Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorde Brito Brandão, Pedro Filipe
dc.contributor.advisorCastillo Serna, Elianna
dc.contributor.authorRodriguez-Lopez, Claudia Milena
dc.date.accessioned2020-03-06T21:09:38Z
dc.date.available2020-03-06T21:09:38Z
dc.date.issued2019-11-29
dc.identifier.citationRodriguez-Lopez, C. (2019). Potencial de bacterias aisladas de fermento de cacao para remoción de cadmio y arsénico. Universidad Nacional de Colombia, Bogotá, Colombia.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75963
dc.description.abstractThe aim of this study was to evaluate the potential of lactic acid bacteria, isolated from fermented cacao, to remove cadmium and arsenic under in vitro conditions of acidity and salinity that simulate the human digestive system, in order to verify their potential in future detoxification applications. The first step was the isolation and identification of lactic acid bacteria of the Lactobacillus spp. genera resistant to cadmium and arsenic (in its arsenite state) from fermented cacao, obtaining a total of 38 strains. Then, the bacteria most resistant to cadmium and arsenic were selected by tests of Minimum Inhibitory Concentration, and from this pool were selected the most tolerant to in vitro conditions of acidity and salinity. With these criteria the reference strain L. plantarum JCM 1055 and the native isolates L. plantarum A19 and L. plantarum C16 were selected for further analysis. These were evaluated for their cadmium and arsenic removal capacity in aqueous media. An experimental design 23 was carried out in order to evaluate the effect of 3 variables on the cadmium removal capacity of the three strains and an experimental design 22 was carried out for arsenic. Removal percentages up to 100% were obtained for cadmium (using 1 mg/L of cadmium, pH 5 and biomass concentration of 1.5 g/L) with the three evaluated bacteria. For arsenic, the best removal percentage obtained was 20% with L. plantarum C16 (using 0.1 mg/L of arsenite, pH 5 and biomass concentration of 1.5 g/L). Finally, the capacity of these bacteria to decrease the bioaccessibility of cadmium and arsenic was evaluated in in vitro conditions that simulate the human digestive system, using the RIVM (RijksInstituut voor Volksgezondheid en Milieu) model. Using the native isolate L. plantarum A19, the cadmium bioaccessibility was reduced to 56%, while for arsenite it was reduced to 62%. This capacity to decrease bioaccessibility suggests its possible ability to decrease the bioavailability of cadmium and arsenite in in vivo models (animals). Future studies will allow exploring the potential application of these microorganisms in biotechnological removal or detoxification processes.
dc.description.abstractEn este trabajo se evaluó el potencial de bacterias ácido lácticas, aisladas de fermento de cacao, para remover cadmio y arsénico en condiciones in vitro de pH ácido y concentraciones de sales biliares que simulan el sistema digestivo humano, como un primer paso para comprobar su potencial en futuras aplicaciones de detoxificación. Para esto, primero se realizó el aislamiento e identificación de bacterias ácido lácticas del género Lactobacillus spp., que crecen en presencia de cadmio y a arsénico (en su forma arsenito) a partir de fermento de cacao, tomado con la colaboración de la empresa Luker Chocolate, obteniendo un total de 38 Lactobacillus spp. Posteriormente, se seleccionaron las bacterias que crecen ante mayores concentraciones de cadmio y de arsénico mediante ensayos de Concentración Mínima Inhibitoria, así, como las que tienen mayor tolerancia a las condiciones in vitro de pH ácido y sales biliares. Con estos tres criterios fueron seleccionados los aislados de L. plantarum A19, L. plantarum C16 y la cepa de referencia L. plantarum JCM 1055. Estas fueron evaluadas por la capacidad de remoción de cadmio y arsénico en un medio acuoso. Se realizó un diseño experimental factorial 2^3 en el cual se evaluó el efecto de 3 variables sobre la capacidad de remoción de cadmio de las tres bacterias y un diseño experimental factorial 2^2 para el caso del arsénico. Se encontraron porcentajes de remoción de cadmio de hasta 100% (empleando 1 mg/L de cadmio, a pH 5 y a una concentración de biomasa de 1,5 g/L) con los L. plantarum evaluados (JCM 1055, A19 y C16), y de arsenico de 20% con L. plantarum C16 (empleando 0,1 mg/L de arsénico, pH 5 y concentración de biomasa de 1,5 g/L). Finalmente, se evaluó la capacidad de estas bacterias para disminuir la bioaccesibilidad de cadmio y arsénico en condiciones in vitro que simulan el sistema digestivo humano, utilizando el modelo RIVM (RijksInstituut voor Volksgezondheid en Milieu). Se encontró una disminución del porcentaje de bioaccesibilidad de cadmio del 56% y de arsénico hasta en un 62% con el aislado nativo L. plantarum A19. Esta capacidad de disminución de la bioaccesibilidad, sugiere su posible capacidad de disminuir la biodisponibilidad de cadmio y de arsénico en modelos in vivo (animales). Futuros estudios permitirán explorar el potencial de aplicación de los microorganismos evaluados en los procesos biotecnológicos de remoción o de detoxificación de estos elementos tóxicos en sistemas in vivo.
dc.format.extent112
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algas
dc.titlePotencial de bacterias aisladas de fermento de cacao para remoción de cadmio y arsénico
dc.title.alternativePotential of bacteria isolated from fermented cocoa to remove cadmium and arsenic
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.corporatenameUniversidad Nacional de Colombia
dc.contributor.researchgroupGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente - GERMINA
dc.description.degreelevelMaestría
dc.publisher.departmentInstituto de Biotecnología
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAlimolaei, M., Golchin, M. (2016). An Efficient DNA Extraction Method for Lactobacillus casei, a Difficult-to-Lyse Bacterium. International Journal of Enteric Pathogens, 4(1), 35-40.
dc.relation.referencesAlonso, D., Latorre, S., Castillo, E., Brandão, P. F. B. (2014). Environmental occurrence of arsenic in Colombia: A review. Environmental Pollution, 186 (1), 272–281.
dc.relation.referencesArdhana, M., Fleet, G. (2003). The microbial ecology of cocoa bean fermentations in Indonesia. International Journal of Food Microbiology, 86(1–2), 87-99.
dc.relation.referencesArias, V., Rodriguez, A., Bardos, P., Naidu, R. (2018). Contaminated land in Colombia: A critical review of current status and future approach for the management of contaminated sites. Science of The Total Environment, 618(1), 199-209.
dc.relation.referencesBhakta, J. N., Ohnishi, K., Munekage, Y., Iwasaki, K. (2010). Isolation and Probiotic Characterization of Arsenic-Resistant Lactic Acid Bacteria for Uptaking Arsenic. International Journal of Bioengineering and Life Sciences, 4(11), 831-838.
dc.relation.referencesBhakta, J. N., Ohnishi, K., Munekage, Y., Iwasaki, K., Wei, M. Q. (2012). Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. Journal of Applied Microbiology, 112(1), 1193–1206.
dc.relation.referencesBienert, G., Desguin, B., Chaumont, F., Hols, P. (2013). Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria. The Biochemical journal, 454(1), 559–570.
dc.relation.referencesButel, M. J. (2014). Probiotics, gut microbiota and health. Medecine et maladies infectieuses, 44(1),1-8.
dc.relation.referencesCamu, N., De Winter, T., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J. S., … De Vuyst, L. (2007). Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Applied and Environmental Microbiology, 73(6), 1809–1824.
dc.relation.referencesCheng, W., Tian, F., Qixiao, T., Wang, G., Liu, X., Zhang, Q.,Fan, D., Zhao, J., Zhang, H. (2012). Strain of cadmium-removing Lactobacillus plantarum bacterium, and uses of the same, United States. US9451781B2 2012.
dc.relation.referencesChou, L. S., Weimer, B. (1999). Isolation and Characterization of Acid and Bile-Tolerant Isolates from Strains of Lactobacillus acidophilus. Journal of Dairy Science, 82(1), 23-31.
dc.relation.referencesDas, S., Dash, H. R. (2017). Handbook of Metal-Microbe Interactions and Bioremediation. Boca Raton: Taylor & Francis.
dc.relation.referencesDe Angelis, M.,Bini, L., Pallini, V., Cocconcelli, P., Gobbetti, G. (2001). The acid-stress response in Lactobacillus sanfranciscensis CB1 Microbiology (2001), 147(1), 1863–1873.
dc.relation.referencesDe S., Kaur, G., Roy, A., Dogra, G., Kaushik, R., Yadav, P., et al. (2010). A simple method for the efficient isolation of genomic DNA from Lactobacilli isolated from traditional indian fermented milk (dahi). Indian Journal of Microbiology, 50(1), 412–418.
dc.relation.referencesDe Vos, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F., Schleifer, G. M., Whitman, W. (2009). Bergey's Manual of Systematic Bacteriology: Volume 3: The Firmicutes. New Delhi: Springer-Verlag New York. 465-466.
dc.relation.referencesDe Vuyst, L., Lefeber, T., Papalexandratou, Z., & Camu, N. (2010). The functional role of lactic acid bacteria in cocoa bean fermentation. In Biotechnology of Lactic Acid Bacteria: Novel Applications. Oxford, UK: Wiley-Blackwell. 301–325.
dc.relation.referencesDohrmann, A., & Tebbe, C. (2008). Section 3 update: Microbial community analysis by PCR-single-strand conformation polymorphism (PCR-SSCP). Molecular Microbial Ecology Manual.
dc.relation.referencesFonseca, F., Cenard, S., Passot, S. (2015) Freeze-Drying of Lactic Acid Bacteria. In: Wolkers W., Oldenhof H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology (Methods and Protocols), Vol 1257. Springer, New York.
dc.relation.referencesGänzle, M. G. (2015). Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2(1), 106–117.
dc.relation.referencesGarcía.Cáceres, R., Perdomo, A., Ortiz, O., Beltrán, P., López, K. (2014). Characterization of the supply and value chains of Colombian cocoa. Dyna, 81 (187), 30-40.
dc.relation.referencesGerbino, E., Carasi, P., Tymczyszyn, E. E., & Gómez-Zavaglia, A. (2014). Removal of cadmium by Lactobacillus kefir as a protective tool against toxicity. Journal of Dairy Research, 81(3), 280-287.
dc.relation.referencesGerbino, E., Mobili, P., Tymczyszym E., Fausto, R., Gómez-Zavaglia, A. (2011). FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions. Journal of Molecular Structure, 987(1), 186–192.
dc.relation.referencesGiraffa G., Chanishvili N., & Widyastuti Y. (2010). Importance of lactobacilli in food and feed biotechnology. Research in Microbiology, 161(6), 480–487.
dc.relation.referencesHalttunen, T., Kankaanpää, P., Ouwehand, A., Tahvonen, R., Salminen, S. (2003). Cadmium decontamination by lactic acid bacteria. Bioscience Microflora, 22(3), 93-97.
dc.relation.referencesHalttunen, T., Finell, M., Salminen, S. (2007a). Arsenic removal by native and chemically modified lactic acid bacteria. International Journal of Food Microbiology, 120(1), 173–178.
dc.relation.referencesHalttunen, T., Salminen, S., Tahvonen, R. (2007b). Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International. Journal of Food Microbiology, 114(1), 30-5.
dc.relation.referencesHalttunen, T., Salminen, S., Jussi, M., Raija, T., & Kalle L. (2008). Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. International Journal of Food Microbiology, 125(2), 170-175.
dc.relation.referencesHansda A, Kumar V, Anshumali (2016) A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World Journal of Microbiology and Biotechnology, 32(170), 1-14.
dc.relation.referencesHo V. T. T., Zhao J., & Fleet G. (2015). The effect of lactic acid bacteria on cocoa bean fermentation. International Journal of Food Microbiology, 205(1), 54–67.
dc.relation.referencesHolzapfel, W. H., Haberer P., Geisen R., Björkroth J., & Schillinger U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. The American Journal of Clinical Nutrition, 73(2), 365–373.
dc.relation.referencesIbrahim, F., Halttunen, T., Tahvonen, R., & Salminen, S. (2006). Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Canadian Journal of Microbiology, 52(1), 877–885.
dc.relation.referencesJärup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.
dc.relation.referencesKinoshita, H., Sohma, Y., Ohtake, F., Ishida, M., Kawai, Y., Kitazawa, H., … Kimura, K. (2013). Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Research in Microbiology, 164(1), 701-709.
dc.relation.referencesKönig, H., Fröhlich, J. (2017) Lactic Acid Bacteria. In: König H., Unden G., Fröhlich J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Cham.
dc.relation.referencesKumar, R., Kaur, M., Garsa, A. K., Shrivastava, B., Reddy, V. P., Tyagi, A. (2015). Natural and Cultured Buttermilk. In: Puniya A. K., editor. Fermented milk and dairy products. CRC Press/Taylor and Francis. 203–225.
dc.relation.referencesKumar, N., Kumar, V., Panwar, R., & Chand, R. (2017). Efficacy of indigenous probiotic Lactobacillus strains to reduce cadmium bioaccessibility - An in vitro digesstion model. Environ Environmental Science and Pollution Research, 24(1), 1241-1250.
dc.relation.referencesLeroy, F., De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology, 15(2), 67–78.
dc.relation.referencesLima, L. J. R., Almeida, M. H., Nout, M. J. R., Zwietering, M. H. (2011). Theobroma cacao “The Food of the Gods”: quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Critical Reviews in Food Science and Nutrition, 51(1), 731–761.
dc.relation.referencesLipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1), 3-25.
dc.relation.referencesLiu, Y., Tang, H., Lin, Z., Xu, P. (2015). Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnology Advances, 33(1), 1484–1492.
dc.relation.referencesMandal, B. K., Suzuki, K. T. (2002) Arsenic round the World: A Review. Talanta, 58(1), 201-235.
dc.relation.referencesMonachese, M. A. (2012). Sequesteration of lead, cadmium and arsenic by Lactobacillus species and detoxication potential. Thesis submitted University of Western Ontario, 1-154.
dc.relation.referencesMontaño-Salazar, S. M., Lizarazo-Marriaga, J., Brandão, P. F. B. (2018). Isolation and potential biocementation of calcite precipitation Iinducing bacteria from Colombian buildings. Current Microbiology, 75(3), 256–265.
dc.relation.referencesMosa, K., Saadoun, I., Kumar, K., Helmy, M., Parkash O., (2018). Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. Plant Biotechnol Reports, 12(1), 1–14.
dc.relation.referencesPacheco-Montealegre, M. E., Dávila-Mora, L. L., Botero-Rute, L. M., Reyes, A., Caro-Quintero, A., (2019). Fine grained longitudinal analysis of cocoa bean fermentation 1 provides insights into the dynamics of microbial populations. Biorxiv, The preprint server for biology. Cold Spring Harbor Laboratory. Prepint posted July 15.
dc.relation.referencesPalm, K., Luthman, K., Ungell, A. L., Strandlund, G., Artursson, P. (1996). Correlation of drug absorption with molecular surface properties. Journal of Pharmaceutical Sciences, 85(1), 32-39.
dc.relation.referencesPolak-Berecka, M., Szwajgier, D., Wásko, A. (2014). Biosorption of Al+3 and Cd+2 by and Exopolysaccharide from Lactobacillus rhamnosus. Journal of Food Science, 79(1), 404-408.
dc.relation.referencesPolak-Berecka, M., Szwajgier, D., Wásko, A. (2014). Biosorption of Al+3 and Cd+2 by and Exopolysaccharide from Lactobacillus rhamnosus. Journal of Food Science, 79(1), 404-408.
dc.relation.referencesSaito, V. S. T., Dos Santos, T. F., Vinderola, C. G., Romano, C., Nicoli, J. R., Araújo, L. S., … Uetanabaro, A. P. T. (2014). Viability and resistance of lactobacilli isolated from cocoa fermentation to simulated gastrointestinal digestive steps in soy yogurt. Journal of Food Science, 79(2), 208–213.
dc.relation.referencesSatarug, S., Baker, J. R., Urbenjapol, S., Haswell-Elkins, M., Reilly, P. E. B., Williams, D. J., Moore, R. A. (2003). Global Perspective on Cadmium Pollution and Toxicity in Non Occupationally Exposed Population. Toxicology Letters, 137(1-2), 65-83.
dc.relation.referencesSebastian, A., Prasad, M. N. V. (2014). Cadmium minimization in rice: a review. Agronomy for Sustainable Development, 34(1), 155–173.
dc.relation.referencesShen, S., Li, X., Cullen, W., Weinfeld, M., Le. X. (2013). Arsenic Binding to Proteins. Chemical Reviews, 113(1), 7769−7792.
dc.relation.referencesSingh A. L., Sarma P. N. (2010). Removal of arsenic(III) from waste water using Lactobacillus acidophilus. Bioremediation Journal, 14(2), 92–97.
dc.relation.referencesSips, A., Bruil, M., Dobbe, C., Kamp, E., Oomen, A., Pereboom, D., Rompelberg, C., Zeilmaker, M., (2001). RIVM report 711701012/2001. Bioaccessibility of contaminants from ingested soil in humans. Method development and research on the bioaccessibility of lead and benzo[a]pyrene (https://www.rivm.nl/bibliotheek/rapporten/711701012.pdf).
dc.relation.referencesSlover C. M., Danziger L. (2008). Lactobacillus: a review. Clinical Microbiological Newsletter, 30(4), 23-27.
dc.relation.referencesSpiro, T., Stigliani, W. (2007). Quimica medioambiental. Segunda edición. Madrid: PEARSON. Prentice Hall.
dc.relation.referencesSun, Z., Harris, H. M., McCann, A… Toole, P. (2015). Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature communications, 6(8322), 1-13.
dc.relation.referencesVan de Wiele, T., Oomen, A., Wragg, J., Cave, M., Minekus, M., Hack, A., Cornelis, A., Rompelberg, C… Sips A. (2007). Comparison of five in vitro digestion models: lead bioaccessibility in the human gastrointestinal tract. Journal of environmental science health, 42(9), 1203-1211.
dc.relation.referencesVeglio, F., & Beolchini, F. (1997). Removal of metals by biosorption: a review. Hydrometallurgy, 44(1), 301 -316.
dc.relation.referencesVersantvoort, C., Van de Kamp, E., Rompelberg, C. (2002) RIVM report 320102002/2004. Development and applicability of an in vitro digestion model in assessing the bioaccessibility of contaminants from food (https://www.rivm.nl/bibliotheek/rapporten/320102002.pdf)
dc.relation.referencesVersantvoort, C., Van de Kamp, E., Rompelberg, C., Sips, A. (2005) Aplicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31-40.
dc.relation.referencesWacher, M. (2011). Microorganismos y chocolate. Revista Digital Universitaria, 12(4), 1-9.
dc.relation.referencesWeisburg, W. G. S., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S Ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(1), 697–703.
dc.relation.referencesWienk, K., Marx, J. Beynen, A. (1999). The concept of iron bioavailability and its assessment. European Journal of Nutrition, 38(2), 51-75.
dc.relation.referencesYuswir, N., Praveena, S., Aris, A., Hashim, Z. (2013). Bioavailability of heavy metals using in vitro digestion model: a state of present knowledge. Reviews on Environmental Health, 28(4), 181–187.
dc.relation.referencesZhai, Q, Xiao, Y, Zhao, J, Tian, F, Zhang, H, Narbad, A, Chen, W. (2017). Identification of key proteins and pathways in cadmium tolerance of Lactobacillus plantarum strains by proteomic analysis. Scientific Reports, 7(1),1182.
dc.relation.referencesZhai, Q., Guo, Y., Tang, X., Tian, F., Zhao, J., Zhang, H., Chen, W. (2019). Removal of cadmium from rice by Lactobacillus plantarum fermentation. Food Control, 96(1), 357–364.
dc.relation.referencesZhai, Q., Wang, G., Zhao, J., Liu, X., Tian, F., Zhang, H., Chen, W. (2013). Protective effects of Lactobacillus plantarum ccfm8610 against acute cadmium toxicity in mice. Applied and Environmental Microbiology, 79(5), 1508-1515.
dc.relation.referencesZoghi, A., Khosravi-Darani, K., Sohrabvandib, S. (2014). Surface Binding of Toxins and Heavy Metals by Probiotics. Mini-Reviews in Medicinal Chemistry, 14(1), 84-98.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalLactobacilli
dc.subject.proposalLactobacilos
dc.subject.proposalFermented cacao
dc.subject.proposalCacao fermentado
dc.subject.proposalIsolation
dc.subject.proposalAislamiento
dc.subject.proposalMetal
dc.subject.proposalMetal
dc.subject.proposalMetaloide
dc.subject.proposalMetalloid
dc.subject.proposalBioaccesibility
dc.subject.proposalBioaccesibilidad
dc.subject.proposalModelo RIVM
dc.subject.proposalRIVM model
dc.subject.proposalDigestive system
dc.subject.proposalSistema digestivo
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito