dc.relation.referencesZhang M, Xu Y, Duan M, Song Y, Sun L, Li Y, et al. Street rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus. J Gen Virol. 2012;
dc.relation.referencesEilers J, Garaschuk O. Ataxia and Altered Dendritic Calcium Signaling in Mice Carrying a Targeted Null mutation of the calbindin D28k gene. Proc Natl Acad. 1997;(May 2015).
dc.relation.referencesBarski JJ, Hartmann J, Rose CR, Hoebeek F, Mörl K, Noll-Hussong M, et al. Calbindin in Cerebellar Purkinje Cells Is a Critical Determinant of the Precision of Motor Coordination. J Neurosci [Internet]. 2003;23(8):3469–77. Available from: http://www.jneurosci.org/content/23/8/3469%5Cnhttp://www.jneurosci.org/content/23/8/3469.full.pdf%5Cnhttp://www.jneurosci.org/content/23/8/3469.long%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/12716955
dc.relation.referencesUbol S, Kasisith J, Pitidhammabhorn D, Tepsumethanol V. Screening of Pro-Apoptotic Genes Upregulated in an Experimental Street Rabies Virus-Infected Neonatal Mouse Brain. 2005;49(5):423–31.
dc.relation.referencesGruol DL. Regulation of Calcium in the Cerebellum. In: Gruol DL, Koibuchi N, Manto M, Molinari M, Schmahmann JD, Shen Y, editors. Essentials of Cerebellum and Cerebellar Disorders. Springer; 2016. p. 335–9.
dc.relation.referencesAiraksinen M, Eilers J, Garaschuk O, Thoenen H, Konnerth A MM. Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad. 1997;94(February):1488–93.
dc.relation.referencesCollin T, Chat M, Lucas MG, Moreno H, Racay P, Schwaller B, et al. Developmental Changes in Parvalbumin Regulate Presynaptic Ca 2 ϩ Signaling. J Neurosci. 2005;25(1):96–107.
dc.relation.referencesVreugdenhil M, Jefferys JGR, Celio MR, Schwaller B. Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. J Neurophysiol. 2003;89(3):1414–22.
dc.relation.referencesFu ZF, Jackson AC. Neuronal dysfunction and death in rabies virus infection. J Neurovirol. 2005;11(1):101–6.
dc.relation.referencesCaillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci U S A. 2000;97(24):13372–7.
dc.relation.referencesDove LS, Nahm S-S, Murchison D, Abbott LC, Griffith WH. Altered Calcium Homeostasis in Cerebellar Purkinje Cells of Leaner Mutant Mice. J Neurophysiol. 2017;84(1):513–24.
dc.relation.referencesKammouni W, Wood H, Saleh A, Appolinario CM, Fernyhough P, Jackson AC. Rabies virus phosphoprotein interacts with mitochondrial Complex I and induces mitochondrial dysfunction and oxidative stress. J Neurovirol. 2015;370–82.
dc.relation.referencesGholami A, Kassis R, Real E, Delmas O, Guadagnini S, Larrous F, et al. Mitochondrial dysfunction in lyssavirus-induced apoptosis. J Virol. 2008;82(10):4774–84.
dc.relation.referencesTian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics. 2004;3(10):960–9.
dc.relation.referencesVogel C, De Sousa Abreu R, Ko D, Le SY, Shapiro BA, Burns SC, et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol [Internet]. 2010;6(400):1–9. Available from: http://dx.doi.org/10.1038/msb.2010.59
dc.relation.referencesWilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature [Internet]. 2014;509(7502):582–7. Available from: http://dx.doi.org/10.1038/nature13319
dc.relation.referencesMata J, Marguerat S, Bähler J. Post-transcriptional control of gene expression: A genome-wide perspective. Trends Biochem Sci. 2005;30(9):506–14.
dc.relation.referencesHabel K. Habel test for potency. In: Meslin FX, Kaplan M KH, editor. Laboratory Techniques In Rabies [Internet]. 4th ed. 1996. p. 369–71. Available from: http://apps.who.int//iris/handle/10665/38286
dc.relation.referencesSpijker S. Chapter 2 Dissection of Rodent Brain Regions. In: Neuroproteomics. 2011. p. 13–26.
dc.relation.referencesKuang J, Yan X, Genders AJ, Granata C, Bishop DJ. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. PLoS One. 2018;
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalRabia
dc.subject.proposalRabies
dc.subject.proposalCalbindin
dc.subject.proposalCalbindina
dc.subject.proposalParvalbumin
dc.subject.proposalParvoalbúmina
dc.subject.proposalcerebelo
dc.subject.proposalcerebellum
dc.subject.proposalcélula de Purkinje
dc.subject.proposalPurkinje cell
dc.subject.proposalcélulas en cesta/estrelladas.
dc.subject.proposalstellate/basket cells.
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito