Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorAriza Nieto, Claudia
dc.contributor.advisorAfanador Téllez, Germán
dc.contributor.authorAvellaneda Avellaneda, Yesid
dc.date.accessioned2020-03-06T13:45:04Z
dc.date.available2020-03-06T13:45:04Z
dc.date.issued2019
dc.identifier.citationAvellaneda Avellaneda, Yesid (2020) Utilización de glicerina en sistemas de alimentación de aves. Tesis de Doctorado, Universidad Nacional de Colombia
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75915
dc.description.abstractDada la importancia actual del sector avícola nacional, con relación al consumo de proteína de origen animal y la calidad de vida de los consumidores colombianos, y con el ánimo de aumentar el espectro de uso de un coproducto de la industria del biodiesel, con variadas características funcionales, como es la glicerina, esta tesis busca optimizar el uso de este recurso en sistemas de producción de aves, evaluando su utilización en momentos específicos y por tiempos definidos, para lograr un impacto sobre la respuesta productiva que beneficie la rentabilidad y competitividad del sector. Con base en estos criterios se adelantaron cincos experimentos, tres con pollos de engorde y dos con gallinas ponedoras en condiciones de altitud, que tenían los siguientes objetivos: 1) determinar el efecto de la utilización de glicerina USP en dietas de pollos de engorde durante una restricción energética, 2) evaluar la inclusión de glicerina cruda en la dieta de la fase de realimentación de pollos de engorde, 3) determinar el impacto de la utilización de glicerina USP durante la primera o última semana de vida de pollos de engorde sometidos a dos tiempos de retraso en el acceso al alimento, 4) evaluar el impacto del consumo de glicerina cruda o USP en las dietas de prepostura (semana 17 hasta el 5% de postura) y prepico (desde el 5% y hasta el 50% de postura) de gallinas ponedoras marrón, hasta la semana 42 de edad, y 5) determinar el efecto de la inclusión de glicerina cruda en dietas con diferente valor de energía metabolizable durante las fases de recría, prepostura y prepico en gallinas ponedoras marrón hasta la semana 40 de edad. En el experimento 1 se estudió el efecto de la inclusión de diferentes niveles de glicerina USP en dietas de iniciación de pollos de engorde sometidos a una restricción energética del 85% del día 5 al 21 de edad, sobre la temperatura rectal, el desempeño productivo y el impacto económico durante un ciclo de producción. En este experimento se evaluaron cuatro niveles de utilización de glicerina USP, 0, 2.5, 5.0 o 7.5%. A nivel general se encontró que la inclusión de glicerina USP en las dietas de iniciación, retraso linealmente (p<0.05) el tiempo al que los pollos estabilizan su temperatura corporal, además, la conversión alimenticia y el rendimiento en pechuga tendieron (p<0.1) a mejorar con inclusiones entre 2.5 y 5.0% de glicerina USP y, dentro del grupo de pollos alimentados a voluntad, los que consumieron dietas con 5 o 7.5% de glicerina USP registraron un mayor beneficio económico. El experimento 2 evaluó el uso de dietas formuladas con glicerina cruda durante la fase de engorde de pollos que fueron restringidos durante la fase inicial. Los pollos de engorde fueron alimentados con dietas que contenían 0, 2.5, 5.0 o 7.5% de glicerina cruda y venían de ser restringidos al 15% en la energía y suplementados con 1% de aminogut®. La utilización de un aditivo rico en aminoácidos funcionales mejoró la longitud de las vellosidades del duodeno y la respuesta productiva durante la fase de iniciación. La inclusión de glicerina cruda durante la fase de engorde disminuyó la incidencia de ascitis (hipertrofia del ventrículo derecho) y los pollos que consumieron dietas con 5.0% de glicerina cruda presentaron una mayor ganancia de peso. Pollos de engorde sometidos a diferentes tiempos de retraso en el acceso al alimento fueron utilizados en el experimento 3 para evaluar el efecto de la utilización de glicerina USP en el agua o la dieta de iniciación sobre la respuesta productiva durante la primera semana de vida. Posteriormente, al día 35 de edad, se volvió a utilizar glicerina USP, para determinar el efecto sobre la respuesta productiva y las pérdidas de agua de la carne de pollos de engorde. Los pollos que recibieron glicerina USP durante los primeros días registraron menor (p=0.0797) concentración de sodio en plasma sanguíneo. La ganancia de peso de la primera semana fue mayor (<0.05) en los pollos que recibieron dieta con glicerina USP. Al final del ciclo, los pollos de engorde que consumieron dietas de finalización que contenían 5% de glicerina USP, consumieron más (p<0.05) alimento, ganaron más (p<0.05) peso corporal, pero registraron mayor (p<0.05) mortalidad que los pollos del grupo control. El tiempo de retraso en el acceso al alimento afectó el desempeño productivo de los pollos hasta la fase de iniciación. El ensayo 4 se llevó acabo con pollitas de 17 semanas de edad y busco evaluar el efecto de la inclusión de glicerina cruda o USP en dietas de transición (hasta el 50% de postura), sobre el desempeño productivo de las ponedoras (hasta la semana 42 de edad). Se evaluaron cuatro aportes de energía desde la glicerina cruda o USP, 0, 3, 6 o 9% de EM de las dietas. Las aves alimentadas con dietas que contenían 9% de aporte de energía desde la glicerina tendieron (p<0.1) a consumir más alimento y a ganar más peso de la semana 17 a la 19 y luego, presentaron un mayor consumo de alimento y postura, en los dos primeros meses del ciclo de producción. La altura de la albumina fue mayor en los huevos de gallinas que consumieron glicerina USP comparados con glicerina cruda. El consumo de glicerina tendió (p=0.084) a disminuir el tiempo a la madurez sexual de las gallinas del estudio, a la vez que las aves que consumieron dietas con alta inclusión de glicerina pausaron 0.5 días menos. En el último experimento, se evaluó el efecto de la inclusión de glicerina cruda en dietas con dos concentraciones de energía metabolizable, desde la semana 13 de edad hasta el 50% de postura, sobre la respuesta productiva de aves ponedoras hasta la semana 40 de edad. Los niveles de inclusión de glicerina cruda fueron 0, 3, 6 o 9% y los niveles de EMAn de las dietas variaron en 100 kcal en cada fase. Se observó un incremento lineal (p<0.05) en la ganancia de peso hasta la semana 19 de edad, en función a la inclusión de glicerina y posteriormente, entre el inicio de la postura y el pico, se observó un incremento lineal (p<0.05) en el número de huevos puestos y el consumo de alimento, lo que afecto (p=0.0981) positivamente el ingreso parcial. Por otro lado, durante el final del levante, las aves que recibieron dietas bajas en energía consumieron más (p<0.05) alimento, ganaron menos (p<0.05) peso corporal y registraron una menor (p<0.05) conversión alimenticia y durante la fase inicial de postura, consumieron más (p<0.05) alimento, pusieron huevos más livianos (p<0.05) y registraron una mayor (p=0.072) conversión alimenticia, lo que se tradujo en que presentaran una menor (p=0.0976) utilidad bruta.
dc.description.abstractDue to the current importance of the national poultry sector, in relation to the consumption of animal protein and the quality of life of Colombian consumers, and with the aim of increasing the spectrum of use of a co-product of the biodiesel industry with various functional characteristics, such as glycerin, this thesis seeks to optimize the use of this resource in poultry production systems, evaluating their use at specific times and for defined times, to achieve an impact on the productive response that benefits profitability and competitiveness of the sector. Based on these criteria, five experiments were carried out, three with broiler chickens and two with laying hens in high altitude conditions, which had the following objectives: 1) to determine the effect of the use of USP glycerin in broiler diets during energy restriction, 2) evaluate the inclusion of crude glycerin in the diet of the broiler feed-back phase, 3) determine the impact of using glycerin USP during the first or last week of life of broiler chickens submitted to two times of delay in access to feed, 4) evaluate the impact of consumption of crude glycerin or USP in the diets of pre-posture (week 17 to 5% posture) and pre-pick (from 5% and up to 50% posture) ) of brown laying hens, up to 42 weeks of age, and 5) determine the effect of the inclusion of crude glycerin in diets with different metabolizable energy value during the rearing, pre-posture and pre-pick in brown laying hens until week 40 of age. In experiment 1, the effect of the inclusion of different levels of USP glycerin in starter diets of broilers subjected to an energy restriction of 85% from day 5 to 21 of age, on rectal temperature, productive performance and the economic impact during a production cycle. In this experiment, four levels of USP, 0, 2.5, 5.0 or 7.5% glycerin utilization were evaluated. At a general level, it was found that the inclusion of glycerin USP in the initiation diets, linearly delayed (p <0.05) the time at which the chickens stabilized their body temperature, in addition, the feed conversion and breast yield tended (p <0.1 ) to improve with inclusions between 2.5 and 5.0% of glycerin USP and, within the group of chickens fed at will, those that consumed diets with 5 or 7.5% glycerin USP registered a greater economic benefit. Experiment 2 evaluated the use of diets formulated with crude glycerin during the fattening phase of chickens that were restricted during the initial phase. The broilers were fed diets containing 0, 2.5, 5.0 or 7.5% crude glycerin and had been restricted to 15% in energy and supplemented with 1% aminogut®. The use of an additive rich in functional amino acids improved the length of the villi of the duodenum and the productive response during the initiation phase. The inclusion of crude glycerin during the fattening phase decreased the incidence of ascites (hypertrophy of the right ventricle) and the chickens that consumed diets with 5.0% crude glycerin had a greater weight gain. Broilers subjected to different times of delay in access to the feed were used in experiment 3 to evaluate the effect of using USP glycerin in the water or the initiation diet on the productive response during the first week of life. Subsequently, at day 35 of age, USP glycerin was again used to determine the effect on the productive response and water losses of the meat of broiler chickens. The chickens that received glycerin USP during the first days registered a lower (p = 0.0797) concentration of sodium in blood plasma. The weight gain of the first week was higher (<0.05) in the chickens that received the USP glycerin diet. At the end of the cycle, the broilers that consumed finishing diets containing 5% USP glycerin, consumed more (p <0.05) food, gained more (p <0.05) body weight, but recorded a higher one (p <0.05) mortality that the chickens of the control group. The delay in access to food affected the performance of the chickens until the initiation phase.
dc.description.sponsorshipAgrosavia - Colciencias - Ecopetrol
dc.format.extent209
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcAnimales
dc.titleUtilización de glicerina en sistemas de alimentación de aves
dc.title.alternativeUse of glycerin in poultry feeding systems
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalDoctor en Ciencias Producción Animal. Línea de Investigación: Nutrición Animal
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupMicrobiología y Nutrición Animal del Trópico
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAAFCO Association of American Feed Control Officials. 2016. Midyear meeting agenda book’, Wild Dunes Resort, Isle of Palms, South Carolina, January 18-20. 1-28.
dc.relation.referencesAbd-Elsamee M, Abdo Z, Manylawi M and Salim I. 2010. Use of crude glycerin in broiler diets. Egyptian Poultry Science. 30(1): 281-295.
dc.relation.referencesAbed F, Karimi A, Sadeghi G, Shivazad M, Dashti S and Sadeghi-Sefidmazgi A. 2011. Do broiler chicks possess enough growth potential to compensate long-term feed and water depravation during the neonatal period? South African Journal of Animal Science. 41(1): 33-39.
dc.relation.referencesAbioja MO, Sodipe OG, Abiona JA, Oladipo KA, Kasali OD, Akerele Z, Ola A, Oke H, Ogundele O and Osinowo OA. 2014. Thermotolerance acquisition in broiler chickens through early feed restriction: response to acute heat stress. Pertanika Journal of Tropical Agricultural Science. 37(3): 311-319.
dc.relation.referencesAdeleye OO, Otakoya IO, Fafiolu AO, Alabi JO, Egbeyale LT and Idowu OMO. 2018. Serum chemistry and gut morphology of two strains of broiler chickens to varying interval of post hatch feeding. Veterinary and Animal Science. 5: 20-25.
dc.relation.referencesAlemayehu K and Sisay T. 2017. The pardox of exotic versus indigenous chicken population dynamics and distribution pattern in Ethiopia: Review. Journal of Applied Animal Science. 10(1): 9-24.
dc.relation.referencesAlexandratos N and Bruisma J. 2012. World agriculture towards 2030/2050, the 2012 revision. ESA Working Paper No. 12-03. Rome, FAO. p. 147.
dc.relation.referencesAlkan S, Karsli T, Karabağ K, Galiç A. 2013. The effects of selection and season on clutch traits and egg production in japanese quails (Coturnix coturnix japonica) of different lines. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi. 8(1): 71-77.
dc.relation.referencesAltahat E, AL-Sharafat A and Altarawneh M. 2012. Factors affecting profitability of layer hens enterprises. American Journal of Agricultural and Biological Sciences. 7(1): 106-113.
dc.relation.referencesAnderson M, Cotter J, Garnham A, Casley D and Febbraio M. 2001. Effect of glycerol-induced hyperhydration on thermoregulation and metabolism during exercise in heat. International Journal of Sport Nutrition and Exercise Metabolism. 11(3): 315–33.
dc.relation.referencesAriza C, Afanador G, Avellaneda Y, Mejía G, Mayorga O, García G, Pérez C, Ordóñez C, Rubiano A, Ramos Y, Ortiz R, Malagon K, Montañés D, Loaiza A, Reina A, Téllez L y Rodríguez S. 2012. Glicerina y subproductos del biodiesel, alternativa energética para alimentación de aves y cerdos. Simbiosis, Ciencia y Publicidad, Bogotá, Colombia, p. 1- 27.
dc.relation.referencesAvellaneda Y, Hernández J, Ariza C y Afanador G. 2008. Efecto de la suplementación de L-glutamina y L-glutamato (Aminogut®) sobre el crecimiento temprano de pollos de engorde. Revista de Medicina Veterinaria y Zootecnia. 55: 77-90.
dc.relation.referencesAvellaneda Y, Rodríguez D, Afanador G and Ariza C 2009a. Efecto de la inclusión de glicerina cruda sobre el desempeño productivo de hembras de pollos de engorde en la Sabana de Bogotá. Revista Colombiana de Ciencias Pecuarias. 22: 3.
dc.relation.referencesAvellaneda Y, Cifuentes D, Afanador G and Ariza C. 2009b. Effect of technical grade glycerin on the performance of brown laying hens at high altitude. Poultry Science. 89, E-Supplement 1: 94.
dc.relation.referencesAvellaneda Y, Pérez C, Ariza-Nieto C and Afanador G. 2011. Valor de energia metabolizável de glicerina crua de óleo de palma em frangos de corte. 48° Reunião da Sociedade Brasileira de zootecnia. Belem-PA, 18-21 de julho de 2011.
dc.relation.referencesAvellaneda Y, Ortiz R, Afanador G and Ariza-Nieto C. 2013. Utilization of high levels of crude glycerin in comercial layer diets. Journal of Animal Science, E-Supplement 2.
dc.relation.referencesAVINESP. 2014. Modelo de predição de crescimento e exigências nutricionais. UNESP, Software, Jaboticabal-SP, Brasil.
dc.relation.referencesAzis A, Abbasb H, Heryandib Y and Kusnadib E. 2011. Compensatory growth and production efficiency of broiler chickens exposed to feeding time restriction. Media Peternakan. 50-57.
dc.relation.referencesBaião N, Lara L. 2005. Oils and Fat in Broiler Nutrition. Brazilian Journal of Poultry Science. 7(3): 129 – 141.
dc.relation.referencesBarteczko J and Kaminski J. 1999. The effect of glycerol and vegetable fat on some physiological indices of the blood and excess of fat in broiler carcasses. Annals Warsaw Agricultural University Animal Science. 36: 197-209.
dc.relation.referencesBartell S and Batal A. 2007. The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poultry Science. 86: 1940-1947.
dc.relation.referencesBatal AB and Parsons CM. 2002. Effect of fasting versus feeding Oasis after hatching on nutrient utilization in chicks. Poultry Science. 2002. 81: 853-859.
dc.relation.referencesBatista E, Furlan AC, Ton APS, Pasquetti TJ, Quadros TCO, Grieser DO and Zancanela V. 2013. Avaliação nutricional da glicerina vegetal semipurificada para codornas de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 65(6): 783-1791.
dc.relation.referencesBednarczyk M, Kiedzewski K and Szwaczkowski T. 2000. Genetic parameters of the traditional selection traits and some clutch traits in a commercial line of laying hens*. Archiv fur Geflugelkunde. 64(3): 129 – 133.
dc.relation.referencesBenyi K, Acheompong-Boateng O and Norris D. 2011. Effect of strain and different skip-a-day feed restriction on growth performance of broiler chickens. Tropical Animal Health and Production. 43: 871-876.
dc.relation.referencesBernardino V, Borges P, Fonseca R, Minati E, Makiyama L, Silva R, de Oliveira D and Januzzi L. 2015. Sources and levels of glycerin for broilers from 22 to 35 days. African Journal of Agricultural Research. 10(11): 1259-1265.
dc.relation.referencesBeserra V A, Cesar A S and Peres AAC. 2016. Adocao da glicerina bruta na dieta animal e seu impacto no produto final. Archivos de Zootecnia. 65(250): 259-266.
dc.relation.referencesBhanja SK, Devi CA, Panda AK and Sunder GS. 2009. Effect of post hatch feed deprivation on yolk-sac utilization and performance of young broiler chickens. Asian-Australasian Journal of Animal Sciences. 2009. 22(8): 1174-1179.
dc.relation.referencesBigot K, Mignon-Grasteau S, Picard M and Tesseraud S. 2003. Effects of delayed feed intake on body, intestine, and muscle development in neonate broilers. Poultry Science. 82(5): 781-788.
dc.relation.referencesBölükbasi S, Aktas M and Güzel M. 2005. The effect of feed regimen on ascites induced by cold temperatures and growth performance in male broilers. International Journal of Poultry Science. 4(5): 326-329.
dc.relation.referencesBoostani A, Ashayerizadeh A, Manmoodian F and Kamalzadeh A. 2010. Comparison of the effects of several feed restriction periods to control ascites on performance, carcass characteristics and hematological indices of broilers. Brazilian Journal of Poultry Science. 12(3): 171-177.
dc.relation.referencesBordignon G, Lima HJD, Martins RA and Fonseca MM. 2017. Niveis de glicerina bruta na racao de suinos nas fases de crescimento e terminacao. Archivos de Zootecnia. 66(255): 429-432.
dc.relation.referencesBoso KMO, Mukarami CRA, Nascimento GR, Matumoto-Pintro PT and Ospia-Rojas IC. 2013. Fatty acid profile, performance and quality of eggs from laying hens fed with crude vegetable glycerine. International Journal of Poultry Science. 12(6): 341-347.
dc.relation.referencesBrake JD, Chamblee TN, Schultz CD, Peebles ED and Thaxton JP. 1992. Daily feed and water consumption of broiler chicks from 0 to 21 days of age. The Journal of Applied Poultry Research. 1(2): 160-163.
dc.relation.referencesBrody T. 1999. Regulation of energy metabolism. Second Edition, Academic Press, Nutritional Biochemistry, Berkeley, Califormia, p. 214.
dc.relation.referencesBruisma J. 2003. World agriculture towards 2015/2030, An FAO perspective. Earthscan Publications Ltd. London, FAO. p. 432.
dc.relation.referencesBurton RR and Smith AH. 1967. Effect of policytemia and chronic hypoxia on heart mass in the chicken. Journal of Applied Physiology. 22(15): 782-785.
dc.relation.referencesButzen FM, Ribeiro AML, Vieira MM, Kessler AM, Dadalt JC and Della MP. 2013. Early feed restriction in broilers. I–Performance, body fraction weights, and meat quality. Journal of Applied Poultry Research. 22: 251–259.
dc.relation.referencesCankaya C, Ocak N and Sungu M. 2008. Canonical correlation analysis for estimation of relationships between sexual maturity and egg production traits upon availability of nutrients in pullets. Asian-Australian Journal of Animal Science. 21(11): 1576-1584.
dc.relation.referencesCarole M, Claire L and Pierre A. 2009. Impact de l’utilisation de glycerine sur les performances des Poulets de 1 a 35 Jours’ Huitièmes Journées de la Recherche Avicole. St Malo, 25 et 26 mars.
dc.relation.referencesCengiz O, Koksal BH, Tatli O, Sevim O, Avci H, Epikmen T, Beyaz D, Buyukyoruk S, Boyacioglu M, Uner A and Onol AG. 2012. Influence of dietary organic acid blend supplementation and interaction with delayed feed access after hatch on broiler growth performance and intestinal health. Veterinari Medicina. 57(10): 515–528.
dc.relation.referencesCerrate S, Yan F, Wang Z, Coto C, Sacakli P and Waldroup P. 2006. Evaluation of glycerine from biodiesel production as a feed ingredient for broilers’, International Journal of Poultry Science. 6(11): 1001-1007.
dc.relation.referencesCerrate S and Waldroup P. 2009. Maximum profit feed formulation of broilers: 1. development of a feeding. program model to predict profitability using non linear programming. International Journal of Poultry Science. 8 (3): 205-215.
dc.relation.referencesChristensen VL. 2009. Development during the first seven days post-hatching. Avian Biology Research. 2:27-33.
dc.relation.referencesChung YH, Rico DE, Martinez CM, Cassidy TW, Noirot V, Ames A. 2007. Effects of feeding dry glycerin to early postpartum Holstein dairy cows on lactational performance and metabolic profiles. Journal of Dairy Science. 90: 5682–5691.
dc.relation.referencesCiriminna R, Della Pina C, Rossi M and Pagliaro M. 2014. Understanding the glycerol market. European Journal of Lipid Science and Technology. 116(10): 1-8.
dc.relation.referencesClassen H. 2017. Diet energy and feed intake in chickens. Animal Feed Science and Technology.233: 13–21.
dc.relation.referencesCoutts A, Reaburn P, Mummery K, Holmes M. 2002. The effect of glycerol hyperhydration on olympic distance triathlon performance in high ambient temperatures. International Journal of Sport Nutrition and Exercise Metabolism. 12(1):105-119.
dc.relation.referencesCufadar Y, Göçmen R and Kanbur G. 2016. The effect of replacing soya bean oil with glycerol in diets on performance, egg quality and egg fatty acid composition in laying hens. Animal. 10(1): 19–24.
dc.relation.referencesda Silva MC, Vieira RGM, Rodrigues KF, da Silva GF, Sousa LF, Rodrigues FL, Alves CF, Augusto WF, Pereira I and de Sousa L. 2017. Effects of purified glycerin in balanced diets of chicken broilers treated from 22 to 42 days of age. Ciências Agrárias, Londrina. 38(4): 2083-2090.
dc.relation.referencesDai, SF, Gao, F, Zhang, WH, Song, SX, Xu, XL and Zhou, GH 2011 ‘Effects of dietary glutamine and gamma-aminobutyric acid on performance, carcass characteristics and serum parameters in broilers under circular heat stress’ Animal Feed Science and Technology. 168, 51-60.
dc.relation.referencesDANE. 2013. Alimentos completos balanceados en la nutrición de las aves de corral. Boletín mensual INSUMOS Y FACTORES ASOCIADOS A LA PRODUCCIÓN AGROPECUARIA. 7: 1-9.
dc.relation.referencesde Beer M, and Coon CN. 2007. The effect of different feed restriction programs on reproductive performance, efficiency, frame size, and uniformity in broiler breeder hens. Poultry Science. 86: 1927–1939.
dc.relation.referencesDelgado, R, Latorre, JD, Vicuña, E, Hernandez-Velasco, X, Vicente, JL, Menconi, A, Kallapura, G, Layton, S, Hargis, BM and Téllez G. 2014. Glycerol supplementation enhances the protective effect of dietary Flora Max-B11 against Salmonella Enteritidis colonization in neonate broiler chickens. Poultry Science. 93: 2363–2369.
dc.relation.referencesdePersio S, Utterback PL, Utterback CW, Rochell SJ, Sullivan NO, Bregendahl K, Arango J, Parsons CM, Koelkebeck KW. 2015. Effects of feeding diets varying in energy and nutrient density to Hy-Line W-36 laying hens on production performance and economics. Poultry Science. 94: 195–206.
dc.relation.referencesDevi-Priya K, Selvaraj P, Nanjappan K, Jayachandran S, Visha P. 2010. Oral supplementation of putrescine and L-glutamine on the growth performance. Immunity, intestinal enzymes in the broiler chickens. Tamilnadu Journal of Veterinary and Animal Sciences. 6:250-254.
dc.relation.referencesDibner J, Kitchell M, Atwell C and Ivey F. 1996. The Effect of Dietary Ingredients and Age on the Microscopic Structure of the Gastrointestinal Tract in Poultry. Journal Applied Poultry Research. 5: 70-77.
dc.relation.referencesDoneen BA and Smith TE. 1982. Ontogeny of endocrine control of osmoregulation in chick embryo. II. Actions of prolactin, arginine vasopressin, and aldosterone. General and Comparative Endocrinology. 48, 310– 318.
dc.relation.referencesDozier III, WA, Kerr, BJ and Branton, SL. 2011. Apparent metabolizable energy of crude glycerin originating from different sources in broiler chickens. Poultry Science. 90:2528–2534.
dc.relation.referencesDozier III, WA, Kerr BJ, Corzo A, Kidd M, Weber T and Bregendahl K. 2008. Apparent metabolizable energy of glycerin for broiler chickens. Poultry Science. 87: 317–322.
dc.relation.referencesDuarte CRA, Mukarami AE, Boso KMO, Eyng C, Ospina-Rojas IC and Matumoto-Pintro PT. 2014. Mixed crude glycerin in laying hen diets: live performance and egg quality and fatty acid profile. Brazilian Journal of Poultry Science. 16(4): 351-8.
dc.relation.referencesEaston C, Turner S and Pitsiladis Y. 2007. Creatine and glycerol hyper-hydration in trained subjects before exercise in the heat. International Journal of Sport Nutrition and Exercise Metabolism. 17: 70–91.
dc.relation.referencesEl Rammouz R, Said S, Abboud M, Yammine S and Jammal B. 2011. Effect of post-hatch early feeding times starter supplemented with egg yolk and white of boiled chicken eggs (Rhod Island Red) on growth performance, viscera development, and immune response in broiler chickens. Australian Journal of Basic and Applied Sciences. 5(6): 660-671.
dc.relation.referencesEl-Husseiny OM, Abou El-Wafa S and El-Komy HMA. 2008. Influence of fasting or early feeding on broiler performance. International Journal of Poultry Science. 7(3): 263-271.
dc.relation.referencesEmmans G. 1994. Effective energy: a concept of energy utilization applied across species. British Journal of Nutrition. 71: 801–821.
dc.relation.referencesEmmanuel B, Berzins R and Robblee A. 1983. Rates of entry of alanine and glycerol and their contribution to glucose synthesis in fasted chickens. British Poultry Science. 4:565-71.
dc.relation.referencesErensayin C and Camci O. 2003. Effect of clutch size on egg production in Japanese quails. Archiv Fur Geflugelkunde. 67(1): 38–41.
dc.relation.referencesErol H, Yalçin S, Midilli M and Yalçin S. 2009. The effects of dietary glycerol on growth and laying performance, egg traits and some blood biochemical parameters in quails. Revue de Médecine Vétérinaire. 160(10): 469-476.
dc.relation.referencesFanooci M and Torki M. 2010. Effects of Qualitative Dietary Restriction on Performance, Carcass Characteristics, White Blood Cell Count and Humoral Immune Response of Broiler Chicks. Global Veterinaria. 4(3): 277-282.
dc.relation.referencesFAO 2012 Biofuel co-products as livestock feed - Opportunities and challenges, edited by Makkar H. Rome, Italy. P. 533.
dc.relation.referencesFAOSTAT. FAO statistical database. (available at. http://faostat.fao.org/default.aspx).
dc.relation.referencesFaria PB, de Figueiredo CH, Lima RS, Nascimneto DB, Tavares JMN, Santos C, Guerra AMB, da Silva JL. 2013. Qualidade de carcaça e carne de frangos com uso de glicerina na alimentação. Londrina. 7(24), Ed. 247, Art. 1631.
dc.relation.referencesFedebiocombustibles 2017 ‘estadísticas de producción de Biodiesel’ vista 22 de febrero.
dc.relation.referencesFENALCE, 2016. http://www.fenalce.org/nueva/index.php
dc.relation.referencesFENAVI. 2016. Consumo per cápita de pollo en Colombia. Estadísticas Fenavi. Disponible en: http://www.fenavi.org/index.php?option=com_content&view=article&id=2160&Itemid=556.
dc.relation.referencesFENAVI. 2017. Huevo en cifras. En el 2017 el encasetamiento creció 7.5% y la producción de huevos 7.9%. El mayor registro de los últimos nueve años.
dc.relation.referencesFENAVI. 2018. Pollo en cifras. En el 2017 alcanzó una tasa de crecimiento de 5.7%. 2018. Disponible en: http://fenavi.org/centro-de-noticias/noticia-destacada-del-centro-de-noticias/pollo-en-cifras/
dc.relation.referencesFernandes EA, Machado CA, Fagundes NS, França AMS y Ramos GC. 2010. Inclusão de glicerol purificado em dietas de frangos de corte. Anais do Prêmio Lamas, p: 1.
dc.relation.referencesFisher C, Wilson BJ. 1974. Response to dietary energy concentration by growing chickens. In: Morris, T.R., Freeman, B.M. (Eds.), Energy Requirements of Poultry. British Poultry Science Ltd., Edinburgh, United Kingdom. 151–184.
dc.relation.referencesFontinele GSP, Leite SCB, Cordeiro, CN, Goulart C, Costa, AC Neves JO and Silva JDB. 2017. Glycerin from biodiesel in the feeding of red-egg layers. Ciências Agrárias. 38(2): 1009-1016.
dc.relation.referencesFreitas LW, Menten JFM, Zavarize KC, Pereira R, Romano GG, Lima MB and Dias CTS. 2017. Evaluation of dietary glycerin inclusion during different broiler rearing phases. Brazilian Journal of Poultry Science. Special Issue Nutrition / 091-096. 91-96.
dc.relation.referencesFurlan RL y Macari M. 2002. Termorregulaçao. En Fisiologia Aviaria, aplicada a frangos de corte. Macari M. Editora Funep. Sao Paulo. Brasil, p. 375.
dc.relation.referencesGallego AG, Moreira I, Carvalho PLO, Perondi D, Pasquetti TJ and Piano-Gonçalves LM. 2016. Neutral semi-purified glycerin in growing and finishing pigs feeding. Italian Journal of Animal Science. 15(1): 87-93.
dc.relation.referencesGhanem HM. 2014. Impact of breed and feed restriction on some productive and carcass traits in broiler chickens. International Journal of Science and Research. 3(12): 2745-2751.
dc.relation.referencesGhayas A, Hussain J, Mahmud A, Javed K, Rehman A, Ahmad S, Mehmood S, Usman M, Ishaq HM. 2017. Productive performance, egg quality, and hatching traits of Japanese quail reared under different levels of glycerin. Poultry Science. 96: 2226–2232.
dc.relation.referencesGianfelici M, Ribeiro A, Penz Jr A, Kessler A, Vieira M and Machinsky T. 2011. Determination of Apparent Metabolizable Energy of Crude Glycerin in Broilers Chickens. Brazilian Journal of Poultry Science. 13(4): 255-258.
dc.relation.referencesGilani S, Howarth GS, Tran CD, Kitessa SM, Forder REA, Barekatain R and Hughes RJ. 2018. Effects of delayed feeding, sodium butyrate and glutamine on intestinal permeability in newly hatched broiler chickens. Journal of Applied Animal Research. 46(1). 973-976.
dc.relation.referencesGonçalves CA, Almeida MA, Faria-Júnior MJA, Pinto MF and Garcia-Neto M. 2015. Accuracy of nonlinear formulation of broiler diets: maximizing profits. Brazilian Journal of Poultry Science. 17(2): 173-180.
dc.relation.referencesGonzales E, Kondo N, Saldanha E, Loddy M, Careghi C and Decuypere E. 2003. Performance and physiological parameters of broiler chickens subjected to fasting on the neonatal period. Poultry Science. 82:1250-1256.
dc.relation.referencesGoulet E, Rousseau S, Lamboley C, Plante G and Dionne I. 2008. Pre-exercise hyperhydration delays dehydration and improves endurance capacity during 2h of cycling in a temperate climate. Journal of Physiological Anthropology. 27(5): 263–271.
dc.relation.referencesGous RM. 2014. Modeling as a research tool in poultry science. Poultry Science. 93:1–7.
dc.relation.referencesGovaerts T, Room G, Buyse J, Lippens M, Groote G and Decuypere E. 2000. Early and temporary quantitative food restriction of broiler chickens. 2. Effects on allometric growth and growth hormone secretion. British Poultry Science. 41(3): 355-362.
dc.relation.referencesGPA. 1963. Physical properties of glycerine and its solutions. Glycerine Producers' Association. New York.
dc.relation.referencesGratta F, Birolo M, Xiccato G and Trocino A. 2017. Effect of genotype, gender, and feed restriction on slaughter results and meat quality of broiler chickens. Agriculturae Conspectus Scientificus. 82(3): 311-314.
dc.relation.referencesGuerra RL, Murakami AE, Garcia AFQM, Urgnani FJ, Moreira I and Picoli KP. 2011. Glicerina bruta mista na alimentação de frangos de corte (1 a 42 dias). Revista Brasileira de Saúde e Produção Animal. 12(4): 1038-1050.
dc.relation.referencesGuevara VR. 2004. Use of nonlinear programming to optimize performance response to energy density in broiler feed formulation. Poultry Science. 83(2):147-151.
dc.relation.referencesGuzmán P, Saldaña B, Mandalawi H, Pérez-Bonilla A, Mateos GG. 2015. Productive performance of brown-egg laying pullets from hatching to 5 weeks of age as affected by fiber inclusion, feed form, and energy concentration of the diet. Poultry Science. 94:249–261.
dc.relation.referencesHarms RH, Russell GB, Sloan DR. 2000. Performance of four strains of commercial layers with major changes in dietary energy. Journal of Applied Poultry Research. 9:535–541.
dc.relation.referencesHenderson WR and Brubacher J. 2002. Methanol and ethylene glycol poisoning: A case study and review of current literature. Canadian Journal of Emergency Medicine. 4(1): 34-40.
dc.relation.referencesHenz JR, Nunes RV, Eyng C, Pozza PC, Frank R, Schone RA and Oliceira TMM. 2014. Effect of dietary glycerin supplementation in the starter diet on broiler performance. Czech Journal of Animal Science. 12: 557-563.
dc.relation.referencesHibuse T, Maeda N, Nagasawa A and Funahashi T. 2006. Aquaporines and glycerol metabolism. Biochimica et Biophysica Acta. 1754: 1004-1011.
dc.relation.referencesHonikel KO and Hamm R. 1994. Measurement of water-holding capacity and juiciness. In Quality Attributes and Their Measurement in Meat, Poultry and Fish Products. Advances in Meat Research Series, Ed. Pearson AM y Dutson TR. 9: 125-161
dc.relation.referencesJahanpour H, Seidavi A and Qotbi AA. 2014. Effects of intensity and duration of quantitative restriction of feed on broiler performance. Journal of the Hellenic Veterinary Medical Society. 65(2): 83-98.
dc.relation.referencesJalal MA, Scheideler SE, Pierson EM. 2007. Strain response of laying hens to varying dietary energy levels with and without Avizyme supplementation. Journal of Applied Poultry Research. 16: 289–295.
dc.relation.referencesJalal MA and Zakaria HA. 2012. The effect of quantitative feed restriction during the starter period on compensatory growth and carcass characteristics of broiler chickens. Pakistan Journal of Nutrition. 11(9). 817-822.
dc.relation.referencesJang IS, Kang SY, Ko YH, Moon YS and Sohn SH. 2009. Effect of quantitative feed restriction on growth performance and immune function in broiler chickens. Asian-Australasian Journal of Animal Sciences. 22(3): 388-395.
dc.relation.referencesJazideh F, Farhoomand P, Daneshyar M and Najafi G. 2014. The effects of dietary glutamine supplementation on growth performance and intestinal morphology of broiler chickens reared under hot conditions. Turkish Journal of Veterinary and Animal Science. 38: 264-270.
dc.relation.referencesJha R, Singh AK, Yadav S, Berrocoso JFD and Mishra B. 2019. Early Nutrition Programming (in ovo and Post-hatch Feeding) as a strategy to modulate gut health of poultry. Frontiers in Veterinary Science. 6: 1-10.
dc.relation.referencesJung B and Batal AB. 2011a. Nutritional and feeding value of crude glycerin for poultry. 2. Nutritional value of crude glycerin. Journal of Applied Poultry Research. 20:162–167
dc.relation.referencesJung B and Batal AB. 2011b. Nutritional and feeding value of crude glycerin for poultry. 2. Evaluation of feeding crude glycerin to broilers. Journal of Applied Poultry Research. 20: 514–27.
dc.relation.referencesKanbur G, Cufadar Y, Göçmen R and Ünver A. 2017. Effects of dietary supplementation of glycerol on performance, egg quality and egg yolk fatty acid composition in laying hens. Eurasian Journal of Food Science and Technology. 1(2): 4-10.
dc.relation.referencesKarlen D and Kerr B. 2012. Future testing opportunities to ensure sustainability of the Biofuels industry. Communications in soil science and plant analysis. 43(35): 43.
dc.relation.referencesKato T, Hayashi Y, Inoue K and Yuasa H. 2004. Function characterization of the carrier-mediated transport system for glycerol in everted sacs of the rat small intestine. Biological Pharmacology Bulletin. 27(11): 1826-1830.
dc.relation.referencesKavouras SA, Armstrong L, Maresh C, Casa D, Herrera-Soto J, Scheett TP, Stoppani J, Mack GW and Kraemer WJ. 2006. Rehydration with glycerol: endocrine, cardiovascular and thermoregulatory responses during exercise in the heat. Journal of Applied Physiology.100(2):442-450.
dc.relation.referencesKhajali, F, Heydary, Moghaddam, M, Hassanpour, H 2014 ‘An L- Arginine supplement improves broiler hypertensive response and gut function in broiler chickens reared at high altitude’ International Journal of Biometeorology. Vol. 58, p. 1175–9.
dc.relation.referencesKim JH, Seo S, Kim CH, Kim JW, Lee BB, Lee G, Shin HS, Kim MC and Kil DY. 2013. Effect of dietary supplementation of crude glycerol or tallow on intestinal transit time and utilization of energy and nutrients in diets fed to broiler chickens. Livestock Science .154: 165-168.
dc.relation.referencesKnothe G, Gerper JV and Krahl J. 2005. The biodiesel handbook, AOCS PRESS, Illinois
dc.relation.referencesLacin E, Yildiz A, Esenbuga N and Macit M. 2008. Effects of differences in the initial body weight of groups on laying performance and egg quality parameters of Lohmann laying hens. Czech Journal of Animal Science. 53(11): 466–471.
dc.relation.referencesLammers PJ, Kerr BJ, Honeyman MS, Stalder KJ, Dozier III WA, Weber TE, Kidd MT and Bregendahl K. 2008. Nitrogen-corrected apparent metabolizable energy value of crude glycerol for laying hens. Poultry Science. 87: 104-107.
dc.relation.referencesLamot DM, van de Linde IB, Molenaar R, van der Pol CW, Wijtten PJA, Kemp B, van den Brand. 2014. Effects of moment of hatch and feed access on chicken development. Poultry Science. 93: 2604-2014.
dc.relation.referencesLarivière J, Vandenheede M and Leroy P. 2009. Effects of food restriction on rearing performance and welfare of a slow-growing chicken breed: a behavioral approach. International Journal of Poultry Science. 8(7): 684-688.
dc.relation.referencesLázaro R, Mateus GG. 2008. Necesidades nutricionales para avicultura: Pollos de carne y aves de postura. FEDNA. p. 73.
dc.relation.referencesLeeson S, Caston L, Summers JD. 1996. Broiler response to diet energy. Poultry Science; 75:529–535.
dc.relation.referencesLeeson S, Caston L, Summers JD. 1997. Layer performance of four strains of leghorn pullets subjected to various rearing programs. Poultry Science. 76: 1–5.
dc.relation.referencesLeeson S and Summers JD. 2000. Feeding systems for poultry. In: Theodorou MK and France J, editors. Feeding systems and feed evaluation models. CABI Publishing, UK. p. 211-237.
dc.relation.referencesLeeson S, Summers J y Diaz G. 2000. Nutrición Aviar Comercial. Primera ed, Editorial Le´Print Club Express Ltda, Santafé de Bogotá, Colombia, p 359.
dc.relation.referencesLeeson S and Summers JD. 2009. Commercial Poultry Nutrition. 3rd ed. Nottingham Univ. Press, Nottingham, U.K. p.398.
dc.relation.referencesLeite RG, Corassa A, Ton APS, Komiyama CM, Amorim AB and Kiefer C. 2017. Glycerin levels while maintaining the electrolyte balance in finishing pig diets. Revista Brasileira de Zootecnia. 46(3):211-217.
dc.relation.referencesLessard P, Lefrancois MR and Bernier JF. 1993. Dietary addition of cellular metabolic intermediates and carcass fat deposition in broilers. Poultry Science. 72: 535-545.
dc.relation.referencesLima EMC, Rodrigues PB, Alvarenga RR, Bernardino VMP, Makiyama L and Lima RR. 2013. The energy value of biodiesel glycerine products fed to broilers at different ages. Journal of Animal Physiology and Animal Nutrition. 97: 896–903.
dc.relation.referencesLin M, Romsos D and Leveille A. 1976. Effect of Glycerol on Lipogenic Enzyme Activities and on Fatty Acid Synthesis in the Rat and Chicken. Journal of Nutrition. 106: 1668-1677.
dc.relation.referencesLippens M, Delezie E, Maertens L and Huyghebaert G. 2009. Influence of feed texture and early quantitative feed restriction on performance, growth development and carcass composition of two broiler strains. Archives für Geflügelkunde. 73(1): 29–40.
dc.relation.referencesLippens M, Room G, DeGroote G and Decuypere E. 2000. Early and temporary quantitative food restriction of broiler chickens. I. Effects on performance characteristics, mortality and meat quality. British Poultry Science. 41(3): 343-354.
dc.relation.referencesLobley GE, Hoskin SO and Mcneil CJ. 2001. Glutamine in animal science and production. Journal of Nutrition. 131: 2525S-2531S.
dc.relation.referencesLokesha E, Marappan G, Ramasamy DK, Brijesh P, Banakar PS, Revanasiddu D, Pruthviraj DR, Bhanuprakash V, Mahesh MS. 2017. Crude glycerol: by-product of biodiesel industries as an alternative energy source for livestock feeding. Journal of Experimental Biology and Agricultural Sciences. 5(6): 755-766.
dc.relation.referencesLopez S. 2008. Non-linear functions in animal nutrition. In: France J and Kebreab E editors. Mathematical modelling in animal nutrition. CABI, London, UK.
dc.relation.referencesLuquetti BC, Fernandez MF, Lunedo R, Borges DM, Furlan RL and Macari M. 2016. Effects of glutamine on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis. Scientia Agricola. 73(4): 322-327.
dc.relation.referencesLyons T, Riedesel M, Meuli L and Chick T. 1990. Effects of glycerol induced hyperhydration prior to exercise in the heat on sweating and core temperature. Medicine and Science in Sports and Exercise. 22(4): 477–483.
dc.relation.referencesMadrid J, Villodre C, Valera L, Orengo J, Martínez S, López M, Megías M and Hernández F. 2013. Effect of crude glycerin on feed manufacturing, growth performance, plasma metabolites, and nutrient digestibility of growing-finishing pigs. Journal of Animal Science. 91(8): 3788-3795.
dc.relation.referencesMakkar H. 2012. Biofuel co-products as livestock feed - Opportunities and challenges. FAO, Rome, Italy. p. 533.
dc.relation.referencesMandalawi HA, Lázaro R, Redón M, Herrera J, Menoyo D and Mateos GG. 2015. Glycerin and lecithin inclusion in diets for Brown egg-laying hens: Effects on egg production and nutrient digestibility. Animal Feed Science and Technology. 209: 145-56
dc.relation.referencesMandalawi HA, Kimiaeitalab MV, Obregon V, Menoyo D and Mateos GG. 2014. Influence of source and level of glycerin in the diet on growth performance, liver characteristics, and nutrient digestibility in broilers from hatching to 21 days of age. Poultry Science. 93: 2855-2863.
dc.relation.referencesMarcato SM, Sakomura NK, Munari DP, Fernandes JBK, Kawauchi IM and Bonato MA. 2008. Growth and body nutrient deposition of two broiler commercial genetic lines. Brazilian Journal of Poultry Science. 10(2): 117-123.
dc.relation.referencesMartinez KLA, Leandro NSM, Café MB, Stringhini JH, Araújo ICS and Andrade MA. 2012. Suplementação de glutamina em dietas elaboradas com ingredientes de origen vegetal e animal para pintos de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 64: 1707-1716.
dc.relation.referencesMateos GG and Sell JL. 1981. Metabolizable energy of supplemental fat as related to dietary fat level and method of estimation. Poultry Science. 60: 1509-1515.
dc.relation.referencesMcLea L, Ball M, Kilpatrick D and Elliott C. 2011. The effect of glycerol inclusion on broiler performance and nutrient digestibility. British Poultry Science. 52(3): 368-75.
dc.relation.referencesMcMillan I. 1981. Compartmental model analysis of poultry egg production curve. Poultry Science. 60:1549–1551.
dc.relation.referencesMcMurty J, Plavnik I, Rosebrough R, Steele N and Proudman J. 1988. Effect of early feed restriction in male broiler chicks on plasma metabolic hormones during feed restriction and accelerated growth. Comparative Biochemistry and Physiology. 91(1): 67-70.
dc.relation.referencesMeddings JB and Swain M. 2000. Environmental stress-induced gastrointestinal permeability is mediated by endogenous glucocorticoids in the rat. Gastroenterology. 119: 1019-1028.
dc.relation.referencesMelin D, Jimenez C, Koulmann N, Allevard AM and Gharib C. 2002. Hyperhydration induced by glycerol ingestion: hormonal and renal responses. Canadian Journal of Physiology and Pharmacology. 80: 526–532.
dc.relation.referencesMin YN, Yan F, Liu FZ, Coto C and Waldrop PW. 2010. Glycerin-A new energy source for poultry. International of Poultry Science. 9(1): 1-4.
dc.relation.referencesMin Y, Liu F, Wang Z, Coto C, Cerrate S, Costa F, Yan, F and Waldroup P. 2008. Evaluation of Distillers Dried Grains with Solubles in Combination with Glycerin in Broiler Diets. International Journal of Poultry Science. 7(7): 997-1000.
dc.relation.referencesMoghaddam HN and Alizadeh-Ghamsari AH. 2013. Improved performance and small intestinal development of broiler chickens by dietary L-glutamine supplementation. Journal of Applied Animal Research. 41(1): 1-7.
dc.relation.referencesMohebodini H, Dastar B, Shams M and Zerehdaran S. 2009. The comparison of early feed restriction and meal feeding on performance, carcass characteristics and blood constituents of broilers chickens. Journal of Animal and Veterinary Advances. 8(10): 2069-2074.
dc.relation.referencesMolenaar R, Meijerhof R, van den Anker I, Heetkamp MJW, van den Borne JJGC, Kemp B and van den Brand H. 2010. Effect of eggshell temperature and oxygen concentration on survival rate and nutrient utilization in chicken embryos. Poultry Science. 89:2010–2021.
dc.relation.referencesMontner P, Stark DM, Riedesel ML, Murata G, Robergs R, Timms M and Chick TW. 1996. Pre-exercise glycerol hydration improves cycling endurance time. International Journal of Sports Medicine. 17: 27–33.
dc.relation.referencesMoraes PO, Ceron MS, Borille R, Gianluppi RDF, Lovato GD, Cardinal KM and Ribeiro AML. 2016. Effects of the addition of pure glycerin supplementation in the drinking water on the performance of broilers submitted to heat stress and feed restriction. Revista Brasileira de Ciência Avícola. 18(3): 413-418.
dc.relation.referencesMorón FO, Zamorano GL. 2003. Pérdida por goteo en diferentes carnes crudas. Archivos Latinoamericanos de Producción Animal. 11(2): 125-127.
dc.relation.referencesMottet A and Tempio G. 2017. Global poultry production: current state and outlook and challenges. World's Poultry Science Journal. 73(2): 245-256.
dc.relation.referencesMotulsky H, Christopoulos A. 2003. Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Software Inc., San Diego, CA.
dc.relation.referencesMurakami, AE, Fernandes, JIM, Hernandes, L, Santos, TC 2012 ‘Effects of starter diet supplementation with arginine on broiler production performance and on small intestine morphometry’ Pesquisa Veterinária Brasileira. Vol. 32, p. 259–66.
dc.relation.referencesMurray R, Granner D, Mayes P and Rodwell V. 2003. Harper’s Illustrated Biochemistry, Twenty-Sixth Edition, McGraw-Hill.
dc.relation.referencesMushtaq M, Pasha T, Mushtaq T, Parvin R. 2013. Electrolytes, dietary electrolyte balance and salts in broilers: an updated review on growth performance, water intake and litter quality. World’s Poultry Science Journal. 69(4):789-802.
dc.relation.referencesMutayoba SK, Katule AK, Minga U, Mtambo MM, Olsen J E. 2012. The effect of supplementation on the performance of free range local chickens in Tanzania. Livestock Research for Rural Development. 24: article 93.
dc.relation.referencesNemeth K, Zsedely E and Schmidt J. 2013. Nitrogen-corrected apparent metabolizable energy value of crude glycerol for laying hens. Annals of Animal Science. 13(4): 829–836.
dc.relation.referencesNewsholme P, Procopio J, Ramos MM, Pithon-Curi TC and Curi R. 2003. Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochemistry and Function. 21: 1–9.
dc.relation.referencesNielsen B, Litherland M and Nøddegaard F. 2003. Effect of qualitative and quantitative feed restriction on the activity of broiler chickens. Applied Animal Behavior Science. 83: 309–323
dc.relation.referencesNoy Y and Sklan D. 1995. Digestion and absorption in the young chick. Poultry Science. 74: 366-373.
dc.relation.referencesNoy Y and Sklan D. 1998. Metabolic Responses to Early Nutrition. Journal of Applied Poultry Research. 7: 437-451.
dc.relation.referencesNoy Y and Sklan D. 1999. Different types of early feeding and performance in chicks and poults. Journal Applied Poultry Research. 8:16-24.
dc.relation.referencesNoy Y and Uni Z. 2010. Early nutritional strategies. World’s Poultry Science Journal. 66: 639-646.
dc.relation.referencesO’brien C, Freund A, Young J, Sawka M. 2005. Glycerol hyperhydration: physiological responses during cold-air exposure. Journal of Applied Physiology. 99(2):515- 521.
dc.relation.referencesOleoline. 2018. Glycerine market report, June 2018, No. 121. HBI Group.
dc.relation.referencesOliveira DD, Pinheiro JW, Oba A and Fonseca NAN. 2013. Desempenho de frangos de corte alimentados com glicerina pura. Ciências Agrárias. 34(6): 4083-4092.
dc.relation.referencesOlivero R, del Puerto M, Felice A, Pittaluga A, Iriñiz J, Saadoun A and Cabrera MC. 2014. Efecto del glicerol en la dieta de gallinas ponedoras sobre los parámetros productivos y la calidad del huevo. V Congreso de la Asociación Uruguaya de Producción Animal (AUPA), Montevideo 3-4 diciembre de 2014.
dc.relation.referencesOlubodun JO, Zulkifli I, Farjam AS, Hair-Bejo M and Kasim A. 2015. Glutamine and glutamic acid supplementation enhances performance of broiler chickens under the hot and humid tropical condition. Italian Journal of Animal Science. 14: 25-29.
dc.relation.referencesOlukomaiya OO, Adeyemi OA, Sogunle OM, Abioja MO and Ogunsola IA. 2015. Effect of feed restriction and ascorbic acid supplementation on growth performance, rectal temperature and respiratory rate of broiler chicken. The Journal of Animal & Plant Sciences.
dc.relation.referencesOmosebi DJ, Adeyemi OA, Sogunle MO, Idowu OMO and Njoku CP. 2014. Effects of duration and level of feed restriction on performance and meat quality of broiler chickens’ Archivos de Zootecnia. 63(244): 611-621.
dc.relation.referencesOtwinowska-Mindur A, Gumułka M, Kania-Gierdziewicz J. 2016. Mathematical models for egg production in broiler breeder hens. Annals of Animal Science. 16(4): 1185–1198.
dc.relation.referencesOzkan S, Takma C, Yahav S, Soğut B, Turkmut L, Erturun H and Cahaner A. 2010. The effects of feed restriction and ambient temperature on growth and ascites mortality of broilers reared at high altitude. Poultry Science. 89: 974–985
dc.relation.referencesPasquetti TJ, Furlan AC, Martins EN, Ton APS, Batista E, Pozza PC, Grieser DO and Zancanela V. 2014. Glicerina bruta para codornas de corte, de um a 14 e de 15 a 35 dias de idade. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 66(5): 1547-1556.
dc.relation.referencesPereira VM, Borges P, Fonseca RT, Minati E, Makiyama L, Silva R, de Oliveira DH and Januzzi L. 2015. Sources and levels of glycerin for broilers from 22 to 35 days. African Journal of Agricultural Research. 10(11): 1259-1265.
dc.relation.referencesPérez-Bonilla A, Novoa S, García J, Mohiti-Asli M, Frikha M, Mateos GG. 2012. Effects of energy concentration of the diet on productive performance and egg quality of brown egg-laying hens differing in initial body weight. Poultry Science. 91: 3156–3166.
dc.relation.referencesPerry GC. 2006. Avian gut function in health and disease. Poultry science symposium series; 28 Wallingford, UK. 30-43.
dc.relation.referencesPetek M, Yilmaz E and Cibik R. 2007. Effect of first feed intake time on broiler performance and carcass traits. Journal of Applied Animal Research. 32(2): 203-206.
dc.relation.referencesPinheiro D, Cruz V, Sartori J and Paulino MV. 2004. Effect of early restriction and enzyme supplementation on digestive enzyme activities in broilers. Poultry Science. 83:1544-1550.
dc.relation.referencesPlavnik I and Hurwitz S. 1991. Response of broiler chickens and turkey poults to food restriction of varied severity during early life. British Poultry Science. 32(2): 343–352.
dc.relation.referencesPołtowicz K, Nowak J and Wojtysiak D. 2015. Effect of feed restriction on performance, carcass composition and physicochemical properties of the m. pectoralis superficialis of broiler chickens. Annals of Animal Science. 15(4): 1019-1029.
dc.relation.referencesPorto, ML, Givisiez, PEN, Saraiva, EP, Costa, FGP, Moreira, Filho ALB, Andrade, MFS, Brandão, PA, Guerra, RR 2015 ‘Glutamic acid improves body weight gain and intestinal morphology of broiler chickens submitted to heat stress’ Brazilian Journal of Poultry Science. vol.17, no. 3, p. 355-62.
dc.relation.referencesPotturi P, Patterson J and Applegate TJ. 2005. Effects of delayed placement on intestinal characteristics in Turkey poults. Poultry Science. 84: 816–824.
dc.relation.referencesRamos HAJ. 2005. Efecto del Método de Congelamiento sobre las Características Fisicoquímicas y Organolépticas de la Carne de Pechuga de Pollo, (tesis de grado maestría) Universidad de Puerto Rico, ciencias Industria Pecuaria.
dc.relation.referencesRetore M, Scapinello C, Mukarami AE, Araujo IG, Neto,BP, Felssner K, Sato J and Olivera AFG. 2012. Nutritional evaluation of vegetable and mixed crude glycerin in the diet of growing rabbits’, Revista Brasileira de Zootecnia. 41(2): 333-340.
dc.relation.referencesRibeiro Jr V, Albino LFT, Rostagno HS, Hannas M, Ribeiro CLN, Vieira RA, de Araújo WAG, Pessoa GBS, Messias RKG and da Silva DL. 2015. Effects of Dietary L-Glutamine or L-Glutamine plus L-Glutamic Acid supplementation programs on the performance and breast meat yield uniformity of 42-d-old broilers. Brazilian Journal of Poultry Science. special issue. 93-98.
dc.relation.referencesRomano GG, Menten JFM, Freitas LW, Lima MB, Pereira R, Zavarize KC, Dias CTS. 2014. Effects of glycerol on the metabolism of broilers FED increasing glycerine levels. Brazilian Journal of Poultry Science. 16(1): 97-106.
dc.relation.referencesRostagno H. 2011. Tablas Brasileñas para aves y cerdos’, Tercera Edición, Viçosa, MG UFV, DZO, p. 259.
dc.relation.referencesRoy BG, Kataria MC and Roy U. 2014. Study of oviposition pattern and clutch traits in a white Leghorn (WL) layer population. Journal of Agriculture and Veterinary Science. 7(1): 59-67.
dc.relation.referencesRubiano AM, Trujillo JM, Avellaneda Y, Ariza C and Afanador G 2011. Energia metabolizavel de tres tipos de glicerina en galinhas poedeiras. 48 Reuniao Anual da Sociedade Brasileira de zootecnia, Belen PA, 18-21 de Julho de 2011.
dc.relation.referencesSaber SN. 2016. Effect of quantitative feed restriction on carcass characteristics and some blood parameters in broilers chickens. International Research Journal of Biological Sciences. 5(10): 1-6.
dc.relation.referencesSahraei M. 2013. Improvement production efficiency and carcass quality through feed restriction programs in broiler chickens. Biotechnology in animal husbandry. 29(2): 193-210.
dc.relation.referencesSakomura NK, Longo FA, Oviedo-Rondon EO, Boa-Viagen C & Ferraudo A. 2005. Modelling energy utilization and growth parameter description for broilers chickens. Poultry Science. 84: 1363-1369.
dc.relation.referencesSaldaña B, Gewehra CE, Guzmán P, García J, Mateos GG. 2016. Influence of feed form and energy concentration of the rearing phase diets on productivity, digestive tract development and body measurements of brown-egg laying hens fed diets varying in energy concentration from 17 to 46wk of age. Animal Feed Science and Technology. 221: 87–100.
dc.relation.referencesSaldaña B, Guzmán P, Cámara L, García J, Mateos GG. 2015. Feed form and energy concentration of the diet affect productive performance and digestive tract traits of brown-egg laying pullets from hatching to 17 weeks of age. Poultry Science. 94: 1879–1893.
dc.relation.referencesSamiullah S, Roberts J and Chousalkar K. 2016. Oviposition time, flock age, and egg position in clutch in relation to brown eggshell color in laying hens. Poultry Science. 95: 2052–2057.
dc.relation.referencesSantoso U. 2002. Effects of Early Feed Restriction on the Occurrence of Compensatory Growth, Feed Conversion Efficiency, Leg Abnormality and Mortality in Unsexed Broiler Chickens Reared in Cages. Asian-Australasian Journal of Animal Sciences. 15(9): 1319-1325.
dc.relation.referencesSAS Institute. 2008. SAS Users Guide. SAS Institute Inc., Cary, NC.
dc.relation.referencesSavegnago RP, Cruz VAR, Ramos SB, Caetano SL, Schmidt GS, Ledur MC, El Faro L, Munari DP. 2012. Egg production curve fitting using nonlinear models for selected and nonselected lines of White Leghorn hens. Poultry Science. 91 :2977–2987
dc.relation.referencesSehu A, Kucukersan S, Coskun B, Koksal BH and Citil OB. 2012. Effects of dietary glycerol addition on growth performance, carcass traits and fatty acid distribution in cloacal fat in broiler chickens. Revue de Médecine Vétérinaire. 163(4): 194-200.
dc.relation.referencesSell J, Angel C, Piquer F, Mallarino E and Batshan HA. 1991. Developmental patterns of selected characteristics of the gastrointestinal tract of young turkeys. Poultry Science. 70: 1200-1205.
dc.relation.referencesSell J. 1996. Physiological Limitations and Potential for Improvement in Gastrointestinal Tract Function of Poultry. Journal Applied Poultry Research. 5: 96-101.
dc.relation.referencesShakeri M, Zulkufli I, Oskoueian E, Shakeri M, Oskoueian A and Ebrahimi M. 2016. Response to dietary supplementation of glutamine in broiler chickens subjected to transportation stress. Journal of the Faculty of Veterinary Medicine Istanbul University. 42(2): 122-131.
dc.relation.referencesSibbald IR, Summers JD and Slinger SJ. 1960. Factors affecting the metabolizable energy content of poultry feeds. Poultry Science. 39(3): 544–556.
dc.relation.referencesSibbald IR. 1982. Measurement of bioavailable energy in poultry feeding stuffs. Canadian Journal of Animal Science. 62(4): 983-1048.
dc.relation.referencesSilva CLS, Menten JFM, Traldi AB, Pereira R, Zavarize KC and Santarosa J. 2012. Glycerine derived from biodiesel production as a feedstuff for broiler diets’ Brazilian Journal of Poultry Science. 14(3): 193-202.
dc.relation.referencesSilva MC, Vaz RGMV, Rodrigues KF, Stringhini JH, Souza LF, Fonseca FLR, Augusto WF and Bezerra LS. 2019a. Purified glycerin in balanced diets of broiler chickens treated from 1 to 42 days of age. Revista Brasileira de Zootecnia.48: 1-10.
dc.relation.referencesSilva MC, Vaz RGMV, Rodrigues KF, Souza LF, Souza MS, Silva GF, Fonseca FLR, Ribeiro MC, Campos CGA and Bezerra LS. 2019b. Purified glycerin diets for broilers from 8 to 42 days old. Ciecias Agrarias, Londrina. 40: 843-854.
dc.relation.referencesSilva VO, Lopes E, Andrade EF, Sousa RV, Zangeronimo MG and Pereira LJ. 2014. Uso de co-productosdel biodiesel (Glicerol) como fuentes alternativas de energia em la alimentación animal: uma revisão sistemática. Archivos de Medicina Veterinaria. 46: 111-120.
dc.relation.referencesSilva CLS, Menten JFM, Traldi,AB, Pereira R, Zavarize KC and Santarosa J. 2012. Glycerine derived from biodiesel production as a feedstuff for broiler diets. Brazilian Journal of Poultry Science. 14(3): 193-202.
dc.relation.referencesSimeon O. 2015. Effects of strain and feed restriction at starter phase on performance of broiler chickens in the humid tropics. International Journal of Agricultural Sciences and Natural Resources. 2(1): 1-5.
dc.relation.referencesSimon A, Bergner H and Schwabe M. 1996. Glycerol feed ingredient for broiler chickens. Archives of Animal Nutrition. 49: 103-112.
dc.relation.referencesSkrzydlewska E. 2003. Toxicological and metabolic consequences of methanol poisoning. Toxicology Mechanisms and Methods. 13: 277-293.
dc.relation.referencesSmith T and Makkar H. 2012. Utilization of co-products of the biofuel industry as livestock feeds – a synthesis’, FAO, Biofuell co-products as livestock feed, Rome, Italy, pp. 501-2.
dc.relation.referencesSoltan MA. 2009 Influence of dietary glutamine supplementation on growth performance, small intestinal morphology, immune response and some blood parameters of broiler chickens. International Journal of Poultry Science. 8: 60-68.
dc.relation.referencesSousa DC, Oliveira NLA, dos Santos ET, Barros LR, de Campos GJB. 2017. Avaliação macro e microscópica do trato digestório de frangos de corte alimentados com dieta contendo glicerina. Comunicata Scientiae. 8(1): 59-68.
dc.relation.referencesSouza C, Nunes RV, Broch J and Wachholz L. 2017. Producao e utilicao da glicerina bruta na alimentacao de frangos de corte. Archivos de Zootecnia. 66(256): 619-627.
dc.relation.referencesSuchy P, Strakova E, Kroupa L and Herzig I. 2012. The effect of replacing soybean oil with glycerol in feeding mixtures designed for utility layers on their production and state of health. Archiv Tierzucht. 2: 184-193.
dc.relation.referencesSüdekum K-H, Schröder A, Fiebelkorn S, Schwer R and Thalman A. 2008. Quality characteristics of pelleted compound feeds under varying storage conditions as influenced by purity and concentration of glycerol from biodiesel production. Journal of Animal Feed Science. 17: 120–136
dc.relation.referencesSujatha T and Rajini R. 2015. Transitional pullet feed and its significance at sexual maturity. Indian Journal of Animal Research. 49(1): 77-80.
dc.relation.referencesSujatha T, Rajini R and Prabakaranc R. 2014. Efficacy of pre-lay diet. Journal of Applied Animal Research. 42(1): 57-64
dc.relation.referencesSummers JD. 1993. Influence of prelay treatment and dietary protein level on the reproductive performance of white leghorn hens. Poultry Science. 72: 1705-1713.
dc.relation.referencesSummers JD, Leeson S and Spratt D. 1987. Rearing early maturing pullets. Poultry Science. 66: 1750-1757.
dc.relation.referencesSuperintendencia de Industria y Comercio. 2012. Cadena Productiva del Maíz, Industrias de Alimentos Balanceados y Harina de Maíz. visto 22 de febrero.
dc.relation.referencesSwiatkiewicz S and Kolereski J. 2009. Effect of crude glycerin level in the diet of laying hens on egg performance and nutrient utilization. Poultry Science. 88: 615–619.
dc.relation.referencesTalpaz H, Hurtwitz S, de la Torre J and Sharpe P. 1988. Economic optimization of a growth trajectory for broilers. American Journal of Agricultural Economics. 70(2): 382-390.
dc.relation.referencesThompson J and He B. 2006. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture. 22(2): 261-265.
dc.relation.referencesTixier-Boichard M, Leenstra F, Flock DK, Hocking PM And Weigend S. 2012. A century of poultry genetics. World's Poultry Science Journal. 68: 307-321.
dc.relation.referencesTopal E and Ozdogan M. 2013. Effects of glycerol on the growth performance, internal organ weights, and drumstick muscle of broilers. Journal Applied Poultry Research. 22: 146–51.
dc.relation.referencesTrocino A, Piccirillo A, Birolo M, Radaelli G, Bertotto D, Filiou E, Petracci M and Xiccato G. 2015. Effect of genotype, gender and feed restriction on growth, meat quality and the occurrence of white striping and wooden breast in broiler chickens. Poultry Science. 94: 2996–3004.
dc.relation.referencesTůmová E, Skřivan M, Skřivanová V and Kacerovská L. 2002. Effect of early feed restriction on growth in broiler chickens, turkeys and rabbits. Czech Journal of Animal Science. 47(10): 418–428.
dc.relation.referencesUni Z and Ferket R. 2004. Methods for early nutrition and their potential. World Poultry Science Journal. 60:101-111.
dc.relation.referencesUni Z, Noy Y and Sklan D. 1996. Posthatch development of small intestinal function in the poult. Poultry Science. 78: 215-222.
dc.relation.referencesUni Z, Ganot S and Sklan D. 1998. Posthatch development of mucosal function in the broilers small intestine. Poultry Science. 77: 75-82.
dc.relation.referencesUribe AJ, Valencia JE, Morales P, Triana S y Velandia D. 2011. Restricción alimenticia en pollos de engorda en explotaciones comerciales. XXII Congreso Latinoamericano de Avicultura, Buenos Aires, Argentina.
dc.relation.referencesvan Krimpen Dr MM, Kwakkel RP, André G, van der Peet-Schwering CMC, den Hartog LA, Verstegen MWA. 2007. Effect of nutrient dilution on feed intake, eating time and performance of hens in early lay. British Poultry Science. 48(4): 389-398.
dc.relation.referencesVanderhasselt RF, Buijs S, Sprenger M, Goethals K, Willemsen H, Duchateau L and Tuyttens FA. 2013. Dehydration indicators for broiler chickens at slaughter. Poultry Science. 92 :612–619
dc.relation.referencesVanderhasselt RF, Sprenger M, Everaert N, Decuypere E and Tuyttens FAM. 2010. Physiological Indicators of dehydration in Broiler Chickens. XIIIth European Poultry Conference 2010.
dc.relation.referencesvanRosendal S, Osborne M, Fassett R and Coombes J. 2009. Physiological and performance effects of glycerol hyperhydration and rehydration. Nutrition Reviews. 67(12): 690–705.
dc.relation.referencesVarol O and Ombasilar EE. 2016. Effects of breeder age and early energy restriction on fattening performance, some meat quality traits and plasma leptin concentration of broilers. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 63: 69-76.
dc.relation.referencesVasquez IC and Hernandez A. 2012. Hipertensión pulmonar en pollos, lapso de exposición a la hipoxia hipobárica y relación peso pulmonar: peso corporal bajo condiciones de temperatura controlada. Revista Colombiana de Ciencias Pecuarias. 25: 81-89.
dc.relation.referencesVeldkamp T, Kwakkel RP, Ferket PR, Verstegen MWA. 2005. Growth response to dietary energy and lysine at high and low ambient temperature in male turkeys. Poultry Science. 84:273–282.
dc.relation.referencesVerussa GH, Corassa A, Pina DS, Ton APS, Komiyama CM and Teixeira AO. 2016. Performance and serum parameters of growing pigs fed semi-purified glycerin. Revista Colombiana de Ciencias Pecuarias. 30: 11-20.
dc.relation.referencesVongsamphanh P, Preston TR, Leng RA. 2017. Glycerol supplementation increased growth rates, decreased the acetate: propionate ratio in rumen VFA, and reduced enteric methane emissions, in cattle fattened on cassava pulp-urea, brewers’ grains and rice straw. Livestock Research for Rural Development. 29: article 36
dc.relation.referencesWang A, Anderson D and Rathgeber B. 2018. Using different levels of glycerine, glucose, or sucrose in broiler starter diets to overcome negative effects of delayed feed access on growth performance. Canadian Journal of Animal Science. 98(2): 311-324.
dc.relation.referencesWapnir RA and Stiel L. 1985. Regulation of gluconeogenesis by glycerol and its phosphorylated derivatives. Biochemical medicine. 33(2): 141-148.
dc.relation.referencesWideman RF. 2000. Cardio-pulmonary hemodynamics and ascites in broiler chickens. Avian and poultry biology reviews. 11(1). 21-43
dc.relation.referencesWijtten P, Hangoor E, Sparla J and Verstegen M. 2010. Dietary amino acid levels and feed restriction affect small intestinal development, mortality, and weight gain of male broilers. Poultry Science. 89: 1424–39.
dc.relation.referencesWu G, Bryant MM, Voitle RA, Roland Sr DA. 2005. Effect of dietary energy on performance and egg composition of Bovans White and DeKalb White hens during phase 1. Poultry Science. 84:1610–1615.
dc.relation.referencesWu G. 1998. Intestinal mucosal amino acid catabolism. Journal of Nutrition. 128:1249-1252.
dc.relation.referencesYalçın S, Erol H, Özsoy B, Onbaşılar I, Yalçın S and Üner A. 2010. Effects of glycerol on performance, egg traits, some blood parameters and antibody production to SRBC of laying hens. Livestock Science. 129: 129–134.
dc.relation.referencesYamauchi K, Yamamoto K and Isshiki Y. 1995. Morphological alterations of the intestinal villi and absorptive ephitelial cells in each intestinal part in fasted chickens. Japanaise Poultry Science. 32: 241-251.
dc.relation.referencesYang YX, Guo J, Yoon SY, Jin Z, Choi JY, Piao XS, Kim BW, Ohh SJ, Wang MH and Chae BJ. 2009. Early energy and protein reduction: effects on growth, blood profiles and expression of genes related to protein and fat metabolism in broilers. British Poultry Science. 50(2): 218—227
dc.relation.referencesYang F, Hanna M and Sun R. 2012. Value-added uses for crude glycerol–a byproduct of biodiesel production. Biotechnology for Biofuels. 5: 1-10.
dc.relation.referencesYang HY, Yang Z, Wang Z, Wang W, Huang K, Fan W and Jia T. 2015. Effects of early dietary energy and protein dilution on growth performance, nutrient utilization and internal organs of broilers. Italian Journal of Animal Science. 14(2): 162-171.
dc.relation.referencesZaheer K. 2015. An updated review on chicken eggs: production, consumption, management aspects and nutritional benefits to human health. Food and Nutrition Sciences. 6: 1208-1220.
dc.relation.referencesZavarize KC, Sartori JR, Pelicia VC, Pezzato AC, Araujo PC, Stradiotti AC and Madeira LA. 2011. Glutamine and nucleotide supplementation in broiler diets in alternative breeding system. Archivos de Zootecnia. 60(232): 913-920.
dc.relation.referencesZavarize KC, Menten JFM, Pereira R, Freitas LW, Romano GG, Bernardino M and Rosa AS. 2014. Metabolizable energy of different glycerine sources derived from national biodiesel production for broilers. Brazilian Journal of Poultry Science. 16(4): 411-416.
dc.relation.referencesZelenka J. 1973. Apparent digestibility of feed nutrients during the first days of chicken life. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 21: 119–124.
dc.relation.referencesZerjal T, Gourichon D, Rivet B and Bordas A. 2013. Performance comparison of laying hens segregating for the frizzle gene under thermoneutral and high ambient temperatures. Poultry Science. 92: 1474–1485.
dc.relation.referencesZhan X, Wang M, Ren H, Zhao R, Li J and Tan Z. 2007. Effect of early feed restriction on metabolic programming and compensatory growth in broiler chickens. Poultry Science. 86: 654–660.
dc.relation.referencesZubair AK and Leeson S. 1996. Changes in body composition and adipocyte cellularity of male broilers subjected to varying degrees of early-life feed restriction. Poultry Science. 75: 719–728.
dc.relation.referencesZulkifli I, Shakeri M and Soleimani AF. 2016. Dietary supplementation of L-glutamine and L-glutamate in broiler chicks subjected to delayed placement. Poultry Science. 95: 2757–2763.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalOptimization
dc.subject.proposalCoproducto
dc.subject.proposalFeeding restriction
dc.subject.proposalOptimización
dc.subject.proposalRentabilidad
dc.subject.proposalCoproduct
dc.subject.proposalProfit
dc.subject.proposalInclusión
dc.subject.proposalInclusion
dc.subject.proposalRestricción alimenticia
dc.subject.proposalTransition phase
dc.subject.proposalFase de transición
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito