Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorZuluaga Gómez, Jairo Alberto
dc.contributor.authorQuintero La Rota, Clara Sofía
dc.date.accessioned2020-03-09T14:16:48Z
dc.date.available2020-03-09T14:16:48Z
dc.date.issued2018
dc.identifier.citationQuintero-LaRota, Clara. Señalización celular en el desarrollo del sistema nervioso y la sinaptogénesis: Una mirada fisiológica. Universidad Nacional de Colombia. 2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75974
dc.description.abstractThe theme of this work (development of the nervous system and its culminating processes, synaptogenesis and neuroplasticity) is very broad, and can be approached with different classification criteria. The review presented in this work, which is not intended to be exhaustive at all, has been carried out based on the groups of signaling molecules. However, whatever the categories that serve as a basis for ordering the subject, inevitably the point is reached that “everything depends on everything”, that is, there is a general interdependence and interrelation that connects all the molecules and pathways, The following chapters present a brief synthesis of the most important signaling molecules involved, as far as is known, in neurodevelopment, and an analysis of their convergence and divergence patterns, to conclude with some conclusions from the integrative physiological perspective. Interpretation from a physiological perspective seeks to make sense of all these networks of interdependence of processes in neurodevelopment, in order to achieve a vision that transcends the chemical and contributes to the understanding of the complex properties of the nervous system.
dc.description.abstractEl tema motivo de este trabajo (desarrollo del sistema nervioso y sus procesos culminantes, la sinaptogénesis y la neuroplasticidad) es muy amplio, y puede ser abordado con distintos criterios de clasificación. La revisión presentada en este trabajo, que no pretende en absoluto ser exhaustiva, se ha realizado con base en los grupos de moléculas señalizadoras. No obstante, cualesquiera que sean las categorías que sirvan de base para ordenar el tema, inevitablemente se llega al punto en que “todo depende de todo”, es decir, hay una interdependencia e interrelación general que conecta todas las moléculas y vías, En los siguientes capítulos se presenta una breve síntesis de las moléculas de señalización más importantes implicadas, hasta donde se sabe, en el neurodesarrollo, y un análisis de sus patrones de convergencia y divergencia, para finalizar con algunas conclusiones desde la óptica fisiológica integrativa. La interpretación desde una óptica fisiológica busca hallar sentido a todas esas redes de interdependencia de procesos en el neurodesarrollo, con el fin de lograr una visión que trascienda lo químico y contribuya a la comprensión de las propiedades complejas del sistema nervioso.
dc.format.extent73
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud
dc.titleSeñalización celular en el desarrollo del sistema nervioso y la sinaptogénesis: una mirada fisiológica.
dc.title.alternativeCell signaling in the development of the nervous system and synaptogenesis: a physiological look
dc.typeOtro
dc.rights.spaAcceso abierto
dc.coverage.sucursalUniversidad Nacional de Colombia - Sede Bogotá
dc.description.additionalMagíster en Fisiología Profundización.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesSilbergreis, J et al. The cellular and molecular landscapes of developing human CNS. Neuron 89, Jan 20 2016. Elsevier
dc.relation.referencesMarin P, Dityatev A. 5-HT7 receptor shapes spinogenesis in cortical and striatal neurons: An editorial highlight for ‘Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons’. J Neurochem. 2017;141(5):644–6.
dc.relation.referencesSantos AF, Caroni P. Assembly, plasticity and selective vulnerability to disease of mouse neuromuscular junctions. J Neurocytol. 2003;32(5–8):849–62.
dc.relation.referencesJacobson, Marcus Factores neurotróficos y muerte celular en el desarrollo del sistema nervioso. DEVELOMPENTAL NEUROLOGY CAP. 8 Tercera edición - 1991.
dc.relation.referencesSalie R, Niederkofler V, Arber S. Patterning molecules; multitasking in the nervous system. Neuron. enero de 2005;45(2):189–92.
dc.relation.referencesForero A, Rivero O, Wäldchen S, Ku H-P, Kiser DP, Gärtner Y, et al. Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain. Front Cell Neurosci. 2017;11(September):1–16.
dc.relation.referencesYamagata M, Duan X, Sanes JR. Cadherins Interact With Synaptic Organizers to Promote Synaptic Differentiation. Front Mol Neurosci. 2018;11(April):1–15.
dc.relation.referencesThiery JP. Cell adhesion in development: a complex signaling network. Curr Opin Genet Dev. agosto de 2003;13(4):365–71.
dc.relation.referencesGerrow K, El-Husseini A. Cell adhesion molecules at the synapse. Front Biosci. septiembre de 2006;11:2400–19.
dc.relation.referencesGuillemot F, Zimmer C. From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron. agosto de 2011;71(4):574–88.
dc.relation.referencesZuluaga, Jairo Alberto. Neurodesarrollo y estimulación. Edición original 2001. Editorial Médica Panamericana.
dc.relation.referencesJiang X, Nardelli J. Cellular and molecular introduction to brain development. Neurobiol Dis. 2015;92(Part A):3–17.
dc.relation.referencesHe F, Sun YE. Glial cells more than support cells? Int J Biochem Cell Biol. 2007;39(4):661–5.
dc.relation.referencesMehler MF, Kessler JA. Hematolymphopoietic and imflammatory cytokines in neural development. Trends Neurosci. (1997) 20, 357–365
dc.relation.referencesKenneth S. Kossik. Micro-RNAs tell an evo-devo story. Nature. October 2009. Vol 10 p.754 – 759. www.nature.com/reviews/neuro. 2009 McMillan Publishers Limited.
dc.relation.referencesBoyer, Nichoas, Gupton Stephenie. Revisiting Netrin-1: One who guides (Axons). Frontiers in Cellular Neuroscience. Jul. 31 2018. Vol 12. Art. 221 doi10.3389/fncel.2018.00221
dc.relation.referencesHerlenius, Eric, Langerkrantz, Hugo. Neurotransmitters and Neuromodulators. The Newborn brain: Neuroscience and Clinical Applications Cap. 7 Second Edition. Cambridge University Press 2010
dc.relation.referencesOwens DF, Kriegstein AR. Developmental neurotransmitters? Neuron. diciembre de 2002;36(6):989–91.
dc.relation.referencesReis RAM, Ventura ALM, Kubrusly RCC, de Mello MCF, de Mello FG. Dopaminergic signaling in the developing retina. Brain Res Rev. abril de 2007;54(1):181–8.
dc.relation.referencesShigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J, Lin JQ, et al. Dynamic Axonal Translation in Developing and Mature Visual Circuits. Cell. 2016;166(1):181–92.
dc.relation.referencesUpadhyay A, Joshi V, Amanullah A, Mishra R, Arora N, Prasad A, et al. E3 ubiquitin ligases neurobiological mechanisms: Development to degeneration. Front Mol Neurosci. 2017;10.
dc.relation.referencesMartínez A, Otal R, Soriano García E. Efrinas, desarrollo neuronal y plasticidad. Neurol. 2019;38(07):647.
dc.relation.referencesLong JB, Van Vactor D. Embryonic and larval neural connectivity: progressive changes in synapse form and function at the neuromuscular junction mediated by cytoskeletal regulation. Wiley Interdiscip Rev Dev+ Biol. 2013;2(6):747–65.
dc.relation.referencesBasavarajappa BS, Nixon RA, Arancio O. Endocannabinoid system: Emerging role from neurodevelopment to neurodegeneration. Mini-Reviews Med Chem. 2009;9(4):448–62.
dc.relation.referencesGalve-Roperh I, Aguado T, Rueda D, Velasco G, Guzman M. Endocannabinoids: a new family of lipid mediators involved in the regulation of neural cell development. Curr Pharm Des. 2006;12(18):2319–25.
dc.relation.referencesYamaguchi Y, Pasquale EB. Eph receptors in the adult brain. Neurobiol. 2004;14(3):288–96.
dc.relation.referencesDaniels MP. The role of agrin in synaptic development, plasticity and signaling in the central nervous system. Neurochem Int. noviembre de 2012;61(6):848–53.
dc.relation.referencesJoseph D’Ercole A, Ye P. Expanding the mind: insulin-like growth factor I and brain development. Endocrinology. diciembre de 2008;149(12):5958–62.
dc.relation.referencesScott MK, Yue J, Biesemeier DJ, Lee JW, Fekete DM. Expression of class III Semaphorins and their receptors in the developing chicken (Gallus gallus) inner ear. J Comp Neurol. 2019;527(7):1196–209.
dc.relation.referencesAzmitia, E.C., Serotonin and brain: evolution, neuroplasticity, and homeostasis. Int. Rev Neurobiol. 2007;77;31-56.
dc.relation.referencesGrantyn R, Henneberge C, Jüttner R, Meier JC, Kirischuk S. Functional hallmarks of GABAergic synapse maturation and the diverse roles of neurotrophins. Front Cell Neurosci. 2011;(JULY).
dc.relation.referencesAllen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. el 12 de octubre de 2018;362(6411):181–5.
dc.relation.referencesSperanza L, Labus J, Volpicelli F, Guseva D, Lacivita E, Leopoldo M, et al. Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons. J Neurochem. 2017;141(5):647–61.
dc.relation.referencesLuján R, Shigemoto R, López-Bendito G. Glutamate and GABA receptor signalling in the developing brain. Neuroscience. 2005;130(3):567–80.
dc.relation.referencesSarmiento Benito María Isabel. RECEPTOR DE NEUROTROFINAS p75; PAPEL EN LA ENFERMEDAD DE ALZHEIMER. UNA OPORTUNIDAD TERAPÉUTICA. Facultad de Medicina / Universidad de Zaragoza 201695.
dc.relation.referencesUrte Neniskyte – Cornelis T. Gross. Errant Gardeners: glial cell dependent synaptic pruning and neurodevelopmental disorders. Nature Nov. 2017. Vol 18 p. 658 - 670
dc.relation.referencesLobato, R.D., Historical vignette of Cajal´s work "Degeneration and regeneration of the nervous system" with a reflection of the author. Neurocirugía 2008;19;456-68.
dc.relation.referencesNieto-Estévez V, Defterali Ç, Vicario-Abejón C. IGF-I: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain. Front Neurosci. 2016;10(FEB).
dc.relation.referencesCapra, Fridtjof. La trama de la vida. Edición original 1996. Anagrama, Barcelona.
dc.relation.referencesTapias A, Wang ZQ. Lysine Acetylation and Deacetylation in Brain Development and Neuropathies. Genomics, Proteomics Bioinforma. 2017;15(1):19–36.
dc.relation.referencesFrost JL, Schafer DP. Microglia: Architects of the Developing Nervous System. Trends Cell Biol. 2016;26(8):587–97.
dc.relation.referencesSinghal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol. noviembre de 2011;71(11):982–1005.
dc.relation.referencesMargeta MA, Shen K. Molecular mechanisms of synaptic specificity. Mol Cell Neurosci. marzo de 2010;43(3):261–7.
dc.relation.referencesWu H, Xiong WC, Mei L. To build a synapse: signaling pathways in neuromuscular junction assembly. Development. abril de 2010;137(7):1017–33.
dc.relation.referencesBercury, K, Macklin,W. Dynamics and Mechanisms of CNS myelination. Developmental Cell 32, Feb. 23 2015. Elsevier.
dc.relation.referencesDorsky RI. Neural patterning and CNS functions of Wnt in zebrafish. E. V, editor. Vol. 469, Methods in Molecular Biology. Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States; 2008. p. 301–15.
dc.relation.referencesO’Kusky J, Ye P. Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol. agosto de 2012;33(3):230–51.
dc.relation.referencesSpencer GE, Klumperman J, Syed NI. Neurotransmitters and neurodevelopment: Role of dopamine in neurite outgrowth, target selection and specific synapse formation. Perspect Dev Neurobiol. 1998;5(4):451–67.
dc.relation.referencesSong Y, Balice-Gordon R. New dogs in the dogma: Lrp4 and Tid1 in neuromuscular synapse formation. Neuron. noviembre de 2008;60(4):526–8.
dc.relation.referencesFarias GG, Godoy JA, Cerpa W, Varela-Nallar L, Inestrosa NC, Farías GG, et al. Wnt signaling modulates pre- and postsynaptic maturation: Therapeutic considerations. Dev Dyn. enero de 2010;239(1):94–101.
dc.relation.referenceshttps://www.investigacionyciencia.es/blogs/psicologia-y-neurociencia/100/posts/origen-y-desarrollo-de-la-nocin-de-neuroplasticidad-1-15679
dc.relation.referenceshttp://www.opentor.com/fisica-2-vallejo-zambrano/sistemas-conservativos-y-no-conservativos.html
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSinaptogénesis
dc.subject.proposalSynaptogenesis
dc.subject.proposalNeural development
dc.subject.proposalNeurodesarrollo
dc.subject.proposalSeñalización celular
dc.subject.proposalCellular signalign
dc.subject.proposalFisiología
dc.subject.proposalPhysiology
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito