Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRestrepo Baena, Oscar Jaime
dc.contributor.authorChaverra Arias, Dairo Ernesto
dc.date.accessioned2020-03-19T21:53:02Z
dc.date.available2020-03-19T21:53:02Z
dc.date.issued2019-03-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76109
dc.description.abstractEl cobalto es un metal que se utiliza en numerosas aplicaciones comerciales, industriales y militares, muchas de las cuales son estratégicas y críticas. Generalmente el cobalto se obtiene como un subproducto de la metalurgia del níquel y su separación representa un problema hidrometalúrgico desafiante. En este trabajo se presenta la síntesis y aplicación de líquidos iónicos de fosfonio en la extracción selectiva de cobalto a partir de soluciones acuosas multimetálicas. Se establece el mecanismo de extracción, se evalúan diferentes parámetros del proceso y se propone un diagrama de flujo de proceso. Se encontró que es posible extraer cobalto a partir de soluciones acuosas en medio sulfato, con la adición de cloruro de sodio. La extracción de cobalto es fuertemente dependiente de la concentración de cloruro en la solución y se da mediante un mecanismo de intercambio aniónico a través de un proceso endotérmico. En los procesos implementados se obtuvieron extracciones de cobalto superiores al 98 %. El proceso de extracción desarrollado es selectivo para el cobalto respecto del níquel, magnesio, calcio y cinc. Adicionalmente en este trabajo se probó que es posible descargar el cobalto de la fase líquido iónico usando agua. Por tanto, se propone un proceso de extracción alternativo a los solventes orgánicos tradicionales. Esta alternativa tiene ventajas adicionales como fácil manejo, menores costos en reactivos y equipos y reducción de riesgos.
dc.description.abstractCobalt is a metal used in numerous commercial, industrial and military applications, many of which are critical and strategic. Usually cobalt is obtained as a byproduct of nickel metallurgy and its separation represents a challenging hydrometallurgical problem. In this work the synthesis and application of phosphonium-based ionic liquids on the selective extraction of cobalt is presented. The extraction mechanism is established, the different parameters of the process are evaluated and a flowsheet of the process is proposed. It has been found that it is possible to extract cobalt from aqueous solutions in sulfate media, with the addition of sodium chloride, using of phosphonium ionic liquids. The cobalt extraction is strongly dependent on the concentration of chloride in the aqueous solution, and is given by an anion exchange mechanism through an endothermic process. Cobalt extractions greater than 98 % were obtained using the proposed methods. The extraction process developed is selective for cobalt over nickel, magnesium, calcium and zinc. Cobalt stripping from the loaded ionic liquid phase using water was proved. Therefore, an alternative extraction process to traditional organic solvents is proposed. This alternative has additional advantages such as easy handling, lower costs in reagents and equipment and risk reduction.
dc.format.extent109
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcción
dc.titleExtracción selectiva de cobalto y níquel a partir de soluciones de lixiviación mediante la técnica de extracción por solventes basada en líquidos iónicos
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalDoctor en ingeniería – Ciencia y tecnología de materiales
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroupInstituto de Minerales CIMEX
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAbebe, A., Admassie, S., Villar-Garcia, I.J., Chebude, Y., 2013. 4,4-Bipyridinium ionic liquids exhibiting excellent solubility for metal salts: Potential solvents for electrodeposition. Inorg. Chem. Commun. 29, 210–212. https://doi.org/10.1016/j.inoche.2012.11.034
dc.relation.referencesAyanda, O.S., Adekola, F.A., Baba, A.A., Ximba, B.J., Fatoki, O.S., 2013. Application of Cyanex extractant in Cobalt/Nickel separation process by solvent extraction. Int. J. Phys. Sci. 8, 89–97. https://doi.org/10.5897/IJPS12.135
dc.relation.referencesBodo, E., Migliorati, V., 2014. Theoretical Description of Ionic Liquids, in: Caminiti, R., Gontrani, L. (Eds.), The Structure of Ionic Liquids. Springer International Publishing, Cham, pp. 127–148.
dc.relation.referencesBradaric, C.J., Downard, A., Kennedy, C., Robertson, A.J., Zhou, Y., 2003. Industrial preparation of phosphonium ionic liquidsPortions of this work were presented at the following meetings: (a) 224th American Chemical Society Conference, Boston, USA, 2002; (b) Green Solvents for Catalysis Meeting, held in Bruchsal, Germany, 13–1. Green Chem. 5, 143–152. https://doi.org/10.1039/b209734f
dc.relation.referencesCheng, C.Y., Boddy, G., Zhang, W., Godfrey, M., Robinson, D.J., Pranolo, Y., Zhu, Z., Wang, W., 2010. Recovery of nickel and cobalt from laterite leach solutions using direct solvent extraction: Part 1 — selection of a synergistic SX system. Hydrometallurgy 104, 45–52. https://doi.org/10.1016/j.hydromet.2010.04.009
dc.relation.referencesCholico-Gonzalez, D., Chagnes, A., Cote, G., Avila-Rodriguez, M., 2015. Separation of Co(II) and Ni(II) from aqueous solutions by bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) using trihexyl(tetradecyl)phosphonium chloride (Cyphos IL 101) as solvent. J. Mol. Liq. 209, 203–208. https://doi.org/10.1016/j.molliq.2015.05.048
dc.relation.referencesCieszynska, A., Wisniewski, M., 2010. Extraction of palladium(II) from chloride solutions with Cyphos®IL 101/toluene mixtures as novel extractant. Sep. Purif. Technol. 73, 202–207. https://doi.org/10.1016/j.seppur.2010.04.001
dc.relation.referencesDietz, M.L., Dzielawa, J.A., Jensen, M.P., Beitz, J. V, Borkowski, M., 2005. The Road to Partition, in: Ionic Liquids IIIB: Fundamentals, Progress, Challenges and Opportunities. Rogers, RD and Seddon, KR (Eds.); American Chemical Society: Washington, DC. pp. 2–18. https://doi.org/10.1021/bk-2005-0902.ch001
dc.relation.referencesEyupoglu, V., Polat, E., Kunduracioglu, A., Turgut, H.I., 2015. A Novel Viewpoint of Imidazolium Salts for Selective Extraction of Cobalt in the Presence of Nickel from Acidic Thiocyanate Solutions by Ionic-Liquid-Based Solvent-Extraction Technique. J. Dispers. Sci. Technol. 36, 1704–1720. https://doi.org/10.1080/01932691.2015.1004185
dc.relation.referencesGhandi, K., 2014. A Review of Ionic Liquids, Their Limits and Applications. Green Sustain. Chem. 04, 44–53. https://doi.org/10.4236/gsc.2014.41008
dc.relation.referencesHuddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E., Rogers, R.D., 1998. Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem. Commun. 1765–1766. https://doi.org/10.1039/A803999B
dc.relation.referencesJensen, M.P., Neuefeind, J., Beitz, J. V., Skanthakumar, S., Soderholm, L., 2003. Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange. J. Am. Chem. Soc. 125, 15466–15473. tps://doi.org/10.1021/ja037577b
dc.relation.referencesKatsuta, S., Yoshimoto, Y., Okai, M., Takeda, Y., Bessho, K., 2011. Selective Extraction of Palladium and Platinum from Hydrochloric Acid Solutions by TrioctylammoniumBased Mixed Ionic Liquids. Ind. Eng. Chem. Res. 50, 12735–12740. https://doi.org/10.1021/ie201310v
dc.relation.referencesLarsson, K., Binnemans, K., 2015. Metal recovery from nickel metal hydride batteries using Cyanex 923 in tricaprylylmethylammonium nitrate from chloride aqueous media. J. Sustain. Metall. 1, 161–167. https://doi.org/10.1007/s40831-015-0017-5
dc.relation.referencesLuo, H., Dai, S., Bonnesen, P. V, Haverlock, T.J., Moyer, B.A., Buchanan, A.C., 2006. A striking effect of ionic-liquid anions in the extraction of Sr2+ and Cs+ by dicyclohexano-18-Crown-6. Solvent Ex
dc.relation.referencesOnghena, B., Valgaeren, S., Vander Hoogerstraete, T., Binnemans, K., 2017. Cobalt(ii)/nickel(ii) separation from sulfate media by solvent extraction with an undiluted quaternary phosphonium ionic liquid. RSC Adv. 7, 35992–35999. https://doi.org/10.1039/C7RA04753C
dc.relation.referencesPospiech, B., Walkoniak, W., 2007. Separation of copper(II), cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes. Sep. Purif. Technol. 57, 461–465. https://doi.org/10.1016/j.seppur.2006.07.005
dc.relation.referencesQuinn, J.E., Ogden, M.D., Soldenhoff, K., 2013. Solvent Extraction of Uranium (VI) from Chloride Solutions using Cyphos IL-101. Solvent Extr. Ion Exch. 31, 538–549. https://doi.org/10.1080/07366299.2013.775891
dc.relation.referencesRomero, A., Santos, A., Tojo, J., Rodríguez, A., 2008. Toxicity and biodegradability of imidazolium ionic liquids. J. Hazard. Mater. 151, 268–273. https://doi.org/10.1016/j.jhazmat.2007.10.079
dc.relation.referencesSadyrbaeva, T.Z., 2015. Separation of cobalt(II) from nickel(II) by a hybrid liquid membrane–electrodialysis process using anion exchange carriers. Desalination 365, 167–175. https://doi.org/10.1016/j.desal.2015.02.036
dc.relation.referencesSengupta, A., Mohapatra, P.K., Iqbal, M., Huskens, J., Verboom, W., 2013. A diglycolamide-functionalized task specific ionic liquid (TSIL) for actinide extraction: Solvent extraction, thermodynamics and radiolytic stability studies. Sep. Purif. Technol. 118, 264–270. https://doi.org/10.1016/j.seppur.2013.07.005
dc.relation.referencesSun, X., Ji, Y., Guo, L., Chen, J., Li, D., 2011. A novel ammonium ionic liquid based extraction strategy for separating scandium from yttrium and lanthanides. Sep. Purif.Technol. 81, 25–30. https://doi.org/10.1016/j.seppur.2011.06.034
dc.relation.referencesVisser, A.E., Swatloski, R.P., Reichert, W.M., Griffin, S.T., Rogers, R.D., 2000. Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids †. Ind. Eng. Chem. Res. 39, 3596–3604. https://doi.org/10.1021/ie000426m
dc.relation.referencesWellens, S., Thijs, B., Binnemans, K., 2012. An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem. 14, 1657. https://doi.org/10.1039/c2gc35246j
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalExtracción de Cobalto
dc.subject.proposalCobalt extraction
dc.subject.proposalExtracción por solventes
dc.subject.proposalSolvent extraction
dc.subject.proposalPhosphonium cation
dc.subject.proposalIon fosfonio
dc.subject.proposalIonic liquids
dc.subject.proposalLíquidos iónicos
dc.subject.proposalMetallurgical extraction mechanism
dc.subject.proposalMecanismos de extracción metalúrgica.
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito