Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRíos Estepa, Rigoberto
dc.contributor.authorMuñoz Rengifo, Juan Felipe
dc.date.accessioned2020-04-13T18:41:32Z
dc.date.available2020-04-13T18:41:32Z
dc.date.issued2017-06-16
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77412
dc.description.abstract[Title: Metabolic flux analysis of mycolic acid pathway, Mycobacterium tuberculosis clinical isolate UT205] Every year in Colombia, there are more than eleven thousand new cases of tuberculosis, indicating that this disease remains as a serious health problem. The bacterium that causes tuberculosis, Mycobacterium tuberculosis (M. tuberculosis), has a broad genetic diversity with significant phenotypic differences between clinical isolates; this diversity and the metabolic changes that occurs during infection are some of the reasons that hinders a full eradication of the disease. This work seeks to apply the metabolic flux analysis (MFA) strategy to study the biochemical pathways involved in the synthesis of mycolic acid in M. tuberculosis. This approach provided a better understanding of the cell performance during the infectious process and allowed to compare the metabolic capabilities of the clinical isolate M. tuberculosis UT205 with regard to the reference strain M. tuberculosis H37Rv. For this, it was constructed a representative model of the metabolic pathways of the pathogenic bacteria M. tuberculosis H37Rv involving 82 metabolites in 101 reactions; the proposed metabolic map was extended to consider the metabolism of the clinical isolate UT205. Flux balance analysis was performed so as to generate various hypotheses regarding how M. tuberculosis UT205 changes its flux distribution in order to overcome some limitations caused by the presence of genetic deletions. The proposed model shows an acceptable robustness and can be used as a preliminary tool for representing the metabolism of M. tuberculosis.
dc.description.abstractEn Colombia cada año se reportan más de once mil nuevos casos de tuberculosis, indicando que esta enfermedad aún continúa siendo un serio problema para la salud. La bacteria causante de la tuberculosis, Mycobacterium tuberculosis (M. tuberculosis), presenta una diversidad genética amplia con diferencias fenotípicas significativas entre aislados clínicos; esta diversidad y el cambio que se da en el metabolismo durante las fases de infección son, entre otras, las razones que han dificultado la completa erradicación de la enfermedad. En el presente estudio se aplicaron técnicas de evaluación de flujo metabólico a lo largo de las diferentes rutas bioquímicas involucradas en la síntesis de ácido micólico, con el fin de contribuir a obtener un mejor entendimiento de la actividad bioquímica de la bacteria durante el proceso infeccioso. La metodología usada involucró el desarrollo de un modelo matemático a partir de la identificación de las principales rutas metabólicas que el organismo usa para defenderse de los efectos adversos del medio; el modelo fue inicialmente desarrollado para considerar el metabolismo de Mycobacterium tuberculosis H37Rv y posteriormente fue extendido para considerar el metabolismo de Mycobacterium tuberculosis aislado clínico UT205. El modelo metabólico consideró 82 metabolitos en 100 reacciones y fue usado para realizar análisis de balance de flujo a partir de los cuales se generaron algunas hipótesis respecto de cómo M. tuberculosis UT205 cambia la distribución de sus flujos metabólicos para suplir algunas deficiencias ocasionadas por la presencia de deleciones genéticas. El modelo generado en este trabajo presenta grado de robustez aceptable que de manera preliminar representa la actividad metabólica de Mycobacterium tuberculosis. Los resultados encontrados en este trabajo permiten tener un primer acercamiento al conocimiento de las características metabólicas de la cepa UT205; concretamente el comportamiento de las reacciones afectadas por la ausencia del gen Rv1997 y que diferencian a la cepa UT205 de la cepa de referencia. Sin embargo, es necesario enriquecer el modelo con mayor información sobre genes, enzimas y variaciones en rutas metabólicas presentes en la cepa UT205, de manera que se obtenga un modelo más representativo del comportamiento real del aislado clínico.
dc.format.extent132
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcIngeniería Metabólica
dc.subject.ddc660 - Ingeniería química
dc.titleAnálisis de la distribución de flujo metabólico para la síntesis de ácido micólico en Mycobacterium tuberculosis, aislado clínico UT205
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagister en Ciencias-Biotecnología
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroupBiotecnología Industrial
dc.description.degreelevelMaestría
dc.publisher.departmentEscuela de biociencias
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAhmad, Z. et al., 2009. Biphasic kill curve of isoniazid reveals the presence of drug-tolerant, not drug-resistant, Mycobacterium tuberculosis in the guinea pig. The Journal of infectious diseases, 200(7), pp.1136–43.
dc.relation.referencesAkana, J. et al., 2006. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily. Biochemistry, 45(8), pp.2493–503
dc.relation.referencesAnstrom, D.M. & Remington, S.J., 2006. The product complex of M. tuberculosis malate synthase revisited. Protein science : a publication of the Protein Society, 15(8), pp.2002–7.
dc.relation.referencesAnstrom, D.M. & Remington, S.J., 2006. The product complex of M. tuberculosis malate synthase revisited. Protein science : a publication of the Protein Society, 15(8), pp.2002–7.
dc.relation.referencesArora, G. et al., 2010. Understanding the role of PknJ in Mycobacterium tuberculosis: biochemical characterization and identification of novel substrate pyruvate kinase A. PloS one, 5(5), p.e10772.
dc.relation.referencesBanerjee, S. et al., 2005. Comparison of Mycobacterium tuberculosis isocitrate dehydrogenases (ICD-1 and ICD-2) reveals differences in coenzyme affinity, oligomeric state, pH tolerance and phylogenetic affiliation. BMC biochemistry, 6(1), p.20.
dc.relation.referencesBaughn, A.D. et al., 2009. An anaerobic-type alpha-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis. PLoS pathogens, 5(11), p.e1000662.
dc.relation.referencesBecker, S. a & Palsson, B.Ø., 2005. Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC microbiology, 5, p.8.
dc.relation.referencesBeste, D. et al., 2011. 13C Metabolic Flux Analysis Identifies an Unusual Route for Pyruvate Dissimilation in Mycobacteria which Requires Isocitrate Lyase and Carbon Dioxide Fixation. PLoS pathogens, 7(7).
dc.relation.referencesBhatt, A. et al., 2007. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Molecular microbiology, 64(6), pp.1442–54.
dc.relation.referencesBordbar, A. et al., 2010. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Molecular systems biology, 6(422), p.422.
dc.relation.referencesBoshoff, H., Mizrahi, V. & Barry, C., 2002. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. Journal of bacteriology, 184(8).
dc.relation.referencesBrown, T. et al., 2010. Associations between Mycobacterium tuberculosis strains and phenotypes. Emerging infectious diseases, 16(2), pp.272–80.
dc.relation.referencesBushell, M.E. et al., 2006. The use of genome scale metabolic flux variability analysis for process feed formulation based on an investigation of the effects of the zwf mutation on antibiotic production in Streptomyces coelicolor. Enzyme and Microbial Technology, 39(6), pp.1347–1353.
dc.relation.referencesCeccarelli, C. et al., 2002. Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. Insights into the enzyme mechanism. The Journal of biological chemistry, 277(45), pp.43454–62.
dc.relation.referencesChan, M. & Sim, T.S., 1998. Malate synthase from Streptomyces clavuligerus NRRL3585: Cloning, molecular characterization and its control by acetate. Microbiology, 144(11), pp.3229–3237.
dc.relation.referencesChen, Y.R. et al., 1998. D-ribulose-5-phosphate 3-epimerase: Cloning and heterologous expression of the spinach gene, and purification and characterization of the recombinant enzyme. Plant Physiology, 118(1), pp.199–207.
dc.relation.referencesColijn, C. et al., 2009. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS computational biology, 5(8), p.e1000489.
dc.relation.referencesDroste, P., Nöh, K. & Wiechert, W., 2013. Omix - A Visualization Tool for Metabolic Networks with Highest Usability and Customizability in Focus. Chemie Ingenieur Technik, 85(6), pp.849–862.
dc.relation.referencesFang, X., Wallqvist, A. & Reifman, J., 2009. A systems biology framework for modeling metabolic enzyme inhibition of Mycobacterium tuberculosis. BMC systems biology, 3, p.92.
dc.relation.referencesFunahashi, A. et al., 2008. CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks. Proceedings of the IEEE, 96(8), pp.1254–1265.
dc.relation.referencesGagneux, S. & Small, P.M., 2007. Global phylogeography of Mycobacterium tuberculosis and implications for tubercul
dc.relation.referencesGorocica, P. et al., 2005. Componentes glicosilados de la envoltura de Mycobacterium tuberculosis que intervienen en la patogénesis de la tuberculosis. Revista del Instituto Nacional de Enfermedades Respiratorias, 18(2), pp.142–153.
dc.relation.referencesHädicke, O. & Klamt, S., 2010. CASOP: A Computational Approach for Strain Optimization aiming at high Productivity. Journal of Biotechnology, 147(2), pp.88–101.
dc.relation.referencesHöner Zu Bentrup, K. et al., 1999. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. Journal of bacteriology, 181(23), pp.7161–7.
dc.relation.referencesHurley, J.H., 1991. Catalytic mechanism of NADP+-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry, 30(35), pp.8671–8678.
dc.relation.referencesJamshidi, N. & Palsson, B.Ø., 2007. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC systems biology, 1, p.26.
dc.relation.referencesJohnson, J.D., Muhonen, W.W. & Lambeth, D.O., 1998. Characterization of the ATP- and GTP-specific Succinyl-CoA Synthetases in Pigeon: THE ENZYMES INCORPORATE THE SAME -SUBUNIT. Journal of Biological Chemistry, 273(42), pp.27573–27579.
dc.relation.referencesJunker, B.H., Klukas, C. & Schreiber, F., 2006. VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC bioinformatics, 7(1), p.109.
dc.relation.referencesKarp, P.D. et al., 2005. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic acids research, 33(19), pp.6083–9.
dc.relation.referencesKelley-Loughnane, N. et al., 2002. Purification, kinetic studies, and homology model of Escherichia coli fructose-1,6-bisphosphatase. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1594(1), pp.6–16.
dc.relation.referencesKrieger, I. V et al., 2012. Structure-guided discovery of phenyl-diketo acids as potent inhibitors of M. tuberculosis malate synthase. Chemistry & biology, 19(12), pp.1556–67.
dc.relation.referencesLarhlimi, A. et al., 2011. Robustness of metabolic networks: a review of existing definitions. Bio Systems, 106(1), pp.1–8.
dc.relation.referencesLei, B., 2000. Action Mechanism of Antitubercular Isoniazid. Activation by Mycobacterium tuberculosis KatG, Isolation, and characterization of InhA Inhibitor. Journal of Biological Chemistry, 275(4), pp.2520–2526.
dc.relation.referencesLew, J. et al., 2013. Database resources for the tuberculosis community. Tuberculosis (Edinburgh, Scotland), 93(1), pp.12–17.
dc.relation.referencesLiang, W. et al., 2011. Conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate: new insights from structural and biochemical studies on human RPE. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 25(2), pp.497–504. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20923965 [Accessed July 14, 2015].
dc.relation.referencesMai, X. & Adams, M.W.W., 1996. Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-Ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. Journal of Bacteriology, 178(20), pp.5890–5896.
dc.relation.referencesManish, S., Venkatesh, K. & Banerjee, R., 2007. Metabolic flux analysis of biological hydrogen production by Escherichia coli. International Journal of Hydrogen Energy, 32(16), pp.3820–3830.
dc.relation.referencesMizrahi, V. & Andersen, S.J., 1998. DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? Molecular microbiology, 29(6), pp.1331–9.
dc.relation.referencesMuñoz-Elías, E.J. et al., 2006. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Molecular microbiology, 60(5), pp.1109–22.
dc.relation.referencesNakazawa, M. et al., 2011. Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis. The Journal of eukaryotic microbiology, 58(2), pp.128–33.
dc.relation.referencesOberhardt, M. a et al., 2008. Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. Journal of bacteriology, 190(8), pp.2790–803.
dc.relation.referencesPapin, J. a et al., 2002. The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. Journal of theoretical biology, 215(1), pp.67–82.
dc.relation.referencesPark, Y.J. et al., 2006. Purifications and characterizations of a ferredoxin and its related 2-oxoacid:ferredoxin oxidoreductase from the hyperthermophilic archaeon, sulfolobus solfataricus PI. Journal of Biochemistry and Molecular Biology, 39(1), pp.46–54.
dc.relation.referencesPrice, N.D., Papin, J.A. & Palsson, B.O., 2002. Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome Research, 12(5), pp.760–769.
dc.relation.referencesRamsaywak, P.C. et al., 2004. Molecular cloning, expression, purification, and characterization of fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis--a novel Class II A tetramer. Protein expression and purification, 37(1), pp.220–8.
dc.relation.referencesRoessner, U. et al., 2000. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. The Plant journal : for cell and molecular biology, 23(1), pp.131–42
dc.relation.referencesSassetti, C.M. & Rubin, E.J., 2003. Genetic requirements for mycobacterial survival during infection. Proceedings of the National Academy of Sciences of the United States of America, 100(22), pp.12989–94.
dc.relation.referencesSchuster, S., 1999. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends in Biotechnology, 17(2), pp.53–60. Available at: http://www.sciencedirect.com/science/article/pii/S0167779998012906 [Accessed October 23, 2015].
dc.relation.referencesSingh, V.K. & Ghosh, I., 2006. Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets. Theoretical biology & medical modelling, 3, p.27
dc.relation.referencesSmith, I., 2003. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clinical Microbiology Reviews, 16(3), pp.463–496.
dc.relation.referencesVilchèze, C. et al., 2000. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. Journal of bacteriology, 182(14), pp.4059–67.
dc.relation.referencesYoon, K.I.S. et al., 1996. Purification and characterization of 2-oxoglutarate: Ferredoxin oxidoreductase from a thermophilic, obligately chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6. Journal of Bacteriology, 178(11), pp.3365–3368.
dc.relation.referencesZhao, X. et al., 2014. Enzymatic characterization of a type II isocitrate dehydrogenase from pathogenic Leptospira interrogans serovar Lai strain 56601. Applied biochemistry and biotechnology, 172(1), pp.487–96.
dc.relation.referencesZimhony, O. et al., 2000. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature medicine, 6(9), pp.1043–7.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalTuberculosis,
dc.subject.proposalMetabolic flux
dc.subject.proposalFlujos metabólicos
dc.subject.proposalGenetic diversity
dc.subject.proposalMycolic acid
dc.subject.proposalDiversidad genética
dc.subject.proposalAcido micólico
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito