Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorVega Stavro, José Felix
dc.contributor.authorNeira Camelo, Ernesto
dc.date.accessioned2020-03-06T19:22:25Z
dc.date.available2020-03-06T19:22:25Z
dc.date.issued2019-10-05
dc.identifier.citationE. Neira, "Study on the Optimization of Virtual Cathode Oscillators for High Power Microwaves Testing", sep 2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75948
dc.description.abstractThis thesis studies the energy behavior of the Virtual Cathode Oscillators (Vircators). The overall objective focuses on determining geometric and functional parameters to maximize the energy radiated into a specific band of frequency. Initially, the problem was addressed through numerical optimization. A computational tool integrating an evolutionary algorithm with a simulator of particles was developed. The main advantage of this approach is the fact that Vircator of different typologies can be optimized. A second approach focuses on solving the problem through classic optimization techniques. The first step was to determine a mathematical model that relates the Vircator design parameters with the energy output. Then, the mathematical model was studied and optimized. Principal advantages of this approach are the low computational complexity and the fact that the model allows studying and understanding Vircators physics. The approaches presented in this thesis were validated by computational simulation and reports of experiments available in the literature. The main result of this thesis was the identification of the role of the design parameters on the energy response of the Vircators. Additionally, it was found two methodologies to optimize the Vircators’s energy responses at a determined frequency.
dc.description.abstractEn esta tesis se estudia el comportamiento energético de los osciladores de cátodo virtual (Vircators). El objetivo principal es identicar los parámetros de diseño que permiten maximizar la energía radiada en una banda especifica de frecuencia. El problema es abordado, inicialmente, mediante optimization numérica. En este caso, fue construida una herramienta computacional basada en algoritmos evolutivos y simulación computacional de partículas. Esta solución es funcional y no requiere de un modelo matemático del problema. Su principal ventaja es la posible inserción de variables de diseño adicionales y que podría realizar la optimización de cualquier tipo simulable de Vircator. En una segunda fase, el problema fue abordado y solucionado bajo un enfoque de optimization clásico. Para esto, como punto de partida fue necesario determinar un modelo matemático del problema. La principal ventaja de este enfoque es el bajo costo computacional. Los dos enfoques presentados en esta tesis fueron validados mediante simulación computacional y reportes experimentales presentes en la literatura. El principal resultado de esta tesis fue la identificación del papel de los parámetros de diseño en la respuesta energética de los Vircators. Además, se determinaron dos metodologías para optimizar las respuestas de energía de los Vircators a una frecuencia determinada.
dc.format.extent188
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcFísica::Electricidad y electrónica
dc.titleStudy on the Optimization of Virtual Cathode Oscillators for High Power Microwaves Testing
dc.title.alternativeEstudio en la optimization de oscilladores de cathode virtual para pruebas en microondas de alta potencia
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalDoctor en Ingeniería Eléctrica. Línea de Investigación: Potencia Pulsante y modelado Electromagnético.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupGrupo de Investigación EMC-UN
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesE. H. Choi, M. C. Choi, Y. Jung, M. W. Choug, J. J. Ko, Y. Seo, G. Cho, H. S. Uhm, and H. Suk, “High-power microwave generation from an axially extracted virtual cathode oscillator,” IEEE Transactions on Plasma Science, vol. 28, pp. 2128–2134, Dec 2000.
dc.relation.referencesJ. J. Pantoja, F. Vega, F. Rom˜A¡n, N. P. na, and F. Rachidi, “On the differential input impedance of an electro-explosive device,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, pp. 858–864, Feb 2018.
dc.relation.referencesF. Vega, F. Rachidi, N. Mora, B. Daout, and M. Sallin, “Design and optimization of mesoband radiators using chain parameters,” in 2011 International Conference on Electromagnetics in Advanced Applications, pp. 1310–1313, Sept 2011.
dc.relation.referencesN. Mora, F. Vega, F. Roman, N. Pena, and F. Rachidi, “Application of high power electromagnetic to human safety,” in EPFL-CONF-150642, febrary 2010
dc.relation.referencesF. Vega and F. Rachidi, “A simple formula expressing the fields on the aperture of an impulse radiating antenna fed by a tem coplanar plates,” IEEE Transactions on Antennas and Propagation, vol. PP, no. 99, pp. 1–1, 2018.
dc.relation.referencesF. Vega, J. A. Rangel, Y. z. Xie, and F. Rachidi, “Design of an efficient high power electromagnetic radiator using a yagi-uda antenna connected to a switched oscillator (yu+swo),” in 2016 USNC-URSI Radio Science Meeting, pp. 35–36, June 2016.
dc.relation.referencesF. Vega and F. Rachidi, “A switched oscillator geometry inspired by a curvilinear space;part i: Dc considerations,” IEEE Transactions on Plasma Science, vol. 44, pp. 2240–2248, Oct 2016.
dc.relation.referencesJ. Benford, J. A. Swegle, and E. Schamiloglu, High power microwaves. 6000 Broken Sound Parkway NW, Suite 300: Raylor & Francis, 2 ed., 2007.
dc.relation.referencesR. J. Barker and E. Schamiloglu, Introduction. IEEE, 2001.
dc.relation.referencesK. Scott, Coaxial Vircator Geometries. PhD thesis, Texas Tech University, 5 1998.
dc.relation.referencesC. Moller, High Power Microwave Sources : Design and Experiments. PhD thesis, 2011.
dc.relation.referencesE. A. Litvinov, G. A. Mesyats, and D. I. Proskurovskia, “Field emission and explosive electron emission processes in vacuum discharges,” Soviet Physics Uspekhi, vol. 26, no. 2, p. 138, 1983
dc.relation.referencesJ. Petren, “Frequency tunability of axial cavity vircators and double anode vircators,” Master’s thesis, KTH, School of Electrical Engineering (EES), 2016
dc.relation.referencesC. D. Child, “Discharge from hot cao,” Phys. Rev. (Series I), vol. 32, pp. 492– 511, May 1911
dc.relation.referencesI. Langmuir, “The effect of space charge and residual gases on thermionic currents in high vacuum,” Phys. Rev., vol. 2, pp. 450–486, Dec 1913.
dc.relation.referencesI. Langmuir and K. B. Blodgett, “Currents limited by space charge between coaxial cylinders,” Phys. Rev., vol. 22, pp. 347–356, Oct 1923.
dc.relation.referencesC. Birdsall and W. Brides, “Space-charge instabilities in electron diodes and plasma convertes,” of Applied Physics, vol. 32, pp. 2611–2618, 1961.
dc.relation.referencesR. Mahaffey, “High-power microwaves from a non-isochronic reflexing system,” Phys. Rev. Lett, vol. 39, p. 843, 1977.
dc.relation.referencesH. Brandt, “Gigawatt Microwave Emission from a Relativistic Reflex Triode,” tech. rep., 1980.
dc.relation.referencesA. Saxena, N. M. Singh, K. Y. Shambharkar, and F. Kazi, “Modeling of reflex triode virtual cathode oscillator,” IEEE Transactions on Plasma Science, vol. 42, pp. 1509–1514, June 2014.
dc.relation.referencesD. J. Sullivan, “High power microwave generation from a virtual cathode oscillator (vircator),” IEEE Transactions on Nuclear Science, vol. 30, pp. 3426–3428, aug 1983.
dc.relation.referencesD. Sullivan, “A high frequency vircator microwave generator,” High-Power Particle Beams, pp. 557–560, 1983.
dc.relation.referencesJ. Walter, C. L. J. Vara and, J. Dickens, A. Neuber, and M. Kristiansen, “Initial anode optimization for a compact sealed tube vircator,” in 2011 IEEE Pulsed Power Conference, pp. 807–810, June 2011.
dc.relation.referencesA. Didenko, A. Zherlitsyn, and G. Melnikov, “Research of microwave generation efficiency for triode with virtual cathode (vircator triode),” in 12th International Conference on High-Power Particle Beams. BEAMS’98. Proceedings (Cat. No.98EX103), vol. 1, pp. 65–68, IEEE, 1998.
dc.relation.referencesJ. Krile and M. Kristiansen, “Energy efficiency of High Power Microwave systems,” in 2011 IEEE Pulsed Power Conference, pp. 679–683, IEEE, jun 2011.
dc.relation.referencesJ. J. Mankowski, X. Chen, J. C. Dickens, and M. Kristiansen, “Experimental optimization of a Reflex Triode Virtual Cathode Oscillator,” 2004.
dc.relation.referencesM. U. Karlsson, M. Jansson, F. Olsson, and D. Aberg, “Optimization of the energy efficiency for a coaxial vircator,” 2009.
dc.relation.referencesY. Chen, J. Mankowski, J. Walter, M. Kristiansen, and R. Gale, “Cathode and Anode Optimization in a Virtual Cathode Oscillator,” 2007.
dc.relation.referencesE. Neira and F. Vega, “Optimization of a vircator using a novel evolutionary algorithm designed to reducing the number of evaluations,” in 2015 Asia-EM, JEJE, Sur Korea,, Agu. 2015.
dc.relation.referencesE. Neira, Y.-Z. Xie, and F. Vega, “On the virtual cathode oscillatorˆ aTMs energy optimization,” AIP Advances, vol. 8, no. 12, p. 125210, 2018.
dc.relation.referencesE. Neira, F. Vega, J. Pantoja, and F. Rachidi, “Optimization of a vircator using a novel evolutionary algorithm designed to reducing the number of evaluations,” in 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 1643–1646, Sep. 2015.
dc.relation.referencesE. Neira and F. Vega, “Identification of parameters to improve the total energy radiated by a vircator maintaining the design frequency,,” in 2014, EAPPC, Kumamoto, Japan, Agu 2014.
dc.relation.referencesE. Neira and F. Vega, “Study of the space-charge-limited current on circular diodes applied to virtual cathode oscillator,” in 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 938–942, Sep. 2016.
dc.relation.referencesE. Neira and F. Vega, “Solution for the space-charge-limited current in coaxial vacuum diodes,” Physics of Plasmas, vol. 24, no. 5, p. 052117, 2017
dc.relation.referencesE. Neira and F. Vega, “On the use of xoopic for the simulation of virtual cathode oscillators,” in European Electromagnetics Symposium 2016, Agu 2016.
dc.relation.referencesR. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proceedings of the Royal Society of London Series A, vol. 119, pp. 173–181, may 1928.
dc.relation.referencesR. G. Forbes and J. Deane, “Reformulation of the standard theory of fowlernordheim tunnelling and cold field electron emission,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 2087, pp. 2907–2927, 2007.
dc.relation.referencesM. S. Sodha, Electron Emission from Dust. New Delhi: Springer India, 2014.
dc.relation.referencesL. N. Slivkov, Elektroizolyatsiya i razryad v vakuume (Electrical Insulation and Discharges in vacuum). Atomizdat, 1972.
dc.relation.referencesS. P. Bugaev, E. A. Litvinov, G. A. Mesyats, and D. I. Proskurovskia, “Explosive emission of electrons,” Soviet Physics Uspekhi, vol. 18, no. 1, p. 51, 1975.
dc.relation.referencesC. Carr, Space Charge Limited Emission Studies Using Coulomb’s Law. PhD thesis, Naval Postgraduate School, Monterrey, California, 6 2004.
dc.relation.referencesH. R. Jory and A. W. Trivelpiece, “Exact relativistic solution for the onedimensional diode,” Journal of Applied Physics, vol. 40, no. 10, p. 39243926, 1969.
dc.relation.referencesZ. Yang, G. Liu, H. Shao, T. Yan, and Y. Zhang, “Relativistic solutions for oneand two-dimensional space-charge limited current in coaxial diode,” Physics of Plasmas, vol. 20, no. 5, p. 053103, 2013.
dc.relation.referencesX. Chen, J. Dickens, L. L. Hatfield, E. Choi, and M. Kristiansen, “Approximate analytical solutions for the space-charge-limited current in one-dimensional and two-dimensional cylindrical diodes,” Physics of Plasmas, vol. 11, no. 6, p. 32783283, 2004.
dc.relation.referencesY. Li, F. He, C. Liu, and J. Sun, “2d child-langmuir law for planar diode with finiteradius emitter,” in IVESC 2004. The 5th International Vacuum Electron Sources Conference Proceedings (IEEE Cat. No.04EX839), pp. 263–264, Sept 2004.
dc.relation.referencesK. B. Song, J. E. Lim, Y. Seo, and E. H. Choi, “Output characteristics of the axially extracted virtual cathode oscillator with a cathode-wing,” IEEE Transactions on Plasma Science, vol. 37, pp. 304–310, Feb 2009.
dc.relation.referencesY. Y. Lau, “Simple theory for the two-dimensional child-langmuir law,” Phys. Rev. Lett., vol. 87, p. 278301, Dec 2001.
dc.relation.referencesJ. W. Luginsland, Y. Y. Lau, and R. M. Gilgenbach, “Two-dimensional childlangmuir law,” Phys. Rev. Lett., vol. 77, pp. 4668–4670, Nov 1996.
dc.relation.referencesG. R. Hadley, T. P. Wright, and A. V. Farnsworth, “Pinching limits and scaling laws for high current diodes,” in 1975 International Topical Conference on Electron Beam Research Technology, vol. 1, pp. 255–261, Nov 1975.
dc.relation.referencesE. Neira, Y. . Xie, and F. Vega, “On the vircator peak power optimization,” in 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 1513–1516, Sep. 2017.
dc.relation.referencesS. Putnam, Theoretical Studies of Intense Relativistic Electron Beam-Plasma Interactions. 2700 Merced Street, San Leandro, CA, US: Physics International Company, 1 ed., 1972.
dc.relation.referencesA. Roy, R. Menon, S. Mitra, S. Kumar, V. Sharma, K. V. Nagesh, K. C. Mittal, and D. P. Chakravarthy, “Plasma expansion and fast gap closure in a high power electron beam diode,” Physics of Plasmas, vol. 16, no. 5, p. 053103, 2009.
dc.relation.referencesJ. E. Coleman, D. C. Moir, C. A. Ekdahl, J. B. Johnson, B. T. McCuistian, and M. T. Crawford, “Explosive emission and gap closure from a relativistic electron beam diode,” in 2013 19th IEEE Pulsed Power Conference (PPC), pp. 1–6, June 2013.
dc.relation.referencesT. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas. Cambridge University Press, 1 ed., 2003.
dc.relation.referencesV. N. Tsytovich, E. Gregory, G. Morfill, S. V. V. Sergey, and H. Hubertus, Elementary Physics of Complex Plasmas. Lecture notes in physics 731, SpringerVerlag Berlin Heidelberg, 1 ed., 2008.
dc.relation.referencesA. Kadish, R. J. Faehl, and C. M. Snell, “Analysis and simulation of virtual cathode oscillations,” The Physics of Fluids, vol. 29, no. 12, pp. 4192–4203, 1986.
dc.relation.referencesB. V. Alyokhin, A. E. Dubinov, V. D. Selemir, O. A. Shamro, K. V. Shibalko, N. V. Stepanov, and V. E. Vatrunin, “Theoretical and experimental studies of virtual cathode microwave devices,” IEEE Transactions on Plasma Science, vol. 22, pp. 945–959, Oct 1994
dc.relation.referencesM. A. Heald and J. B. Marion, Clasical Electromagnetic RAdiation. Thomson Learning, 3 ed., 1995
dc.relation.referencesJ. I. Katz, “Dimensional bounds on vircator emission,” IEEE Transactions on Plasma Science, vol. 44, pp. 3268–3270, Dec 2016.
dc.relation.referencesD. Biswas, “A one-dimensional basic oscillator model of the vircator,” Physics of Plasmas, vol. 16, no. 6, p. 063104, 2009.
dc.relation.referencesJ. B. Seaborn, Hypergeometric Functions and Their Applications. Texts in Applied Mathematics 8, Springer-Verlag New York, 1 ed., 1991.
dc.relation.references“Wolfram mathematical, the design of the ndsolve framework.” https://reference.wolfram.com/language/tutorial/NDSolveDesign.html. Accessed: 2016-09-30.
dc.relation.referencesJ. Russell and R. Cohn, Bisection Method. Book on Demand, 1 ed., 2012.
dc.relation.referencesA. D. Greenwood, J. F. Hammond, P. Zhang, and Y. Y. Lau, “On relativistic space charge limited current in planar, cylindrical, and spherical diodes,” Physics of Plasmas, vol. 23, no. 7, p. 072101, 2016.
dc.relation.referencesP. Ryser-Welch, “A review of hyper-heuristics framework,” pp. 1–7, 04 2014.
dc.relation.referencesS. Doncieux, J. B. Mouret, N. Bredeche, and V. Padois, New Horizons in Evolutionary Robotics: Extended Contributions from the 2009 EvoDeRob Workshop. Studies in Computational Intelligence 341, Springer-Verlag Berlin Heidelberg, 1 ed., 2011.
dc.relation.referencesN. Kokash, “An introduction to heuristic algorithms,” pp. 1–8, 2005.
dc.relation.referencesJ. Dreo, A. P˜ A c trowski, P. Siarry, E. Taillard, and A. Chatterjee, Metaheuristics for Hard Optimization Simulated Annea Tabu Search E. Springer, 1 ed., 2005.
dc.relation.referencesK. Du and M. N. S. Swamy, Search and Optimization by Metaheuristics: Techniques and Algorithms Inspired by Nature. Birkhauser Basel, 1 ed., 2016.
dc.relation.referencesK. Y. Lee and M. A. El-Sharkawi, Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems (IEEE Press Series on Power Engineering). IEEE Press Series on Power Engineering, Wiley-IEEE Press, 1 ed., 2008.
dc.relation.referencesJ. Kennedy and R. C. Eberhart, Swarm Intelligence. Elsevier, 1 ed., 2001.
dc.relation.referencesM. A. Guzman, A. Delgado, and J. D. Carvalho, “A novel multiobjective optimization algorithm based on bacterial chemotaxis,” Engineering Applications of Artificial Intelligence, vol. 23, no. 3, pp. 292 – 301, 2010
dc.relation.referencesC. A. Coello and C. Dhaenens, Advances in Multi-Objective Nature Inspired Computing. Studies in Computational Intelligence 272, Springer-Verlag Berlin Heidelberg, 1 ed., 2010.
dc.relation.referencesK. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182–197, Apr 2002.
dc.relation.referencesK. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii,” in Parallel Problem Solving from Nature PPSN VI (M. Schoenauer, K. Deb, X. Yao, E. Lutton, J. J. Merelo, and H. Schwefel, eds.), (Berlin, Heidelberg), pp. 849–858, Springer Berlin Heidelberg, 2000.
dc.relation.referencesA. Ahmadi, F. E. Bouanani, and H. Ben-Azza, “Four parallel decoding schemas of product block codes,” Transactions On Networks And Communications, vol. 2, no. 2, pp. 49–69, 2014.
dc.relation.referencesJ. Valera, V. Gomez-Garay, E. Irigoyen, and E. Larzabal, “Microcontroller implementation of a multi objective genetic algorithm for real-time intelligent control,” vol. 239, 2014.
dc.relation.referencesH. Wiedemann, Particle Accelerator Physics. Springer, 2 ed., 2007.
dc.relation.referencesP. A. Davidson, An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics, Cambridge University Press, 1 ed., 2001.
dc.relation.referencesN. S. Frolov, S. A. Kurkin, A. A. Koronovskii, and A. E. Hramov, “Simulation of axial virtual cathode oscillator with photonic crystal foil grid structure output in cst particle studio,” in 2016 IEEE International Vacuum Electronics Conference (IVEC), pp. 1–2, April 2016.
dc.relation.referencesM. C. Balk, “P3-33: Simulation of a virtual cathode oscillator with cst studio suiteˆ a ” ,” in 2010 IEEE International Vacuum Electronics Conference (IVEC), pp. 395–396, May 2010.
dc.relation.referencesM. Maiti, D. Tiwari, A. Roy, N. Singh, and S. Wagh, “Simulation and analysis of an axial vircator using pic code,” in 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp. 1–5, May 2015
dc.relation.referencesY.-C. Lan, M.-C. Lin, Y. Hu, and T.-L. Lin, “Simulation study of vircators with field emission cathode,” in 4th IEEE International Conference on Vacuum Electronics, 2003, pp. 242–243, May 2003.
dc.relation.referencesG. Filipic, Principles of Particle in cell simulations. University of Ljubljana, 1 ed., 2008.
dc.relation.referencesR. L. Haupt, “Using matlab to control commercial computational electromagnetics software,” Aces Journal, vol. 23, no. 1, pp. 98–103, 2008.
dc.relation.referencesR. L. Haupt and S. Haupt, Practical Genetic Algorithms. Studies in Computational Intelligence 272, Wiley-Interscience, 2 ed., 2004.
dc.relation.referencesD. V. Giri, High-Power Electromagnetic Radiators: Nonlethal Weapons and Other Applications. Harvard University Press, 1 ed., 2004
dc.relation.referencesE. G. Baquela and A. Redchuk, Optimizacion Matematica con R, vol. 1. Madrid, Spain: Bubok Publishing S.L., first edition ed., 2013.
dc.relation.referencesA. Ravindran, K. M. Ragsdell, and G. V. Reklaitis, Engineering optimization: methods and applications. John Wiley & Sons, 2 ed., 2006.
dc.relation.referencesP. R. LeClair, Accelerating charges, radiation, and electromagnetic waves in solids. 1 ed., 2011.
dc.relation.referencesA. Dean, D. Voss, and D. Draguljic, Design and Analysis of Experiments. Springer, 2 ed., 2017.
dc.relation.referencesJ. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, “Simultaneous potential and circuital solution for 1d bounded plasma particle simulation codes,” computational physics, vol. 104, no. 2, pp. 321–328, 1993.
dc.relation.referencesM. C. Choi, S. H. Choi, M. W. Jung, K. K. Seo, Y. H. Seo, K. S. Cho, E. H. Choi, and H. S. Uhm, “Characteristic of vircator output at various a-k gap distances with diode perveance,” in IEEE Conference Record - Abstracts. PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference (Cat. No.01CH37, pp. 503–, June 2001.
dc.relation.referencesD. Price, D. Fittinghoff, J. Benford, H. Sze, and W. Woo, “Operational features and microwave characteristics of the vircator ii experiment,” IEEE Transactions on Plasma Science, vol. 16, pp. 177–184, April 1988.
dc.relation.referencesH. A. Davis, R. D. Fulton, E. G. Sherwood, and T. J. T. Kwan, “Enhancedefficiency, narrow-band gigawatt microwave output of the reditron oscillator,” IEEE Transactions on Plasma Science, vol. 18, pp. 611–617, June 1990.
dc.relation.referencesC.-S. Hwang and M.-W. Wu, “A high power microwave vircator with an enhanced efficiency,” IEEE Transactions on Plasma Science, vol. 21, pp. 239–242, April 1993.
dc.relation.referencesH. Sze, J. Benford, T. Young, D. Bromley, and B. Harteneck, “A radially and axially extracted virtual-cathode oscillator (vircator),” IEEE Transactions on Plasma Science, vol. 13, pp. 492–497, Dec 1985.
dc.relation.referencesV. Baryshevsky, A. Gurinovich, E. Gurnevich, and P. Molchanov, “Experimental study of a triode reflex geometry vircator,” IEEE Transactions on Plasma Science, vol. 45, pp. 631–635, April 2017.
dc.relation.referencesW. Jiang, J. Dickens, and M. Kristiansen, “High power microwave generation by a coaxial vircator,” in 2000 13th International Conference on High-Power Particle Beams, pp. 1020–1023, June 2000.
dc.relation.referencesK. Y. Sung, W. Jeon, Y. Jung, J. E. Lim, H. S. Uhm, and E. H. Choi, “Influence of anode-cathode gap distance on output characteristics of high-power microwave from coaxial virtual cathode oscillator,” IEEE Transactions on Plasma Science, vol. 33, pp. 1353–1357, Aug 2005.
dc.relation.referencesA. Bromborsky, F. Agee, M. Bollen, J. Cameron, C. Clark, Davis, W. Destler, S. Graybill, G. Huttlin, D. Judy, R. Kehs, R. Kribel, L. Libelo, J. Pasour, N. Pereira, J. Rogers, M. Rubush, B. Ruth, C. Schlesiger, E. Sherwood, L. Smutek, G. Still, L. Thode, and D. Weidenheimer, “On the path to a terawatt: High power microwave experiments at aurora’,” 1988.
dc.relation.referencesW. Jiang, K. Woolverton, J. Dickens, and M. Krisiansen, “High power microwave generation by a coaxial vircator,” in Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358), vol. 1, pp. 194– 197, June 1999.
dc.relation.referencesD. Biswas and R. Kumar, “Microwave power enhancement in the simulation of a resonant coaxial vircator,” IEEE Transactions on Plasma Science, vol. 38, pp. 1313–1317, June 2010.
dc.relation.referencesM. Balk, “Simulation of high power microwaves,” in CST, Computer Simulation Technology, may 2011.
dc.relation.referencesA. Roy, A. Sharma, V. Sharma, A. Patel, and D. P. Chakravarthy, “Frequency variation of a reflex-triode virtual cathode oscillator,” IEEE Transactions on Plasma Science, vol. 41, pp. 238–242, Jan 2013.
dc.relation.referencesE. Oran, Fast Fourier Transform and Its Applications. Mathematical and Analytical Techniques with Applications to Engineering, Prentice Hall, 1988.
dc.relation.referencesR. F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE Press Series on Electromagnetic Wave Theory). Piscataway, NJ 08855-133 1: IEEE press Editorial Board, 1 ed., 2001.
dc.relation.referencesL. S. San, “Computer simulation of low temperature plasma,” Master’s thesis, Department of physics, faculty of science, 2010.
dc.relation.referencesA. Solari, L. Salmaso, F. Pesarin, and D. Basso, Permutation Tests for Stochastic Ordering and ANOVA: Theory and Applications with R. 1 ed., 2009.
dc.relation.referencesF. J.J., Practical Regression and Anova using R. 2000.
dc.relation.referencesW. J. Hill and W. G. Hunter, “A review of response surface methodology: A literature survey,” Technometrics, vol. 8, no. 4, pp. 571–590, 1966.
dc.relation.referencesA. V. Starodubov, S. A. Makarkin, V. V. Galushka, A. M. Pavlov, A. A. Serdobintsev, A. A. Koronovskii, and Y. A. Kalinin, “Higher harmonics generation in low-voltage vircator system,” in 2018 IEEE International Vacuum Electronics Conference (IVEC), pp. 219–220, April 2018.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalHigh-Power Microwave
dc.subject.proposalCarga espacial
dc.subject.proposalHigh-Power Microwave Sources
dc.subject.proposalFuentes de microondas de alta potencia
dc.subject.proposalMicroondas de alta potencia
dc.subject.proposalParticles
dc.subject.proposalPlasma
dc.subject.proposalOscilladores de catodo Virtual
dc.subject.proposalRelativistics
dc.subject.proposalPartıculas
dc.subject.proposalVircator
dc.subject.proposalPlasma
dc.subject.proposalVirtual Cathode Oscillator
dc.subject.proposalRelatividad
dc.subject.proposalVircator
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito