Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCortés Correa, Farid Bernardo
dc.contributor.advisorCarrasco Marín, Francisco
dc.contributor.authorRodriguez Acevedo, Elizabeth Cristina
dc.date.accessioned2020-03-13T21:23:38Z
dc.date.available2020-03-13T21:23:38Z
dc.date.issued2020-02-06
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76082
dc.description.abstractEl proceso de captura y almacenamiento de carbono (CCS por sus siglas en inglés) ha sido propuesto como un método efectivo para la reducción de las emisiones de CO2 provenientes de la industria, pero su implementación a nivel industrial no ha sido exitosa debido a consideraciones técnico-económicas asociadas a dos etapas principales: 1) Separación inicial del CO2 de los gases de combustión y 2) Inyección del CO2 en depósitos geológicos profundos, más de 300 m, en donde el CO2. A estas condiciones el CO2 se encuentra en condiciones supercríticas y su almacenamiento se debe principalmente al llenado de la estructura porosa del yacimiento. Este trabajo propone por primera vez en el mundo, un proceso mejorado de captura y almacenamiento de carbono, e-CCS, en el cual la etapa inicial de captura/separación de CO2 es suprimida y los gases de combustión son inyectados directamente al yacimiento superficial (<300 m). En este caso, el proceso de selectiva adsorción controla la captura in-situ de CO2 gaseoso y su almacenamiento. Para esto, es indispensable modificar la superficie de yacimiento con el fin de incrementar la capacidad de adsorción y la selectividad del CO2. Adicional a esto, el agente modificante no debe obstruir la estructura porosa natural del yacimiento con el fin de evitar problemas operacionales. En este sentido, la nanotecnología, por primera vez en el mundo, podría ser usada como agente modificador de la superficie del yacimiento, debido a ventajas relacionadas con la síntesis a medida, obteniendo materiales con características fisicoquímicas específicas al proceso de adsorción selectiva; Además, su tamaño nanométrico permite su uso sin obstrucción del medio poroso del yacimiento. En este trabajo fueron sintetizadas y caracterizadas diversas nanoestructuras. Luego, arenisca tipo Ottawa y arenisca de yacimientos reales de crudo, fueron impregnadas con nanofluidos compuestos por nanomateriales dispersos en agua desionizada. El desempeño de estos sistemas en el proceso de adsorción fue evaluado a diferentes condiciones de temperatura (0, 25 and 50 ° C) y presión (3 × 10-3 MPa a 3.0 MPa), tratando de simular las condiciones de un yacimiento. Para los mejores nanomateriales el sistema fue modelado y simulado a diferentes condiciones de presión y concentraciones de CO2-N2, por medio de la Teoría de la Solución Ideal Adsorbida (IAST por sus siglas en inglés), usando datos experimentales obtenidos y el software libre PyIAST. Los resultados obtenidos son prometedores y competitivos en comparación con los reportado en la literatura, además en la aplicación se obtienen incrementos de más de 60000% en la capacidad de adsorción de CO2 con concentraciones de 20% en masa de nanomaterial.
dc.description.abstractThe implementation of carbon capture and storage process (CCS) has been proposed as an effective method to reduce anthropogenic CO2 emissions from industry. However, its implementation has been unsuccessful to date, mainly due to the technical issues and high costs associated with two main stages: 1) CO2 separation from flue gas and 2) CO2 injection in deep geological deposits, more than 300 m. At these conditions, CO2 is in supercritical conditions, and CO2 capture and storage are mainly due to the inter-particle volume filling. This study proposes, for the first time, an enhanced CCS process (e-CCS), in which the stage of CO2 separation is removed, and the flue gas is injected directly in shallow reservoirs located at less than 300 m deep. In e-CCS, the adsorptive phenomena control gaseous CO2 capture and storage in situ. For this, it is necessary to add a surface modifying agent to the porous medium to improve the selective adsorption capacity to CO2. Besides, the modifying agent should not affect the naturally porous structure of the deposit to avoid operational problems. In this way, nanotechnology, for the first time for a CCS process, could be used as modifying media due to their characteristics can be customized, obtaining specific chemical-physical properties for the selective adsorption process. Also, the nanometric size allows its application in geological deposits. In this work, different nanostructures were synthesized and characterized. After that, Ottawa sandstone and real oilfield sandstone were impregnated with nanofluids, which are composed of deionized water and dispersed nanoparticles. The CO2 adsorption performance of nanomaterials was evaluated at different conditions of temperature (0, 25, and 50 ° C) and pressure (3 × 10-3 MPa to 3.0 MPa) to mimic the reservoir conditions. For the best nanomaterials, the adsorption process at reservoir condition was also modeled and evaluated at different mixing and pressure conditions, through the Ideal Adsorbed Solution Theory-IAST, using experimental information obtained. Each stage was carried out under conditions similar to the real operation in case of a possible application. The obtained results for each material are promising and competitive with those reported in the literature, obtaining increments of more than 60000% at 20% of nanomaterials mass fraction.
dc.description.sponsorshipColciencias
dc.format.extent162
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.relationArtículos de investigación derivados de cada capítulo de la tesis
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc660 - Ingeniería química
dc.titleDesarrollo de Nanomateriales para el geo-almacenamiento de CO2 en yacimientos someros
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectBecas doctorales - Convocatoria 647-2014
dc.description.additionalTesis de Doctorado realizada en el marco de un convenio de doble titulación entre la Universidad Nacional de Colombia-Sede Medellín y la Universidad de Granada en España. Con la participación de la Université de Lorraine (Francia). Tesis premiada con el máximo reconocimiento europeo "Cum Laude" y mención internacional y europea. En proceso de evaluación para el máximo reconocimiento nacional "Tesis Laureada". Doctorado en Ingeniería . Sistemas energéticos
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.contributor.corporatenameUniversidad de Granada
dc.contributor.researchgroupFenómenos de Superficie - Michael Polanyi
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Procesos y Energía
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesT. L. Root, J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds, "Fingerprints of global warming on wild animals and plants," Nature, vol. 421, p. 57, 2003.
dc.relation.referencesL. D. Harvey, Global warming: Routledge, 2018.
dc.relation.referencesH. Baer and M. Singer, Global warming and the political ecology of health: Emerging crises and systemic solutions: Routledge, 2016.
dc.relation.referencesD. A. Lashof and D. R. Ahuja, "Relative contributions of greenhouse gas emissions to global warming," Nature, vol. 344, p. 529, 1990.
dc.relation.referencesT. R. Anderson, E. Hawkins, and P. D. Jones, "CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models," Endeavour, vol. 40, pp. 178-187, 2016.
dc.relation.referencesJ. Tollefson. (2019, 2019). The hard truths of climate change — by the numbers. Available: https://www.nature.com/immersive/d41586-019-02711-4/index.html
dc.relation.referencesNASA. (2019, March 30). Global Climate Change. Vital Signs of the Planet. Available: https://climate.nasa.gov/vital-signs/carbon-dioxide/
dc.relation.referencesR. J. Norby and Y. Luo, "Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi‐factor world," New Phytologist, vol. 162, pp. 281-293, 2004.
dc.relation.referencesM. M. Halmann, Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products: CRC press, 2018.
dc.relation.referencesP. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, "erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, vol. 408, p. 750, 2000.
dc.relation.referencesJ. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, et al., "Recent advances in solid sorbents for CO 2 capture and new development trends," Energy & Environmental Science, vol. 7, pp. 3478-3518, 2014.
dc.relation.referencesE. P. A. US-EPA. (2019). Global Greenhouse Gas Emissions Data. Available: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
dc.relation.referencesO. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, et al., "IPCC, 2014: Summary for Policymakers, In: Climate Change 2014, Mitigation of Climate Change," in Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed, 2014.
dc.relation.referencesY. Tan, W. Nookuea, H. Li, E. Thorin, and J. Yan, "Property impacts on Carbon Capture and Storage (CCS) processes: A review," Energy Conversion and Management, vol. 118, pp. 204-222, 2016.
dc.relation.referencesN. G. C. Change, "Vital Signs of the Planet," Earth Science Communications Team at NASA’s Jet Propulsion Laboratory. Accessed June, vol. 30, 2018.
dc.relation.referencesJ. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. T. Turnure, and L. Westfall, "International energy outlook 2016 with projections to 2040," USDOE Energy Information Administration (EIA), Washington, DC (United States …2016.
dc.relation.referencesB. Metz, O. Davidson, and H. De Coninck, Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change: Cambridge University Press, 2005.
dc.relation.referencesN. G. L. (2009) Saved by Sequestration? Nature Geoscience. 809.
dc.relation.referencesM. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, et al., "Carbon capture and storage (CCS): the way forward," Energy & Environmental Science, vol. 11, pp. 1062-1176, 2018.
dc.relation.referencesW. Knorr, "Is the airborne fraction of anthropogenic CO2 emissions increasing?," Geophysical Research Letters, vol. 36, 2009.
dc.relation.referencesP. Cook, R. Causebrook, J. Gale, K. Michel, and M. Watson, "What have we learned from small-scale injection projects?," Energy Procedia, vol. 63, pp. 6129-6140, 2014.
dc.relation.referencesI. IEA, "World energy outlook 2011," Int Energy Agency, vol. 666, 2011.
dc.relation.referencesE. Rodriguez Acevedo, F. B. Cortés, C. A. Franco, F. Carrasco-Marín, A. F. Pérez-Cadenas, V. Fierro, et al., "An Enhanced Carbon Capture and Storage Process (e-CCS) Applied to Shallow Reservoirs Using Nanofluids Based on Nitrogen-Rich Carbon Nanospheres," Materials, vol. 12, p. 2088, 2019.
dc.relation.referencesH. Balat and C. Öz, "Technical and Economic Aspects of Carbon Capture an Storage—A Review," Energy Exploration & Exploitation, vol. 25, pp. 357-392, 2007.
dc.relation.referencesC. Gough, Carbon capture and its storage: an integrated assessment: Routledge, 2016.
dc.relation.referencesC. Gough, "State of the art in carbon dioxide capture and storage in the UK: An experts’ review," International Journal of Greenhouse Gas Control, vol. 2, pp. 155-168, 2008.
dc.relation.referencesE. P.-C. Bailon-García, Agustín F.; Rodriguez Acevedo, Elizabeth; Carrasco-Marín, Francisco, "Nanoparticle Fabrication Methods," in Formation Damage in Oil and Gas Reservoirs. Nanotechnology Applications for its Inhibition/Remediation, C. A. a. C. C. Franco, Farid B, Ed., 1 ed: Nova Science Publishers, 2018, pp. 69-150.
dc.relation.referencesC. A. C. C. Franco, Farid B, Formation Damage in Oil and Gas Reservoirs. Nanotechnology Applications for its Inhibition/Remediation: Nova Science Publishers, 2018.
dc.relation.referencesC. A. Franco, R. Zabala, and F. B. Cortés, "Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields," Journal of Petroleum Science and Engineering, vol. 157, pp. 39-55, 2017.
dc.relation.referencesC. A. Franco, N. N. Nassar, M. A. Ruiz, P. Pereira-Almao, and F. B. Cortés, "Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media," Energy & Fuels, vol. 27, pp. 2899-2907, 2013.
dc.relation.referencesI. Moncayo-Riascos, C. A. Franco, and F. B. Cortés, "Dynamic Molecular Modeling and Experimental Approach of Fluorocarbon Surfactant-Functionalized SiO2 Nanoparticles for Gas-Wettability Alteration on Sandstones," Journal of Chemical & Engineering Data, 2019.
dc.relation.referencesY. Hurtado, C. Beltrán, R. D. Zabala, S. H. Lopera, C. A. Franco, N. N. Nassar, et al., "Effects of Surface Acidity and Polarity of SiO2 Nanoparticles on the Foam Stabilization Applied to Natural Gas Flooding in Tight Gas-Condensate Reservoirs," Energy & fuels, vol. 32, pp. 5824-5833, 2018.
dc.relation.referencesD. Yang, S. Wang, and Y. Zhang, "Analysis of CO2 migration during nanofluid-based supercritical CO2 geological storage in saline aquifers," Aerosol Air Qual. Res, vol. 14, pp. 1411-1417, 2014.
dc.relation.referencesJ. Silvestre-Albero and F. R. Reinoso, "Nuevos materiales de carbón para la captura de CO2," Boletín del Grupo Español del Carbón, pp. 2-6, 2012.
dc.relation.referencesY. Ma, Z. Wang, X. Xu, and J. Wang, "Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2," Chinese Journal of Catalysis, vol. 38, pp. 1956-1969, 2017.
dc.relation.referencesX.-q. Zhang, W.-c. Li, and A.-h. Lu, "Designed porous carbon materials for efficient CO2 adsorption and separation," New Carbon Materials, vol. 30, pp. 481-501, 2015.
dc.relation.referencesT. J. Bandosz, M. Seredych, E. Rodríguez-Castellón, Y. Cheng, L. L. Daemen, and A. J. Ramírez-Cuesta, "Evidence for CO2 reactive adsorption on nanoporous S-and N-doped carbon at ambient conditions," Carbon, vol. 96, pp. 856-863, 2016.
dc.relation.referencesG. P. Lithoxoos, A. Labropoulos, L. D. Peristeras, N. Kanellopoulos, J. Samios, and I. G. Economou, "Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study," The Journal of Supercritical Fluids, vol. 55, pp. 510-523, 2010.
dc.relation.referencesM. Bikshapathi, A. Sharma, A. Sharma, and N. Verma, "Preparation of carbon molecular sieves from carbon micro and nanofibers for sequestration of CO2," Chemical Engineering Research and Design, vol. 89, pp. 1737-1746, 2011.
dc.relation.referencesS. Chowdhury and R. Balasubramanian, "Highly efficient, rapid and selective CO2 capture by thermally treated graphene nanosheets," Journal of CO2 Utilization, vol. 13, pp. 50-60, 2016.
dc.relation.referencesA. Alonso, J. Moral-Vico, A. A. Markeb, M. Busquets-Fité, D. Komilis, V. Puntes, et al., "Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane," Science of the total environment, vol. 595, pp. 51-62, 2017.
dc.relation.referencesD. J. Babu, M. Bruns, R. Schneider, D. Gerthsen, and J. r. J. Schneider, "Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials," The Journal of Physical Chemistry C, vol. 121, pp. 616-626, 2017.
dc.relation.referencesM. Plaza, C. Pevida, A. Arenillas, F. Rubiera, and J. Pis, "CO2 capture by adsorption with nitrogen enriched carbons," Fuel, vol. 86, pp. 2204-2212, 2007.
dc.relation.referencesX. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, et al., "Microwave synthesis and characterization of MOF-74 (M= Ni, Mg) for gas separation," Microporous and Mesoporous Materials, vol. 180, pp. 114-122, 2013.
dc.relation.referencesY. Lin, C. Kong, Q. Zhang, and L. Chen, "Metal‐organic frameworks for carbon dioxide capture and methane storage," Advanced Energy Materials, vol. 7, p. 1601296, 2017.
dc.relation.referencesJ. An and N. L. Rosi, "Tuning MOF CO2 adsorption properties via cation exchange," Journal of the American Chemical Society, vol. 132, pp. 5578-5579, 2010.
dc.relation.referencesR. V. Siriwardane, M.-S. Shen, E. P. Fisher, and J. A. Poston, "Adsorption of CO2 on molecular sieves and activated carbon," Energy & Fuels, vol. 15, pp. 279-284, 2001.
dc.relation.referencesC. W. Jones and W. J. Koros, "Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors," Carbon, vol. 32, pp. 1419-1425, 1994.
dc.relation.referencesA. Wahby, J. M. Ramos‐Fernández, M. Martínez‐Escandell, A. Sepúlveda‐Escribano, J. Silvestre‐Albero, and F. Rodríguez‐Reinoso, "High‐surface‐area carbon molecular sieves for selective CO2 adsorption," ChemSusChem, vol. 3, pp. 974-981, 2010.
dc.relation.referencesX. Xu, C. Song, J. M. Andresen, B. G. Miller, and A. W. Scaroni, "Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture," Energy & Fuels, vol. 16, pp. 1463-1469, 2002.
dc.relation.referencesNASA. (2019, March 30). Global Climate Change. Vital Signs of the Planet. Available: https://climate.nasa.gov/vital-signs/carbon-dioxide/
dc.relation.referencesN. G. C. Change, "Vital Signs of the Planet," Earth Science Communications Team at NASA’s Jet Propulsion Laboratory. Accessed June, vol. 30, 2018.
dc.relation.referencesJ. Tollefson. (2019, 2019). The hard truths of climate change — by the numbers. Available: https://www.nature.com/immersive/d41586-019-02711-4/index.html
dc.relation.referencesT. R. Anderson, E. Hawkins, and P. D. Jones, "CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models," Endeavour, vol. 40, pp. 178-187, 2016.
dc.relation.referencesR. J. Norby and Y. Luo, "Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi‐factor world," New Phytologist, vol. 162, pp. 281-293, 2004.
dc.relation.referencesD. A. Lashof and D. R. Ahuja, "Relative contributions of greenhouse gas emissions to global warming," Nature, vol. 344, p. 529, 1990.
dc.relation.referencesA. Fernandez Pales, P. Levi, and T. Vass, "Tracking Industry - IEA Report 2019," Internacional Energy Agency, IEA, https://www.iea.org/reports/tracking-industry-2019May, 2019 2019.
dc.relation.referencesM. M. Halmann, Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products: CRC press, 2018.
dc.relation.referencesP. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, "erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, vol. 408, p. 750, 2000.
dc.relation.referencesJ. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, et al., "Recent advances in solid sorbents for CO 2 capture and new development trends," Energy & Environmental Science, vol. 7, pp. 3478-3518, 2014.
dc.relation.referencesB. Metz, O. Davidson, and H. De Coninck, Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change: Cambridge University Press, 2005.
dc.relation.referencesM. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, et al., "Carbon capture and storage (CCS): the way forward," Energy & Environmental Science, vol. 11, pp. 1062-1176, 2018.
dc.relation.referencesY. Ma, Z. Wang, X. Xu, and J. Wang, "Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2," Chinese Journal of Catalysis, vol. 38, pp. 1956-1969, 2017.
dc.relation.referencesX. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, et al., "Microwave synthesis and characterization of MOF-74 (M= Ni, Mg) for gas separation," Microporous and Mesoporous Materials, vol. 180, pp. 114-122, 2013.
dc.relation.referencesA. Chen, S. Li, Y. Yu, L. Liu, Y. Li, Y. Wang, et al., "Self-catalyzed strategy to form hollow carbon nanospheres for CO2 capture," Materials Letters, vol. 185, pp. 63-66, 2016.
dc.relation.referencesH. R. a. R. Simmon. (2011, July 24). The Carbon Cycle. Available: https://earthobservatory.nasa.gov/features/CarbonCycle/page1.php
dc.relation.referencesI. IEA, "World energy outlook 2011," Int Energy Agency, vol. 666, 2011.
dc.relation.referencesP. Cook, R. Causebrook, J. Gale, K. Michel, and M. Watson, "What have we learned from small-scale injection projects?," Energy Procedia, vol. 63, pp. 6129-6140, 2014.
dc.relation.referencesH. Balat and C. Öz, "Technical and Economic Aspects of Carbon Capture an Storage—A Review," Energy Exploration & Exploitation, vol. 25, pp. 357-392, 2007.
dc.relation.referencesC. Gough, Carbon capture and its storage: an integrated assessment: Routledge, 2016.
dc.relation.referencesC. Gough, "State of the art in carbon dioxide capture and storage in the UK: An experts’ review," International Journal of Greenhouse Gas Control, vol. 2, pp. 155-168, 2008.
dc.relation.referencesN. Álvarez-Gutiérrez, M. Gil, F. Rubiera, and C. Pevida, "Adsorption performance indicators for the CO2/CH4 separation: Application to biomass-based activated carbons," Fuel Processing Technology, vol. 142, pp. 361-369, 2016.
dc.relation.referencesD. Yang, S. Wang, and Y. Zhang, "Analysis of CO2 migration during nanofluid-based supercritical CO2 geological storage in saline aquifers," Aerosol Air Qual. Res, vol. 14, pp. 1411-1417, 2014.
dc.relation.referencesM. E. Casco, M. Martínez-Escandell, J. Silvestre-Albero, and F. Rodríguez-Reinoso, "Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure," Carbon, vol. 67, pp. 230-235, 2014.
dc.relation.referencesE. P.-C. Bailon-García, Agustín F.; Rodriguez Acevedo, Elizabeth; Carrasco-Marín, Francisco, "Nanoparticle Fabrication Methods," in Formation Damage in Oil and Gas Reservoirs. Nanotechnology Applications for its Inhibition/Remediation, C. A. a. C. C. Franco, Farid B, Ed., 1 ed: Nova Science Publishers, 2018, pp. 69-150.
dc.relation.referencesC. A. C. C. Franco, Farid B, Formation Damage in Oil and Gas Reservoirs. Nanotechnology Applications for its Inhibition/Remediation: Nova Science Publishers, 2018.
dc.relation.referencesC. A. Franco, R. Zabala, and F. B. Cortés, "Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields," Journal of Petroleum Science and Engineering, vol. 157, pp. 39-55, 2017.
dc.relation.referencesI. Moncayo-Riascos, C. A. Franco, and F. B. Cortés, "Dynamic Molecular Modeling and Experimental Approach of Fluorocarbon Surfactant-Functionalized SiO2 Nanoparticles for Gas-Wettability Alteration on Sandstones," Journal of Chemical & Engineering Data, 2019.
dc.relation.referencesY. Hurtado, C. Beltrán, R. D. Zabala, S. H. Lopera, C. A. Franco, N. N. Nassar, et al., "Effects of Surface Acidity and Polarity of SiO2 Nanoparticles on the Foam Stabilization Applied to Natural Gas Flooding in Tight Gas-Condensate Reservoirs," Energy & fuels, vol. 32, pp. 5824-5833, 2018.
dc.relation.referencesL. Cardona, D. Arias-Madrid, F. Cortés, S. Lopera, and C. Franco, "Heavy oil upgrading and enhanced recovery in a steam injection process assisted by NiO-and PdO-Functionalized SiO2 nanoparticulated catalysts," Catalysts, vol. 8, p. 132, 2018.
dc.relation.referencesM. Franco-Aguirre, R. D. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, "Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs," Journal of Natural Gas Science and Engineering, vol. 51, pp. 53-64, 2018.
dc.relation.referencesC. A. Franco, N. N. Nassar, M. A. Ruiz, P. Pereira-Almao, and F. B. Cortés, "Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media," Energy & Fuels, vol. 27, pp. 2899-2907, 2013.
dc.relation.referencesS.-P. Kang and H. Lee, "Recovery of CO2 from flue gas using gas hydrate: thermodynamic verification through phase equilibrium measurements," Environmental science & technology, vol. 34, pp. 4397-4400, 2000.
dc.relation.referencesH. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, et al., "Progress in carbon dioxide separation and capture: A review," Journal of environmental sciences, vol. 20, pp. 14-27, 2008.
dc.relation.referencesX. Xu, C. Song, J. M. Andresen, B. G. Miller, and A. W. Scaroni, "Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture," Energy & Fuels, vol. 16, pp. 1463-1469, 2002.
dc.relation.referencesS. Chowdhury and R. Balasubramanian, "Highly efficient, rapid and selective CO2 capture by thermally treated graphene nanosheets," Journal of CO2 Utilization, vol. 13, pp. 50-60, 2016.
dc.relation.referencesA. Wahby, J. M. Ramos‐Fernández, M. Martínez‐Escandell, A. Sepúlveda‐Escribano, J. Silvestre‐Albero, and F. Rodríguez‐Reinoso, "High‐surface‐area carbon molecular sieves for selective CO2 adsorption," ChemSusChem, vol. 3, pp. 974-981, 2010.
dc.relation.referencesH. S. Choi and M. P. Suh, "Highly selective CO2 capture in flexible 3D coordination polymer networks," Angewandte Chemie International Edition, vol. 48, pp. 6865-6869, 2009.
dc.relation.referencesV. Chandra, S. U. Yu, S. H. Kim, Y. S. Yoon, D. Y. Kim, A. H. Kwon, et al., "Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets," Chemical communications, vol. 48, pp. 735-737, 2012.
dc.relation.referencesH. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, "Maximizing the right stuff: The trade-off between membrane permeability and selectivity," Science, vol. 356, p. eaab0530, 2017.
dc.relation.referencesC. M. Simon, B. Smit, and M. Haranczyk, "pyIAST: Ideal adsorbed solution theory (IAST) Python package," Computer Physics Communications, vol. 200, pp. 364-380, 2016.
dc.relation.referencesM. Plaza, C. Pevida, A. Arenillas, F. Rubiera, and J. Pis, "CO2 capture by adsorption with nitrogen enriched carbons," Fuel, vol. 86, pp. 2204-2212, 2007.
dc.relation.referencesJ. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, and D. Zhao, "A controllable synthesis of rich nitrogen‐doped ordered mesoporous carbon for CO2 capture and supercapacitors," Advanced Functional Materials, vol. 23, pp. 2322-2328, 2013.
dc.relation.referencesT. J. Bandosz, M. Seredych, E. Rodríguez-Castellón, Y. Cheng, L. L. Daemen, and A. J. Ramírez-Cuesta, "Evidence for CO2 reactive adsorption on nanoporous S-and N-doped carbon at ambient conditions," Carbon, vol. 96, pp. 856-863, 2016.
dc.relation.referencesX.-q. Zhang, W.-c. Li, and A.-h. Lu, "Designed porous carbon materials for efficient CO2 adsorption and separation," New Carbon Materials, vol. 30, pp. 481-501, 2015.
dc.relation.referencesG. P. Lithoxoos, A. Labropoulos, L. D. Peristeras, N. Kanellopoulos, J. Samios, and I. G. Economou, "Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study," The Journal of Supercritical Fluids, vol. 55, pp. 510-523, 2010.
dc.relation.referencesM. Bikshapathi, A. Sharma, A. Sharma, and N. Verma, "Preparation of carbon molecular sieves from carbon micro and nanofibers for sequestration of CO2," Chemical Engineering Research and Design, vol. 89, pp. 1737-1746, 2011.
dc.relation.referencesD. J. Babu, M. Bruns, R. Schneider, D. Gerthsen, and J. r. J. Schneider, "Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials," The Journal of Physical Chemistry C, vol. 121, pp. 616-626, 2017.
dc.relation.referencesB. Chen, Z. Yang, G. Ma, D. Kong, W. Xiong, J. Wang, et al., "Heteroatom-doped porous carbons with enhanced carbon dioxide uptake and excellent methylene blue adsorption capacities," Microporous and Mesoporous Materials, vol. 257, pp. 1-8, 2018.
dc.relation.referencesW.-J. Son, J.-S. Choi, and W.-S. Ahn, "Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials," Microporous and Mesoporous Materials, vol. 113, pp. 31-40, 2008.
dc.relation.referencesY.-R. Dong, N. Nishiyama, Y. Egashira, and K. Ueyama, "Basic Amid Acid-Assisted Synthesis of Resorcinol− Formaldehyde Polymer and Carbon Nanospheres," Industrial & engineering chemistry research, vol. 47, pp. 4712-4716, 2008.
dc.relation.referencesJ. An and N. L. Rosi, "Tuning MOF CO2 adsorption properties via cation exchange," Journal of the American Chemical Society, vol. 132, pp. 5578-5579, 2010.
dc.relation.referencesS. Cavenati, C. A. Grande, and A. E. Rodrigues, "Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures," Journal of Chemical & Engineering Data, vol. 49, pp. 1095-1101, 2004.
dc.relation.referencesS. Himeno, T. Komatsu, and S. Fujita, "High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons," Journal of Chemical & Engineering Data, vol. 50, pp. 369-376, 2005.
dc.relation.referencesL.-Y. Meng and S.-J. Park, "Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates," Journal of colloid and interface science, vol. 386, pp. 285-290, 2012.
dc.relation.referencesJ. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, et al., "Recent advances in solid sorbents for CO 2 capture and new development trends," Energy & Environmental Science, vol. 7, pp. 3478-3518, 2014.
dc.relation.referencesE. P.-C. Bailon-García, Agustín F.; Rodriguez Acevedo, Elizabeth; Carrasco-Marín, Francisco, "Nanoparticle Fabrication Methods," in Formation Damage in Oil and Gas Reservoirs. Nanotechnology Applications for its Inhibition/Remediation, C. A. a. C. C. Franco, Farid B, Ed., 1 ed: Nova Science Publishers, 2018, pp. 69-150.
dc.relation.referencesT. J. Bandosz, M. Seredych, E. Rodríguez-Castellón, Y. Cheng, L. L. Daemen, and A. J. Ramírez-Cuesta, "Evidence for CO2 reactive adsorption on nanoporous S-and N-doped carbon at ambient conditions," Carbon, vol. 96, pp. 856-863, 2016.
dc.relation.referencesN. Tzabar and H. ter Brake, "Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride," Adsorption, vol. 22, pp. 901-914, 2016.
dc.relation.referencesM. Plaza, C. Pevida, A. Arenillas, F. Rubiera, and J. Pis, "CO2 capture by adsorption with nitrogen enriched carbons," Fuel, vol. 86, pp. 2204-2212, 2007.
dc.relation.referencesA. Arenillas, K. Smith, T. Drage, and C. Snape, "CO2 capture using some fly ash-derived carbon materials," Fuel, vol. 84, pp. 2204-2210, 2005.
dc.relation.referencesR. V. Siriwardane, M.-S. Shen, E. P. Fisher, and J. A. Poston, "Adsorption of CO2 on molecular sieves and activated carbon," Energy & Fuels, vol. 15, pp. 279-284, 2001.
dc.relation.referencesN. Álvarez-Gutiérrez, M. Gil, F. Rubiera, and C. Pevida, "Adsorption performance indicators for the CO2/CH4 separation: Application to biomass-based activated carbons," Fuel Processing Technology, vol. 142, pp. 361-369, 2016.
dc.relation.referencesM. Nandi, K. Okada, A. Dutta, A. Bhaumik, J. Maruyama, D. Derks, et al., "Unprecedented CO 2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation," Chemical Communications, vol. 48, pp. 10283-10285, 2012.
dc.relation.referencesD. J. Babu, M. Bruns, R. Schneider, D. Gerthsen, and J. r. J. Schneider, "Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials," The Journal of Physical Chemistry C, vol. 121, pp. 616-626, 2017.
dc.relation.referencesA. Chen, S. Li, Y. Yu, L. Liu, Y. Li, Y. Wang, et al., "Self-catalyzed strategy to form hollow carbon nanospheres for CO2 capture," Materials Letters, vol. 185, pp. 63-66, 2016.
dc.relation.referencesY. Fang, D. Gu, Y. Zou, Z. Wu, F. Li, R. Che, et al., "A low‐concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size," Angewandte Chemie International Edition, vol. 49, pp. 7987-7991, 2010.
dc.relation.referencesM. Franco-Aguirre, R. D. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, "Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs," Journal of Natural Gas Science and Engineering, vol. 51, pp. 53-64, 2018.
dc.relation.referencesS. Schaefer, V. Fierro, M. Izquierdo, and A. Celzard, "Assessment of hydrogen storage in activated carbons produced from hydrothermally treated organic materials," international journal of hydrogen energy, vol. 41, pp. 12146-12156, 2016.
dc.relation.referencesS. Schaefer, V. Fierro, A. Szczurek, M. Izquierdo, and A. Celzard, "Physisorption, chemisorption and spill-over contributions to hydrogen storage," international journal of hydrogen energy, vol. 41, pp. 17442-17452, 2016.
dc.relation.referencesA. Abdeljaoued, N. Querejeta, I. Durán, N. Álvarez-Gutiérrez, C. Pevida, and M. Chahbani, "Preparation and Evaluation of a Coconut Shell-Based Activated Carbon for CO2/CH4 Separation," Energies, vol. 11, p. 1748, 2018.
dc.relation.referencesM. E. Casco, M. Martínez-Escandell, J. Silvestre-Albero, and F. Rodríguez-Reinoso, "Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure," Carbon, vol. 67, pp. 230-235, 2014.
dc.relation.referencesA. Alonso, J. Moral-Vico, A. A. Markeb, M. Busquets-Fité, D. Komilis, V. Puntes, et al., "Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane," Science of the total environment, vol. 595, pp. 51-62, 2017.
dc.relation.referencesS. Himeno, T. Tomita, K. Suzuki, and S. Yoshida, "Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite," Microporous and Mesoporous Materials, vol. 98, pp. 62-69, 2007.
dc.relation.referencesY. Ma, Z. Wang, X. Xu, and J. Wang, "Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2," Chinese Journal of Catalysis, vol. 38, pp. 1956-1969, 2017.
dc.relation.referencesJ. Dunne, R. Mariwala, M. Rao, S. Sircar, R. Gorte, and A. Myers, "Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite," Langmuir, vol. 12, pp. 5888-5895, 1996.
dc.relation.referencesS. Himeno, T. Komatsu, and S. Fujita, "High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons," Journal of Chemical & Engineering Data, vol. 50, pp. 369-376, 2005.
dc.relation.referencesJ. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, and D. Zhao, "A controllable synthesis of rich nitrogen‐doped ordered mesoporous carbon for CO2 capture and supercapacitors," Advanced Functional Materials, vol. 23, pp. 2322-2328, 2013.
dc.relation.referencesW.-J. Son, J.-S. Choi, and W.-S. Ahn, "Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials," Microporous and Mesoporous Materials, vol. 113, pp. 31-40, 2008.
dc.relation.referencesY.-R. Dong, N. Nishiyama, Y. Egashira, and K. Ueyama, "Basic Amid Acid-Assisted Synthesis of Resorcinol− Formaldehyde Polymer and Carbon Nanospheres," Industrial & engineering chemistry research, vol. 47, pp. 4712-4716, 2008.
dc.relation.referencesN. Tzabar and H. ter Brake, "Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride," Adsorption, vol. 22, pp. 901-914, 2016.
dc.relation.referencesS. Cavenati, C. A. Grande, and A. E. Rodrigues, "Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures," Journal of Chemical & Engineering Data, vol. 49, pp. 1095-1101, 2004.
dc.relation.referencesD. J. Babu, M. Bruns, R. Schneider, D. Gerthsen, and J. r. J. Schneider, "Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials," The Journal of Physical Chemistry C, vol. 121, pp. 616-626, 2017.
dc.relation.referencesJ. Dunne, R. Mariwala, M. Rao, S. Sircar, R. Gorte, and A. Myers, "Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite," Langmuir, vol. 12, pp. 5888-5895, 1996.
dc.relation.referencesR. V. Siriwardane, M.-S. Shen, E. P. Fisher, and J. A. Poston, "Adsorption of CO2 on molecular sieves and activated carbon," Energy & Fuels, vol. 15, pp. 279-284, 2001.
dc.relation.referencesX. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, et al., "Microwave synthesis and characterization of MOF-74 (M= Ni, Mg) for gas separation," Microporous and Mesoporous Materials, vol. 180, pp. 114-122, 2013.
dc.relation.referencesJ. An and N. L. Rosi, "Tuning MOF CO2 adsorption properties via cation exchange," Journal of the American Chemical Society, vol. 132, pp. 5578-5579, 2010.
dc.relation.referencesZ. Bao, S. Alnemrat, L. Yu, I. Vasiliev, Q. Ren, X. Lu, et al., "Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal–organic framework," Langmuir, vol. 27, pp. 13554-13562, 2011.
dc.relation.referencesB. Chen, Z. Yang, G. Ma, D. Kong, W. Xiong, J. Wang, et al., "Heteroatom-doped porous carbons with enhanced carbon dioxide uptake and excellent methylene blue adsorption capacities," Microporous and Mesoporous Materials, vol. 257, pp. 1-8, 2018.
dc.relation.referencesM. Franco-Aguirre, R. D. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, "Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs," Journal of Natural Gas Science and Engineering, vol. 51, pp. 53-64, 2018.
dc.relation.referencesC. M. Simon, B. Smit, and M. Haranczyk, "pyIAST: Ideal adsorbed solution theory (IAST) Python package," Computer Physics Communications, vol. 200, pp. 364-380, 2016.
dc.relation.referencesR. J. White, K. Tauer, M. Antonietti, and M.-M. Titirici, "Functional hollow carbon nanospheres by latex templating," Journal of the American Chemical Society, vol. 132, pp. 17360-17363, 2010.
dc.relation.referencesJ. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, et al., "Recent advances in solid sorbents for CO 2 capture and new development trends," Energy & Environmental Science, vol. 7, pp. 3478-3518, 2014.
dc.relation.referencesI. S. Organization. (2019, 10 July, 2019). About Sugar. Available: https://www.isosugar.org/sugarsector/sugar
dc.relation.referencesM. Agrawal, S. Gupta, A. Pich, N. E. Zafeiropoulos, and M. Stamm, "A facile approach to fabrication of ZnO− TiO2 hollow spheres," Chemistry of Materials, vol. 21, pp. 5343-5348, 2009.
dc.relation.referencesK. Huang and S. Dai, "Carbon Membranes for CO2 Separation," Materials for Carbon Capture, pp. 215-236.
dc.relation.referencesC. W. Jones and W. J. Koros, "Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors," Carbon, vol. 32, pp. 1419-1425, 1994.
dc.relation.referencesA. Wahby, J. M. Ramos‐Fernández, M. Martínez‐Escandell, A. Sepúlveda‐Escribano, J. Silvestre‐Albero, and F. Rodríguez‐Reinoso, "High‐surface‐area carbon molecular sieves for selective CO2 adsorption," ChemSusChem, vol. 3, pp. 974-981, 2010.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalNanomaterials
dc.subject.proposalNanomateriales
dc.subject.proposalDióxido de carbono-CO2
dc.subject.proposalCarbon dioxide-CO2
dc.subject.proposalAdsorción
dc.subject.proposalAdsorption
dc.subject.proposalCarbon capture and storage process-CCS
dc.subject.proposalProceso de captura y almacenamiento de carbono-CCS
dc.subject.proposalShallow reservoirs
dc.subject.proposalYacimientos someros
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito