Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCortés Romero, John Alexander
dc.contributor.authorTorres Lamus, Diego Gerardo
dc.date.accessioned2020-03-16T16:23:07Z
dc.date.available2020-03-16T16:23:07Z
dc.date.issued2019-11-20
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76094
dc.description.abstractThis thesis, make a frame of evaluation of ADRC strategies, through it's application in a UAV model, using Hardware In the Loop simulation and validation methodologies. This investigation, consists of the design and application of the controllers with the active disturbances rejection approeach or ADRC usin the GPI technique, over the main rotation angles in a fixed wing aircraft, improving it's behavior when the aircraft is on presence of atmospheric turbulences, and increasing it's operational reliability and robustness. Due to the structure of the GPI controllers, systems were implemented to proper handling for the saturation condition in actuators (ARWU), finally were establishing a comparison with PID controllers of recognized effectiveness on the model used.
dc.description.abstractEste trabajo, enmarca la evaluación de estrategias de control ADRC, mediante su aplicación en un modelo de UAV, empleando metodologías de simulación y validación de Hardware In the Loop. La investigación consiste en el diseño y aplicación de controladores con rechazo activo de perturbaciones o ADRC, desde el enfoque GPI, sobre los ángulos principales de rotación en una aeronave de ala fija, mejorando su comportamiento cuando se encuentra en presencia de turbulencias atmosféricas, incrementando su confiabilidad y robustez en operación. Debido a la estructura de los controladores GPI, se implementan sistemas para el manejo adecuado de la condición de saturación en actuadores o ARWU. Los resultados obtenidos por este trabajo, permiten demostrar cómo las estrategias de control GPI, ofrecen mejores prestaciones en cuanto a robustez y rechazo de perturbaciones, comparado con estrategias PID de reconocida efectividad en el modelo utilizado.
dc.format.extent118
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)
dc.subject.ddc000 - Ciencias de la computación, información y obras generales
dc.titleEvaluación de la estabilidad y desempeño en controladores con rechazo activo de perturbaciones sobre un modelo de UAV
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ingeniería - Automatización industrial. Línea de Investigación: Control de sistemas con rechazo activo de perturbaciones
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[Ahsan et al., 2013] Ahsan, M., Sha que, K., Mansoor, A. B., and Mushtaq, M. (2013). Performance comparison of two altitude-control algorithms for a xed-wing UAV. 2013 3rd IEEE International Conference on Computer, Control and Communication, IC4 2013, pages 1{5.
dc.relation.references[Altair Engineering, 2019] Altair Engineering, I. (2019). Altair embedvisual environment for embedded systems. Ultimo acceso 12-05- 19,https://solidthinking.com/product/embed/.
dc.relation.references[Cortes-Romero et al., 2009] Cortes-Romero, J. A., Luviano-Juarez, A., and Sira-Ramfrez, H. (2009). Robust GPI controller for trajectory tracking for induction motors. IEEE 2009 International Conference on Mechatronics, ICM 2009, 00(45).
dc.relation.references[Del and Mundial, 2007] Del, G. and Mundial, B. (2007). Guías generales sobre medio ambiente, salud y seguridad para las aerolíneas. Technical report, Corporación Financiera Internacional - Grupo del Banco Mundial.
dc.relation.references[Dorobantu, 2013] Dorobantu, A. (2013). Test Platforms for Model-Based Flight Research. PhD thesis, University of Minnesota, Estados Unidos.
dc.relation.references[Dorobantu et al., 2013] Dorobantu, A., Johnson, W., Lie, F. A., Taylor, B., Murch, A., Gebre-Egziabher, D., and Balas, G. (2013). An airborne experimental test platform: From theory to ight. In 2013 American Control Conference, pages 659-673.
dc.relation.references[dos Santos, 2011] dos Santos, S. R. B. (2011). Modeling of a Hardware-in-the-Loop Simulator for Uav Autopilot Controllers. In 21st Brazilian Congress of Mechanical Engineering.
dc.relation.references[Eds et al., 2011] Eds, J. F. W., S aez, D., Cipriano, A., Ordys, A. W., Xiros, N., Garces, F., Becerra, V. M., Warwick, K., Isidori, A., Marconi, L., Wertz, V., Perez, T., and Eidson, J. (2011). Advances in Industrial Control. Springer.
dc.relation.references[Ferreras, 2012] Ferreras, A. D. (24 de febrero de 2012). Modelado, control y percepción en sistemas áereos autómos. Master's thesis, Universidad de Sevilla, España.
dc.relation.references[Frankiln Gene F., 2010] Frankiln Gene F., Powell J David, E.-N. A. (2010). Feedback control of dynamic systems. Pearson, 6 edition.
dc.relation.references[Gao, 2006] Gao, Z. (2006). Active disturbance rejection control: A paradigm shift in feedback control system design. Proceedings of the American Control Conference, 2006:2399-2405.
dc.relation.references[Goodwin et al., 2000] Goodwin, G. C., Graebe, S. F., and Salgado, M. E. (2000). The excitement of control engineering. Control system design, pages 5-20.
dc.relation.references[Hoffer et al., 2013] Ho er, N. V., Coopmans, C., Jensen, A. M., and Chen, Y. (2013). Small low-cost unmanned aerial vehicle system identi cation: A survey and categorization. 2013 International Conference on Unmanned Aircraft Systems, ICUAS 2013 - Conference Proceedings, pages 897-904.
dc.relation.references[Han, 2009] Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3):900-906.
dc.relation.references[Gao et al., 2001] Gao, Z., Huang, Y., and Han, J. (2001). An alternative paradigm for control system design. In Proceedings of the IEEE Conference on Decision and Control, volume 5, pages 4578-4585.
dc.relation.references[Ari fianto and Farhood, 2015] Ari fianto, O. and Farhood, M. (2015). Development and Modeling of a Low-Cost Unmanned Aerial Vehicle Research Platform. Journal of Intelligent and Robotic Systems: Theory and Applications, 80(1):139-164.
dc.relation.references[Bittar et al., 2014] Bittar, A., Figuereido, H. V., Guimaraes, P. A., and Mendes, A. C. (2014). Guidance software-in-the-loop simulation using x-plane and simulink for uavs. In 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pages 993-1002.
dc.relation.references[Boyle, 2015] Boyle, M. J. (2015). The Race for Drones. Orbis, 59(1):76-94.
dc.relation.references[Chao et al., 2010] Chao, H., Cao, Y., and Chen, Y. (2010). Autopilots for small unmanned aerial vehicles: A survey. International Journal of Control, Automation and Systems, 8(1):36-44.
dc.relation.references[Chen et al., 2009] Chen, H., Wang, X. M., and Li, Y. (2009). A survey of autonomous control for UAV. 2009 International Conference on Arti cial Intelligence and Computational Intelligence, AICI 2009, 2:267-271.
dc.relation.references[Coral-Enriquez et al., 2015] Coral-Enriquez, H., Ramos, G. A., and Cort es-Romero, J. (2015). Power factor correction and harmonic compensation in an active lter application through a discrete-time active disturbance rejection control approach. In 2015 American Control Conference (ACC), pages 5318-5323.
dc.relation.references[Cortes and Ramos, 2015] Cortes, J. A. R. and Ramos, G. A. F. (2015). Control GPI repetitivo para sistemas lineales con incertidumbre / variación en los parámetros. Tecnológicos, 18(34):13{24.
dc.relation.references[Cortes-Romero et al., 2014] Cortes-Romero, J., Ramos, G. A., and Coral-Enriquez, H. (2014). Generalized proportional integral control for periodic signals under active disturbance rejection approach. ISA Transactions, 53(6):1901-1909.
dc.relation.references[Li et al., 2018] Li, T., Yang, H., Tian, J., and Zhang, S. (2018). Improved disturbance rejection control based on H-inf synthesis and equivalent-input-disturbance for aircraft longitudinal autopilot design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 0(0):1-13.
dc.relation.references[Lou and Zhang, 2013] Lou, J. and Zhang, K. (2013). Design of active disturbance rejection controller for autonomous aerial refueling uav. In 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013), pages 1-4.
dc.relation.references[MathWorks, 2019a] MathWorks (2019a). Simulink Desktop Real-Time - MATLAB & Simulink. último acceso 12-06-19,https://la.mathworks.com/products/simulink-desktop-realtime. html.
dc.relation.references[MathWorks, 2019b] MathWorks (2019b). Simulink Desktop Real-Time Documentation. último acceso 05-04-19, https://www.mathworks.com/help/sldrt/index.html?searchHighlight=real time& s tid=doc srchtitle.
dc.relation.references[Middleton et al., 2010] Middleton, R., GmbH, M., Graebe, S. F., and Austin, J. S. S. (2010). Design Methods -The Control Handbook - Control System Applications. CRC Press, California, Maryland, Estados Unidos, second edition.
dc.relation.references[Michel Fliess, Richard Marquez, 2006] Michel Fliess, Richard Marquez, E. D. e. H. S. (2006). CORRECTEURS PROPORTIONNELS-INTEGRAUX GERALISENES. ESAIM: Control, Optimisation and Calculus of Variations, 7(January):23-41.
dc.relation.references[MIL-F-8785C, 1980] MIL-F-8785C (1980). Flying Qualities of Piloted Airplanes. Technical Report MIL-F-8785C, United States Armed Forces, Estados Unidos.
dc.relation.references[Mil-std, 1997] Mil-std, S. (1997). Handbook Flying Qualities of Flying Qualities of PILOTED AIRCRAFT. Change.
dc.relation.references[M.V. Cook, 2007] M.V. Cook (2007). Flight Dynamics Principle. Butterworth-Heinemann.
dc.relation.references[National Instruments, 2000] National Instruments (2000). 6023E/6024E/6025E User Manual Multifunction I/O Devices for PCI, PXI , CompactPCI, and PCMCIA Bus Computers 6023E/6024E/6025E User Manual.
dc.relation.references[O'Dwyer, 2009] O'Dwyer, A. (2009). PI AND PID CONTROLLER TUNING RULES 3rd Edition. Imperial College Press, Dublin Institute of Technology, Ireland, third edition.
dc.relation.references[Ogata, 1995] Ogata, K. (1995). Discrete Time Control Systems. Prentice Hall international, Minnesota, Estados Unidos, second edition.
dc.relation.references[Ogata, 2013] Ogata, K. (2013). Ingenier a de Control Moderna. Pearson.
dc.relation.references[Paw, 2009a] Paw, Y. C. (2009a). Synthesis and validation of flight control for UAV. PhD thesis, University of Minnesota, Estados Unidos.
dc.relation.references[Paw, 2009b] Paw, Y. C. (2009b). University of Minnesota Department of Aerospace Engineering & Mechanics UAV Research Group. Minnesota, Estados Unidos.
dc.relation.references[Preminger and Rootenberg, 1964] Preminger, J. and Rootenberg, J. (1964). Some considerations relating to control systems employing the invariance principle. IEEE Transactions on Automatic Control, 9(3):209-215.
dc.relation.references[Radke and Zhiqiang Gao, 2006] Radke, A. and Zhiqiang Gao (2006). A survey of state and disturbance observers for practitioners. In 2006 American Control Conference, page 6 pp.
dc.relation.references[Ramírez, 2012] Ramírez, H. S. (2012). Control mediante Rechazo Activo de Perturbaciones : Perspectiva Histórica y Nuevos Horizontes. Congreso Nacional de Control Automáico 2012.
dc.relation.references[Ribeiro and Oliveira, 2010] Ribeiro, L. R. and Oliveira, N. M. F. (2010). Uav autopilot controllers test platform using matlab/simulink and x-plane. In 2010 IEEE Frontiers in Education Conference (FIE), pages S2H-1-S2H-6.
dc.relation.references[Sensoray Co., 2004] Sensoray Co., I. (2004). Sensoray Model 626 PCI Multifunction I/O Board Revision F INSTRUCTION MANUAL.
dc.relation.references[Siddiqui and Khushnood, 2009] Siddiqui, B. A. and Khushnood, A. (2009). Improving USAF DATCOM Predictions of Aircraft Nonlinear Aerodynamics. In Canadian Aeronautics and Space Institute AERO'09 Conference, Aerodynamics Symposium, pages 0-11.
dc.relation.references[Sira-Ramirez and Agrawal, 2004] Sira-Ramirez, H. and Agrawal, S. K. (2004). Diferencially Flat Systems. CRC Press.
dc.relation.references[Sira-Ramirez et al., 2011a] Sira-Ramirez, H., Luviano-Juarez, A., and Cortes-Romero, J. (2011a). Control lineal robusto de sistemas no lineales diferencialmente planos. Revista Iberoamericana de Automatica e Informatica Industrial RIAI, 8(1):14-28.
dc.relation.references[Straub, 2014] Straub, J. (2014). Unmanned aerial systems: Consideration of the use of force for law enforcement applications. Technology in Society, 39:100-109.
dc.relation.references[Sufendi et al., 2013] Sufendi, Trilaksono, B. R., Nasution, S. H., and Purwanto, E. B. (2013). Design and implementation of hardware-in-the-loop-simulation for uav using pid control method. Proc. of 2013 3rd Int. Conf. on Instrumentation, Communications, Information Technol., and Biomedical Engineering: Science and Technol. for Improvement of Health, Safety, and Environ., ICICI-BME 2013, pages 124-130.
dc.relation.references[Tian and Gao, 2009] Tian, G. T. G. and Gao, Z. G. Z. (2009). From Poncelet's invariance principle to Active Disturbance Rejection. 2009 American Control Conference, pages 2451-2457.
dc.relation.references[Vera V. Br. Trino F., 2006] Vera V. Br. Trino F. (2006). Estudio de un mecanismo anti windup para controles PI generalizados. thesis, Universidad de los Andes Venezuela, Lerida, Venezuela.
dc.relation.references[Vogeltanz and Jasek, 2015] Vogeltanz, T. and Ja sek, R. (2015). Flightgear application for flight simulation of a mini-uav. In AIP Conference Proceedings, volume 1648, page 550014.
dc.relation.references[W. Carnes et al., 2015] W. Carnes, T., Bakker, T., and Klenke, R. (2015). A fully parameterizable implementation of autonomous take-of and landing for a xed wing uav. In AIAA Guidance Navigation and Control Conference.
dc.relation.references[Wilson, 2009] Wilson, J. R. (April 2009). Uav worldwide roundup 2009. Aerospace America, pages 30-36.
dc.relation.references[Xiong et al., 2009] Xiong, H., Jing, F.-s., Yi, J.-q., and Fan, G.-l. (2009). Automatic takeo of unmanned aerial vehicle based on Active Disturbance Rejection Control. 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), pages 2474-2479.
dc.relation.references[Xiong Hua et al., 2011] Xiong Hua, Yuan Ruyi, Yi Jianqiang, Fan Guoliang, and Jing Fengshui (2011). Disturbance Rejection in UAV's velocity and attitude control: Problems and solutions. Proceedings of the 2011 30th Chinese Control Conference (CCC), pages 6293-6298.
dc.relation.references[Zhang Jingsha et al., 2013] Zhang Jingsha, Geng Qingbo, and Fei Qing (2013). UAV Flight Control System Modeling and Simulation Based on FlightGear. International Conference on Automatic Control and Arti cial Intelligence (ACAI 2012), pages 2231-2234.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalADRC
dc.subject.proposalADRC
dc.subject.proposalGPI
dc.subject.proposalGPI
dc.subject.proposalUAV
dc.subject.proposalUAV
dc.subject.proposalHardware In the Loop
dc.subject.proposalHardware In the Loop
dc.subject.proposalSystems Control
dc.subject.proposalControl de sistemas
dc.subject.proposalAeronave de ala ja
dc.subject.proposalFixed Wing Aircraft
dc.subject.proposalSimulink Desktop Real-Time
dc.subject.proposalSimulink Desktop Real-Time
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito