Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorZuluaga Arias, Manuel David
dc.contributor.advisorHoyos Ortiz, Carlos David
dc.contributor.authorGómez Ríos, Sebastián
dc.date.accessioned2020-04-27T21:13:12Z
dc.date.available2020-04-27T21:13:12Z
dc.date.issued2019-08-31
dc.identifier.citationGómez-Ríos, S. (2019). Orographic Control over Convection in an Inter-Andean Valley in Northern South America. MSc thesis, Universidad Nacional de Colombia.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77451
dc.descriptionilustraciones, mapas, tablas
dc.description.abstractConvective processes are a critical issue in the northernmost section of the Andes range, where highly complex orography combines with tropical dynamics to produce intense convective precipitating systems. This study aims to contribute to the understanding of orographic control in the convective systems observed in an inter-Andean valley located in Central Colombia (Magdalena valley). Analyzed data from GPM and a C-Band doppler radar show that this region has a strong precipitation diurnal cycle, with high rainfall rates produced by deep convective events that locates on foothills of the ranges that define the valley. Atmospheric environment associated to convective events was analyzed using highresolution simulations of WRF model, simulating a two-weeks period that included intense rainfall events and days with dry conditions. In addition, simulations with modified orography were evaluated with the purpose of analyzing different orographic controls over the observed convective systems and the atmospheric environment. The results suggest that northward and southward circulation regime along the valley imposes a strong nocturnal convergence zone, which is associated with wind diurnal cycle and the valley orographic configuration. Northerly low-level flux is an important source of moisture for convection in the valley, and it interacts with terrain, producing orographic ascent of moist air-masses, enhancing convection. Simulations of scenarios with modified topography suggest that diurnal cycle of circulation and precipitation in the valley are strongly dependent of terrain features.
dc.description.abstractLos procesos convectivos son críticos en la sección más septentrional de la cordillera de los Andes, donde la orografía altamente compleja se combina con la dinámica tropical para producir sistemas de precipitación convectiva intensos. Este estudio tiene como objetivo contribuir a la comprensión del control que ejerce la orografia sobre los sistemas convectivos observados en un valle interandino ubicado en el centro de Colombia (valle del Magdalena). Datos provenientes de la misión GPM (Global Precipitation Measurement) y de un radar meteorológico en tierra muestran que esta región tiene un fuerte ciclo diurno de precipitación, con altas intensidades de la lluvia producidas por eventos convectivos profundos que se ubican en las estribaciones de las cordilleras que definen el valle. El ambiente atmosférico asociado a eventos convectivos se analizó utilizando simulaciones de alta resolución del modelo WRF (Weather Research and Forecasting), simulando un período de dos semanas que incluyó eventos de lluvia intensa y días con condiciones secas. Además, se evaluaron simulaciones con topografía modificada con el fin de analizar diferentes controles orográficos sobre los sistemas convectivos observados y el ambiente atmosférico. Los resultados sugieren que el régimen de circulación hacia el norte y hacia el sur a lo largo del valle impone una fuerte zona de convergencia nocturna, que está asociada con el ciclo diurno del viento y la configuración orográfica del valle. El flujo de bajo nivel proveniente del norte es una fuente importante de humedad para la convección en el valle, e interactúa con el terreno produciendo ascenso orográfico de masas de aire húmedo, lo que incrementa la convección. Las simulaciones de escenarios con topografía modificada sugieren que el ciclo diurno de circulación y precipitación en el valle dependen fuertemente de las características del terreno. (Texto tomado de la fuente)
dc.format.extent117 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleOrographic control over convection in an Inter-Andean Valley in Northern South America
dc.title.alternativeControl orográfico sobre la cnvección en un Valle Inter-Andino en el Norte de Suramérica
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.contributor.researchgroupAprovechamiento de Recursos Hidráulicos
dc.coverage.regionNorte América
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicos
dc.description.researchareaHidroclimatología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Geociencias y Medo Ambiente
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesZuluaga, M. D., Hoyos, C. D., and Gomez, S. (2017). Caracterısticas de la conveccion extrema en el tropico americano y sus relaciones con el medio ambiente atmosferico. Technical report, Universidad Nacional de Colombia, Medellin.
dc.relation.referencesZuluaga, M. D. and Houze, R. A. (2015). Extreme Convection of the Near-Equatorial Americas, Africa, and Adjoining Oceans as seen by TRMM. Monthly Weather Review, 143(1):298-316.
dc.relation.referencesZuluaga, M. and Poveda, G. (2004). Diagnostico de sistemas convectivos de mesoescala sobre Colombia y el oceano Pacıfico Oriental durante 1998-2002.
dc.relation.referencesZapata, M. (2015). Analisis del Impacto de la Interaccion Suelo-Atmosfera en las Condiciones Meteorologicas del Valle de Aburra Utilizando el Modelo WRF. MSc thesis, Universidad Nacional de Colombia.
dc.relation.referencesYuter, S. E. and Houze, R. A. (2002). Measurements of Raindrop Size Distributions over the Pacific Warm Pool and Implications for Z - R Relations . Journal of Applied Meteorology, 36(7):847-867.
dc.relation.referencesViterbo, F., von Hardenberg, J., Provenzale, A., Molini, L., Parodi, A., Sy, O. O., and Tanelli, S. (2016). High Resolution Simulations of the 2010 Pakistan Flood Event: Sensitivity to Parameterizations and Initialization Time. Journal of Hydrometeorology, 17(4):1147-116
dc.relation.referencesViale, M. and Garreaud, R. (2015). Orographic effects of the subtropical and extratropical andes on upwind precipitating clouds. Journal of Geophysical Research, 120(10):496
dc.relation.referencesVan Weverberg, K., Vogelmann, A. M., Lin, W., Luke, E. P., Cialella, A., Minnis, P., Khaiyer, M., Boer, E. R., and Jensen, M. P. (2013). The Role of Cloud Microphysics Parameterization in the Simulation of Mesoscale Convective System Clouds and Precipitation in the Tropical Western Pacific. Journal of the Atmospheric Sciences, 70(4):1104-1128
dc.relation.referencesUNGRD (2015). Consolidado Anual de Emergencias. Technical report, Unidad Nacional para la Gesti´on del Riesgo de Desastres, Bogota.
dc.relation.referencesUCAR (2019). The Weather Research and Forecasting (WRF) Model.
dc.relation.referencesUCAR (2015). User’s Guide for the Advanced Research WRF (ARW) Modeling System Version 3.7.
dc.relation.referencesTrapp, R. J. (2018). Formation and Development of Convective Storms.
dc.relation.referencesTrachte, K., Rollenbeck, R., and Bendix, J. (2010). Nocturnal convective cloud formation under clear-sky conditions at the eastern Andes of south Ecuador. Journal of Geophysical Research Atmospheres, 115(24):1-15.
dc.relation.referencesThompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D. (2008). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Monthly Weather Review, 136(12):5095-5115.
dc.relation.referencesSchumacher, R. S. (2015). Sensitivity of precipitation accumulation in elevated convective systems to small changes in low-level moisture. Journal of the Atmospheric Sciences, 72(6):2507-2524.
dc.relation.referencesSaurral, R. I., Camilloni, I. A., and Ambrizzi, T. (2015). Links between topography, moisture fluxes pathways and precipitation over South America. Climate Dynamics, 45(3-4).
dc.relation.referencesRomatschke, U., Medina, S., and Houze, R. A. (2010). Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. Journal of Climate, 23(2):419-439.
dc.relation.referencesRomatschke, U. and Houze, R. a. (2013). Characteristics of Precipitating Convective Systems Accounting for the Summer Rainfall of Tropical and Subtropical South America. Journal of Hydrometeorology, page 120927133830006.
dc.relation.referencesRomatschke, U. and Houze, R. a. (2011b). Characteristics of Precipitating Convective Systems in the South Asian Monsoon. Journal of Hydrometeorology, 12(1):3-26.
dc.relation.referencesRomatschke, U. and Houze, R. a. (2011a). Characteristics of Precipitating Convective Systems in the Premonsoon Season of South Asia. Journal of Hydrometeorology, 12(2):157-180.
dc.relation.referencesRomatschke, U. and Houze, R. A. (2010). Extreme summer convection in South America. Journal of Climate, 23(14):3761-3791.
dc.relation.referencesRogers, E., Black, T., Ferrier, B., Lin, Y., Parrish, D., and DiMego, G. (2001). Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. NOAA/NWS Technical Procedures Bulletin,, 488.
dc.relation.referencesRoe, G. H. (2005). Orographic precipitation. Annual Review of Earth and Planetary Sciences, 33(1):645-671.
dc.relation.referencesRasmussen, K. L. and Houze, R. A. (2016). Convective Initiation near the Andes in Subtropical South America. Monthly Weather Review, 144(6):2351-2374.
dc.relation.referencesRasmussen, K. L. and Houze, R. A. (2011). Orogenic Convection in Subtropical South America as Seen by the TRMM Satellite. Monthly Weather Review, 139(8):2399-2420.
dc.relation.referencesRasmussen, K. L., Chaplin, M. M., Zuluaga, M. D., and Houze, R. A. (2016). Contribution of Extreme Convective Storms to Rainfall in South America. Journal of Hydrometeorology, 17(1):353-367.
dc.relation.referencesPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., and Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1):228-240.
dc.relation.referencesPoveda, G. and Mesa, O. J. (1999). La corriente de chorro superficial del Oeste (" Del Choco") y otras dos corrientes de chorro en Colombia: Climatolog´ıa y variabilidad durante las fases del ENSO. Revista Acad´emica Colombiana de Ciencias, 23(89):517-528.
dc.relation.referencesPoveda, G. (2004). La hidroclimatologıa de Colombia: una sıntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias,28(107):201-222.
dc.relation.referencesNational Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce (2000). NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999.
dc.relation.referencesMilrad, S. M., Lombardo, K., Atallah, E. H., and Gyakum, J. R. (2017). Numerical simulations of the 2013 Alberta flood: Dynamics, thermodynamics, and the role of orography.Monthly Weather Review, 145(8):3049-3072.
dc.relation.referencesMedina, S., Houze, R. A., Kumar, A., and Niyogi, D. (2010). Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quarterly Journal of the Royal Meteorological Society, 136(648):593-616.
dc.relation.referencesMapes, B. E., Warner, T. T., Xu, M., and Negri, A. J. (2003b). Diurnal Patterns of Rainfall in Northwestern South America. Part I: Observations and Context. Monthly Weather Review, pages 799-812.
dc.relation.referencesMapes, B. E., Warner, T. T., and Xu, M. (2003a). Diurnal Patterns of Rainfall in Northwestern South America. Part III: Diurnal Gravity Waves and Nocturnal Convection Offshore.Monthly Weather Review, 131(5):830-844.
dc.relation.referencesLin, Y.-L., Farley, R., and Orville, H. D. (1983). Bulk Parameterization of the Snow Field in Cloud Model. Journal of Applied Meteorology and Climatology, 22(6):1065-1089.
dc.relation.referencesLeComte, D. (2018). International Weather Highlights 2017: Catastrophic Hurricanes, Asian Monsoon Floods, Near Record Global Warmth. Weatherwise, 71(3):21-27.
dc.relation.referencesLaing, A. G., Trier, S. B., Davis, C. A., Laing, A. G., Trier, S. B., and Davis, C. A. (2012). Numerical Simulation of Episodes of Organized Convection in Tropical Northern Africa. Monthly Weather Review, 140(9):2874-2886.
dc.relation.referencesKumar, S. and Bhat, G. S. (2016). Vertical profiles of radar reflectivity factor in intense convective clouds in the tropics. Journal of Applied Meteorology and Climatology, 55(5):1277-1286.
dc.relation.referencesKikuchi, K. and Wang, B. (2008). Diurnal precipitation regimes in the global tropics. Journal of Climate, 21(11):2680-2696.
dc.relation.referencesKhain, A. P., Beheng, K. D., Heymsfield, A., Korolev, A., Krichak, S. O., Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., Van Den Heever, S. C., and Yano, J. I. (2015). Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Reviews of Geophysics, 53(2):247-322.
dc.relation.referencesJunquas, C., Takahashi, K., Condom, T., Espinoza, J. C., Chavez, S., Sicart, J. E., and Lebel, T. (2017). Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Climate Dynamics, 0(0):1-23.
dc.relation.referencesJohnson, M., Jung, Y., Dawson, D. T., and Xue, M. (2015). Comparison of Simulated Polarimetric Signatures in Idealized Supercell Storms Using Two-Moment Bulk Microphysics Schemes in WRF. Monthly Weather Review, 144(3):971-996.
dc.relation.referencesJimenez, F. (2016). Altura de la Capa de Mezcla en un area urbana, montanosa y tropical Caso de estudio: Valle de Aburra (Colombia).
dc.relation.referencesHuffman, G. J., Bolvin, D. T., and Nelkin, E. J. (2018). Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation. Technical Report February, NASA.
dc.relation.referencesHuffman, G. (2017). GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V05.
dc.relation.referencesHoyos, I., Dominguez, F., Ca~n´on-Barriga, J., Mart´ınez, J. A., Nieto, R., Gimeno, L., and Dirmeyer, P. A. (2018). Moisture origin and transport processes in Colombia, northern South America. Climate Dynamics, 50(3-4):971-990.
dc.relation.referencesHoyos, C. D., Ceballos, L. I., P´erez, J. S., Sepulveda, J., L´opez, S. M., Zuluaga, M. D., Velasquez, N., Hernandez, O., Guzman, G., and Zapata, M. (2019). Hydrometeorological Conditions Leading to the 2015 Salgar Flash Flood : Lessons for Vulnerable Regions in Tropical Complex Terrain.
dc.relation.referencesHouze, R. A. J. (1993). Clouds Dynamics. Academic Press, 1st editio edition.
dc.relation.referencesHouze, R. A., Wilton, D. C., and Smull, B. F. (2007). Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quarterly Journal of the Royal Meteorological Society, 133(August):1389-1411.
dc.relation.referencesHouze, R. A., Rasmussen, K. L., Zuluaga, M. D., and Brodzik, S. R. (2015). The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Reviews of Geophysics, 53(3):994-1021.
dc.relation.referencesHouze, R. A. (2012). Orographic effects on precipitating clouds. Reviews of Geophysics,50(1):1-47.
dc.relation.referencesHouze, R. (1997). Stratiform precipitation in regions of convection: A Meteorological Paradox? Bulletin of the American Meteorological Society, 78:2179-2195.
dc.relation.referencesHierro, R., Pessano, H., Llamedo, P., de la Torre, A., Alexander, P., and Odiard, A. (2013).Orographic effects related to deep convection events over the Andes region. Atmospheric Research, 120-121:216-225.
dc.relation.referencesGalvis-Aponte, L. A. and Quintero-Fragozo, C. A. (2017). Geografıa economica de los municipios ribereños del Magdalena. Documentos de Trabajo Sobre Economıa Regional y Urbana ; No. 265.
dc.relation.referencesDoswell, C. A. (2001). Severe Convective Storms-An Overview. In Severe Convective Storms - Meteorological Monographs., pages 2-3. American Meteorological Society, Boston, MA.
dc.relation.referencesChen, S.-H. and Sun, W.-Y. (2004). A One-dimensional Time Dependent Cloud Model.Journal of the Meteorological Society of Japan. Ser. II, 80(1):99-118.COMET (2006). Skew-T Mastery.
dc.relation.referencesCarlson, T., Benjamin, S., Forbes, G., and Li, Y.-F. (1983). Elevated Mixed Layers in the Regional Severe Storm Environment: Conceptual Model and Case Studies. Monthly Weather Review, July(111):1453-1474.
dc.relation.referencesBarrett, B. S., Garreaud, R., and Falvey, M. (2009). Effect of the Andes Cordillera on Precipitation from a Midlatitude Cold Front. Monthly Weather Review, 137(9):3092-3109.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalConvección
dc.subject.proposalConvection
dc.subject.proposalWRF model
dc.subject.proposalModelo WRF
dc.subject.proposalConvective Precipitating Systems
dc.subject.proposalSistemas de Precipitación Convectiva
dc.subject.proposalMountain-valley wind systems
dc.subject.proposalVientos en Valles Montañosos
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular de Medio Ambiente


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito