Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorTrujillo, Carlos Alexander
dc.contributor.authorEscobar Caicedo, Jorge Luis
dc.date.accessioned2020-03-18T20:33:00Z
dc.date.available2020-03-18T20:33:00Z
dc.date.issued2019-08-02
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76107
dc.description.abstractIn this work is decribed the design, construction and operation of a continuous reactor, in which hydrocracking reactions are developed, in order to evaluate the activity and selectivity of different USY zeolites. The products of the reaction were analized by thermogravimetry and simple distillation. In the first chapter of this document the reader is contextulized in the base topics of the investigation; the crude oil refining, catalytic hydrocracking, the USY zeolites used as a catalyst and the trickle bed reactors. In the second chapter is described the reactor design. In the reactor were identified three zones, the first one is de storage zone, the second one is the reaction zone and the final one is the separation and sample zone. The reaction was carried out with three differentes USY zeolites of the Zeolist’s comercial serie (CBV600, CBV720 and CBV780), which have gone through chemical and physical processes that transform the zeolite structure in order to make it stable thermally and to improve its activity. The three different zeolites have different pore volumen and acidity, that allows to relate these properties and the activity of each one. In the third chapter are shown the results of the activity probes in the hydrocracking reaction of two different paraffinic mixtures; thermic oil and mineral oil. The main difference between these two mixtures is the nitrogen and oxygen content, which is bigger in thermic oil than mineral oil. In the reaction with thermic oil the most active zeolite was the CBV720, then was the CBV600 and the last was the CBV780; in all cases there was deactivation. On the other hand, in the reaction with mineral oil was also the CBV720 the most active zeolite, however, the CBV780 had a bigger activity than CBV600. These results are deeply discussed at the end of this chapter. Finally, in the fourth chapter it is done a contrast between the results obtained by hydrocracking in a reactor which employs model molecules, whose main difference in activity are because of the nature of the reactants.
dc.description.abstractEn este trabajo se describe el diseño, construcción y funcionamiento de un reactor continuo, en el cual se desarrollaron reacciones de hidrorrompimiento catalítico a fin de evaluar la actividad de diferentes zeolitas USY. Los productos obtenidos de la reacción fueron analizados por termogravimetría y destilación simple. En el primer capítulo de este documento se contextualiza al lector en los temas base de la investigación; la refinación del petróleo, el hidrorrompimiento catalítico (HC por sus siglas en inglés), las zeolitas USY como catalizadores y los reactores trickle bed. En el segundo capítulo se describe el diseño del reactor. En él se identificaron 3 zonas principales, una de almacenamiento, otra de reacción y una tercera donde se hizo la separación y el muestreo de los productos. La reacción se realizó con tres zeolitas USY de la serie comercial Zeolyst (CBV600, CBV720 y CBV780), las cuales cuentan con tratamientos químicos y físicos que transforman la estructura de la zeolita Y inicial en busca de hacerla más estable térmicamente, pero a su vez, más activa. Las tres zeolitas probadas tienen diferentes volúmenes de poro, y diferentes grados de acidez, lo que permite relacionar dichas propiedades con la actividad de cada una. En el tercer capítulo se presentan los resultados de las pruebas de actividad en la reacción de hidrorrompimiento de dos mezclas parafínicas; el aceite térmico y el aceite mineral. La principal diferencia entre estas dos mezclas es el contenido de azufre y de nitrógeno, el cual es significativamente mayor para la primera. En la reacción con aceite térmico la zeolita más activa fue la CBV720, seguida por la CBV600 y la CBV780; en todos los casos se presentó desactivación. Por su parte, en la reacción con aceite mineral la zeolita más activa también fue la CBV720, sin embargo, la segunda más activa fue la CBV780. Dichos resultados son discutidos en el tercer capítulo. Finalmente, en el cuarto capítulo se hace un pequeño contraste entre los resultados de actividad obtenidos por hidrorrompimiento con un reactor que utiliza moléculas modelo, cuyas diferencias en la actividad se deben principalmente a la naturaleza del reactivo utilizado.
dc.format.extent111
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc660 - Ingeniería química
dc.titleActividad y selectividad de Zeolitas USY modificadas y su relación con la mesoporosidad en el proceso de hidrorrompimiento catalítico
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ingeniería Química. Línea de Investigación: Ingeniería de procesos y catálisis
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupLaboratorio de Catálisis Heterogénea
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] BP Statistical Review of World Energy, “Bp Statistical Research,” BP Statistical Review of World Energy, vol. 67 th, no. 67th edition. p. 56, 2018. [2] World Energy Council, “World Energy Resources Oil | 2016,” World Energy Resources Oil 2016. p. 91, 2016. [3] V. Simanzhenkov and R. Idem, Crude Oil Chemistry, 1st ed. United States Of America: CRC Press, 2003. [4] S. Matar, M. J. Mirbach, and H. A. Tayim, Catalysis in Petrochemical Processes, 1st ed. Boston London: Kluwer Academic Publishers, 1989. [5] S. Raseev, Thermal and Catalytic Processes in Petroleum Refining, 1st ed. New York: Marcel Dekker, 2003. [6] J. R. Chang, S. L. Chang, and T. B. Lin, “γ-Alumina-supported Pt catalysts for aromatics reduction: A structural investigation of sulfur poisoning catalyst deactivation,” J. Catal., vol. 169, no. 1, pp. 338–346, 1997. [7] C. Peng, X. Fang, and R. Zeng, “Research and development of hydrocracking catalysts and technology,” Chem. Sci. Eng., vol. 12, no. 4, pp. 86–118, 2016. [8] D. Verboekend et al., “Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: Milestones, challenges, and future directions,” Chem. Soc. Rev., vol. 45, no. 12, pp. 3331–3352, 2016. [9] M. Niwa; N. Katada; K. Okumura, Characterization and design of zeolite catalysts: Solid acidity, shape selectivity and loading properties, 1st ed. Tottori Japon: Springer, 2010. [10] V. W. Weekman, “Laboratory reactors and their limitations,” AIChE J., vol. 20, no. 5, pp. 833– 840, 1974. [11] C. Perego, “Experimental methods in catalytic kinetics,” Catal. Today, vol. 52, no. 2–3, pp. 133–145, 1999. [12] M. H. Al-Dahhan and M. P. Duduković, “Catalyst Bed Dilution for Improving Catalyst Wetting in Laboratory Trickle-Bed Reactors,” AIChE J., vol. 42, no. 9, pp. 2594–2606, 1996. [13] D. Jones; P. Pujadó, Handbook of Petroleum Processing, 1st ed. Chicago USA: Springer, 2006. [14] U. R. Chaudhuri, Fundamentals of Petroleum and Petrochemical Engineering, 1st ed. New York: CRC Press, 2011. [15] J. Scherzer and G. A, Hydrocracking Science and Technology, 1st ed. New York: Marcel Dekker, 1996. [16] S. Parkash, Refining Processes Handbook, 1st ed. New York: Elsevier, 2003. [17] W. C. Lyons, Standard Handbook of Petroleum & Natural Gas Engineering, 1st ed., vol. 1. Houston Texas: Gulf Publishing Company, 1996. [18] Y. Liu, L. Gao, L. Wen, and B. Zong, “Recent Advances in Heavy Oil Hydroprocessing Technologies,” Recent Patents Chem. Eng., vol. 2, no. 1, pp. 22–36, 2012. [19] M. Occelli, Fluid Catalytic Cracking II, Concepts in Catalyst Design, 1st ed. New York: American Chemical Society, 1991. [20] G. Valavarasu, M. Bhaskar, and K. S. Balaraman, “Mild hydrocracking - A review of the process, catalysts, reactions, kinetics, and advantages,” Pet. Sci. Technol., vol. 21, no. 7–8, pp. 1185–1205, 2003. [21] J. G. Speight, The Chemistry and Technology of Petroleum, 3rd ed. New York: Marcel Dekker, 2014. [22] J. Govindhakannan, “Modeling of a hydrogenated vacuum gas oil hydrocracker,” Doctoral Thesis, Chemical Engineering, Texas Tech University, Texas, 2003. [23] A. Sivena, “Hydrocracking Reaction Pathways of 1-Methylnaphthalene in a Continuous FixedBed Reactor,” Doctoral Thesis, Chemical Engineering, Imperial College London, London, 2015. [24] J. Ancheyta, Modeling of Processes and Reactors for Upgrading of Heavy Petroleum, 1st ed. New York: CRC Press, 2013. [25] S. M. Csicsery, “Shape-selective catalysis in zeolites,” Zeolites, vol. 4, no. 3, pp. 202–213, Jul. 1984. [26] T. Zhang, C. Leyva, G. F. Froment, and J. Martinis, “Vacuum Gas Oil Hydrocracking on NiMo/USY Zeolite Catalysts. Experimental Study and Kinetic Modeling,” Ind. Eng. Chem. Res., vol. 54, no. 3, pp. 858–868, Jan. 2015. [27] J. Zečević, G. Vanbutsele, K. P. De Jong, and J. A. Martens, “Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons,” Nature, vol. 528, no. 7581, pp. 245–254, 2015. [28] L. Palomeque, “Contribución a la elucidación del mecanismo de acción del vanadio en el proceso FCC,” Tesis de doctorado, Departamento de Química, Universidad Nacional de Colombia, Bogotá, 2009. [29] H. Robson, K. P. Lillerud, X. Patterns, and N. Barrier, Verified Syntheses of Zeolitic Materials, 3rd ed. Mulhouse Cedex, France: Elsevier, 2016. [30] L. E. Sandoval-Díaz, J. A. González-Amaya, and C. A. Trujillo, “General aspects of zeolite acidity characterization,” Microporous Mesoporous Mater., vol. 215, pp. 229–243, 2015. [31] J. Weitkamp, “Catalytic Hydrocracking-Mechanisms and Versatility of the Process,” ChemCatChem, vol. 4, no. 3, pp. 292–306, 2012. [32] G. F. Froment, “Kinetics of the hydroisomerization and hydrocracking of paraffins on a platinum containing bifunctional Y-zeolite,” Catal. Today, vol. 1, no. 4, pp. 455–473, 1987. [33] S. Kotrel, H. Knözinger, and B. C. Gates, “The Haag-Dessau mechanism of protolytic cracking of alkanes,” Microporous Mesoporous Mater., vol. 35–36, pp. 11–20, 2000. [34] R. Prins, “Hydrogen spillover. Facts and fiction,” Chemical Reviews, vol. 112, no. 5. American Chemical Society, Zurich, Switzerland, pp. 2714–2738, 2012. [35] A. Zhang, I. Nakamura, K. Aimoto, and K. Fujimoto, “Isomerization of n-Pentane and Other Light Hydrocarbons on Hybrid Catalyst. Effect of Hydrogen Spillover,” Ind. Eng. Chem. Res., vol. 34, no. 4, pp. 1074–1080, Apr. 1995. [36] W. Schwieger et al., “Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity,” Chem. Soc. Rev., vol. 45, no. 12, pp. 3353– 3376, 2016. [37] Z. International, “Zeolyst International,” (Visitada el 16 de mayo de 2019) [Online]. Available: https://www.zeolyst.com/. . [38] M. J. Remy et al., “Dealuminated H-Y zeolites: Relation between physicochemical properties and catalytic activity in heptane and decane isomerization,” J. Phys. Chem., vol. 100, no. 30, pp. 12440–12447, 1996. [39] Calvin H Bartholomew, “Mechanisms of catalyst deactivation,” Appl. Catal. A Gen., vol. 212, no. 1–2, pp. 17–60, 2001. [40] B. Guichard, M. Roy-Auberger, E. Devers, B. Rebours, A. A. Quoineaud, and M. Digne, “Characterization of aged hydrotreating catalysts. Part I: Coke depositions, study on the chemical nature and environment,” Appl. Catal. A Gen., vol. 367, no. 1–2, pp. 1–8, 2009. [41] S. M. Richardson, H. Nagaishi, and M. R. Gray, “Initial Coke Deposition on a NiMo/-γ-Al2O3 Bitumen Hydroprocessing Catalyst,” Ind. Eng. Chem. Res., vol. 35, no. 11, pp. 3940–3950, 1996. [42] K. Matsushita, A. Hauser, A. Marafi, R. Koide, and A. Stanislaus, “Initial coke deposition on hydrotreating catalysts. Part 1. Changes in coke properties as a function of time on stream,” Fuel, vol. 83, no. 7–8, pp. 1031–1038, 2004. [43] D. K. Banerjee, K. J. Laidler, B. N. Nandi, and D. J. Patmore, “Kinetic studies of coke formation in hydrocarbon fractions of heavy crudes,” Fuel, vol. 65, no. 4, pp. 480–484, 1986. [44] G. B. Mcvicker et al., “Effect of Sulfur on the Performance and on the Particle Size and Location of Platinum in Pt/KL Hexane Aromatization Catalysts,” J. Catal., vol. 139, no. 1, pp. 48–61, Jan. 1993. [45] E. Furimsky, “Deactivation of hydroprocessing catalysts,” Catal. Today, vol. 52, no. 4, pp. 381–495, Sep. 1999. [46] M. Sau, K. Basak, U. Manna, M. Santra, and R. P. Verma, “Effects of organic nitrogen compounds on hydrotreating and hydrocracking reactions,” Catal. Today, vol. 109, no. 1–4, pp. 112–119, Nov. 2005. [47] C. N. Satterfield, “Trickle-bed reactors,” AIChE J., vol. 21, no. 2, pp. 209–228, 1975. [48] A. Atta, S. Roy, F. Larachi, and K. D. P. Nigam, “Cyclic operation of trickle bed reactors: A review,” Chem. Eng. Sci., vol. 115, pp. 205–214, Aug. 2014. [49] J. Froment, Gilbert; Bischoff, Kenneth; De Wilde, Chemical Reactor Analysis and Design, 3rd ed. Belgium: John Wiley & Sons, 2011. [50] A. Gianetto and V. Specchia, “Trickle-bed reactors: state of art and perspectives,” Chem. Eng. Sci., vol. 47, no. 13–14, pp. 3197–3213, Sep. 1992. [51] Y. Schuurman, “Aspects of kinetic modeling of fixed bed reactors,” Catal. Today, vol. 138, no. 1–2, pp. 15–20, 2008. [52] J. C. Charpentier and M. Favier, “Some Liquid Holdup Experimental Data in Trickle-Bed Reactors for Foaming and Nonfoaming Hydrocarbons,” AIChe J., vol. 21, no. 6, pp. 1213– 1218, 1975. [53] M. H. Al-Dahhan, F. Larachi, M. P. Dudukovic, and A. Laurent, “High-Pressure Trickle-Bed Reactors: A Review,” Ind. Eng. Chem. Res., vol. 36, no. 8, pp. 3292–3314, Aug. 1997. [54] T. H. Gouw, R. L. Hinkins, and R. E. Jentoft, “Simulated distillation by gas chromatography: a computer program,” J. Chromatogr. A, vol. 28, pp. 219–224, Jan. 1967. [55] ASTM Standard D86, “Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure,” pp. 1–27, 2008. [56] Y. L. Shishkin, “Scanning calorimetry and thermogravimetry in analysis of petroleum systems. Determination of the component composition,” Chem. Technol. Fuels Oils, vol. 42, no. 4, pp. 300–307, 2006. [57] H. Martinez-Grimaldo, H. Ortiz-Moreno, F. Sanchez-Minero, J. Ramírez, R. Cuevas-Garcia, and J. Ancheyta-Juarez, “Hydrocracking of Maya crude oil in a slurry-phase reactor. I. Effect of reaction temperature,” Catal. Today, vol. 220–222, pp. 295–300, 2014. [58] H. Ortiz-Moreno, J. Ramírez, F. Sanchez-Minero, R. Cuevas, and J. Ancheyta, “Hydrocracking of Maya crude oil in a slurry-phase batch reactor. II. Effect of catalyst load,” Fuel, vol. 130, pp. 263–272, 2014. [59] G. W. Bartlett and D. Subero, “An Investigation of The Effects of Pressure and Temperature on the Vapourization Characteristics of Crude Oil Using First Approximation Thermal Analysis,” J. Therm. Anal., vol. 32, pp. 1843–1854, 1987. [60] M. Guisnet, “‘ Ideal ’ bifunctional catalysis over Pt-acid zeolites,” Catal. Today, vol. 218–219, pp. 123–134, 2013. [61] H. Kumar and G. F. Froment, “A Generalized Mechanistic Kinetic Model for the Hydroisomerization and Hydrocracking of Long-Chain Paraffins,” pp. 4075–4090, 2007. [62] Ray Sinnott; Gavin Towler, Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, 1st ed., vol. 6, no. 2. California, USA, 2008. [63] K. Chakarova, K. Hadjiivanov, G. Atanasova, and K. Tenchev, “Effect of preparation technique on the properties of platinum in NaY zeolite : A study by FTIR spectroscopy of adsorbed CO,” vol. 264, pp. 270–279, 2007. [64] I. Mochida, K. Sakanishi, X. Ma, S. Nagao, and T. Isoda, “Deep hydrodesulfurization of diesel fuel: Design of reaction process and catalysts,” Catal. Today, vol. 29, no. 1–4, pp. 185–189, 1996. [65] S. Limited, “Sasol Limited,” (Visitada el 25 de mayo de 2019) [Online]. Available: https://www.sasol.com/. . [66] H. Wiener, “Structural Determination of Paraffin Boiling Points,” J. Am. Chem. Soc., vol. 69, no. 1, pp. 17–20, Jan. 1947. [67] M. M. Smith, James; Van Ness, H. C.; Abbott, Introducción a la termodinámica en Ingeniería Ingeniería Química, 7th ed. México: McGraw-Hill, 2005. [68] P. Raybaud, “Catalysis by Transition Metal Sulfides: from molecular theory to industrial application,” Focus Catal., vol. 2014, no. 4, p. 8, Apr. 2014. [69] G. Ertl, Diffusive Spreading in Nature, Technology and Society. Cham: Springer International Publishing, 2018. [70] R. A. Beyerlein, C. Choi-feng, J. B. Hall, B. J. Huggins, and G. J. Ray, “Effect of steaming on the defect structure and acid catalysis of protonated zeolites,” Top. Catal., vol. 4, pp. 27–42, 1997. [71] H. Kumar and G. F. Froment, “A generalized mechanistic kinetic model for the hydroisomerization and hydrocracking of long-Chain paraffins,” Ind. Eng. Chem. Res., vol. 46, no. 12, pp. 4075–4090, 2007. [72] M. Guisnet, “‘Ideal’ bifunctional catalysis over Pt-acid zeolites,” Catal. Today, vol. 218–219, pp. 123–134, Dec. 2013. [73] P. Kortunov et al., “The Role of Mesopores in Intracrystalline Transport in USY Zeolite: PFG NMR Diffusion Study on Various Length Scales,” J. Am. Chem. Soc., vol. 127, no. 37, pp. 13055–13059, Sep. 2005. [74] M. Y. Kim et al., “Effect of Al content on hydrocracking of n-paraffin over Pt/SiO 2-Al 2O 3,” Catal. Commun., vol. 26, no. 3, pp. 78–82, 2012. [75] N. Batalha, L. Pinard, C. Bouchy, E. Guillon, and M. Guisnet, “n -Hexadecane hydroisomerization over Pt-HBEA catalysts . Quantification and effect of the intimacy between metal and protonic sites,” J. Catal., vol. 307, pp. 122–131, 2013. [76] C. S. Laxmi Narasimhan, J. W. Thybaut, J. A. Martens, P. A. Jacobs, J. F. Denayer, and G. B. Marin, “A unified single-event microkinetic model for alkane hydroconversion in different aggregation states on Pt/H-USY-zeolites,” J. Phys. Chem. B, vol. 110, no. 13, pp. 6750–6758, 2006. [77] J. L. Agudelo, E. J. M. Hensen, S. A. Giraldo, and L. J. Hoyos, “Influence of steam-calcination and acid leaching treatment on the VGO hydrocracking performance of faujasite zeolite,” Fuel Process. Technol., vol. 133, pp. 89–96, May 2015. [78] J. A. Martens, M. Tielen, P. A. Jacobs, and J. Weitkamp, “Estimation of the void structure and pore dimensions of molecular sieve zeolites using the hydroconversion of n-decane,” Zeolites, vol. 4, no. 2, pp. 98–107, 1984. [79] A. Martínez, M. A. Arribas, and S. B. C. Pergher, “Bifunctional noble metal/zeolite catalysts for upgrading low-quality diesel fractions: Via selective opening of naphthenic rings,” Catal. Sci. Technol., vol. 6, no. 8, pp. 2528–2542, 2016. [80] E. Benazzi, L. Leite, N. Marchal-George, H. Toulhoat, and P. Raybaud, “New insights into parameters controlling the selectivity in hydrocracking reactions,” J. Catal., vol. 217, no. 2, pp. 376–387, 2003. [81] L. . Galperin, J. . Bricker, and J. . Holmgren, “Effect of support acid–basic properties on activity and selectivity of Pt catalysts in reaction of methylcyclopentane ring opening,” Appl. Catal. A Gen., vol. 239, no. 1–2, pp. 297–304, Jan. 2003. [82] K. Sing, “The use of nitrogen adsorption for the characterisation of porous materials,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 187–188, pp. 3–9, Aug. 2001. [83] J. Landers, G. Y. Gor, and A. V. Neimark, “Density functional theory methods for characterization of porous materials,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 437, pp. 3–32, Nov. 2013. [84] W. Lutz, “Zeolite Y: Synthesis, Modification, and Properties—A Case Revisited,” Adv. Mater. Sci. Eng., vol. 2014, pp. 1–20, 2014. [85] Y. Osorio Pérez, L. A. P. Forero, D. V. C. Torres, and C. A. Trujillo, “Brønsted acid site number evaluation using isopropylamine decomposition on Y-zeolite contaminated with vanadium in a simultaneous DSC-TGA analyzer,” Thermochim. Acta, vol. 470, no. 1–2, pp. 36–39, 2008.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalHidrorrompimiento catalítico
dc.subject.proposalThree Phase Reactor
dc.subject.proposalZeolitas USY
dc.subject.proposalCatalytic Hydrocracking
dc.subject.proposalUSY zeolites
dc.subject.proposalReactor trifásico
dc.subject.proposalThree Phase Reactor
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito