Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMejia-Cardenas, Juan Manuel
dc.contributor.authorRivera-Ortega, Gerson Orlando
dc.date.accessioned2020-04-27T21:35:56Z
dc.date.available2020-04-27T21:35:56Z
dc.date.issued2019-08-30
dc.identifier.citationRivera, G. (2019). Evaluation of CO2 Flooding as an Enhanced Recovery Method in a Gas Condensate Reservoir
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77452
dc.description.abstractUn modelo composicional de flujo multifásico fue creado para evaluar los efectos de la inyección de CO2 en un yacimiento de gas condensado. Los objetivos del estudio fueron estimar el factor de recobro del condensado considerando diferentes escenarios de tasas de inyección, el efecto de la presión de yacimiento en la eficiencia del recobro, los cambios composicionales de los fluidos producidos y la comprensión de los mecanismos de producción. La producción incremental de condensado pudo caracterizarse en tres diferentes periodos: Soporte de presión, producción de gas condensado rico y el reciclo de CO2. El estudio concluyó que la presión de yacimiento tiene un impacto significativo en la recuperación del condensado, se obtuvieron mejores resultados cuando la inyección es implementada a mayores presiones de yacimiento (temprano en la vida productiva). Cuando la inyección se modela a altas presiones, la cantidad de condensado líquido en la roca era menor. Esta condición le confirió al CO2 mayor movilidad considerando el efecto de la permeabilidad relativa, en comparación con el caso donde se inyectó a menor presión de yacimiento donde mayor cantidad de condensado líquido estuvo presente en la roca. Por esa razón el GOR incrementa más rápido mientras mayor es la presión de yacimiento.
dc.description.abstractA fully compositional multiphase flow model was used to evaluate the effects of CO2 injection into a gas condensate reservoir. The research objectives were to estimate the condensate recovery factor concerning different injection rates scenarios, the reservoir pressure effects in the condensate recovery efficiency, the compositional changes of the produced fluids and to understand the production mechanisms. The incremental oil production in the producer well due to the CO2 injection could be characterized by three different periods: Pressure support, Rich gas condensate production, CO2 Cycling. The study concluded the reservoir pressure has a substantial impact on the incremental oil, CO2 flooding yields better results when it is executed at higher reservoir pressures (early in the field life). When CO2 injection started at high reservoir pressure, the quantity of liquid condensate in the rock was small. This condition gave to the CO2 more mobility considering the relative permeability curves in comparison to the lower pressure case where higher condensate saturation was present in the rock. GOR increases faster as higher the reservoir pressures.
dc.description.sponsorshipAgencia Nacional de Hidrocarburos
dc.format.extent58
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.relationSponsor
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
dc.titleEvaluation of CO2 flooding as an enhanced recovery method in a gas condensate reservoir
dc.title.alternativeEvaluación de la inyección de CO2 como método de recobro mejorado en un yacimiento de gas condensado
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectPlan nacional para el potenciamiento de la tecnología CEOR con gas mejorado químicamente, contrato 273-2017’
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Petróleos
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroupDinámicas de Flujo y Transporte en Medios Porosos
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Procesos y Energía
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesBrown, J. S. (2014). A Compositional Simulation Model For Carbon Dioxide Flooding With Improved Fluid Trapping (Doctoral dissertation, Colorado School of Mines). Retrieved from https://mountainscholar.org/bitstream/handle/11124/17037/Brown_mines_0052E_10621.pdf?sequence=1&isAllowed=y
dc.relation.referencesCadogan, S. P. (2015). Diffusion of CO2 in Fluids Relevant to Carbon Capture, Utilisation and Storage (Doctoral dissertation, Imperial College London). Retrieved from https://core.ac.uk/download/pdf/77007460.pdf
dc.relation.referencesCarbon capture & sequestration technologies – MIT. (2016). Denver Unit Fact Sheet: Commercial EOR using Anthropogenic Carbon Dioxide. Retrieved from https://sequestration.mit.edu/tools/projects/denver_unit.html
dc.relation.referencesComputer Modelling Group. (2015). Gem User Guide Compositional & Unconventional Reservoir Simulator. Calgary, Alberta. Retrieved from https://www.studocu.com/en/document/university-of-oxford/machine-learning/tutorial-work/cmg-gem-user-guide-2014/1613556/view
dc.relation.referencesCrotti, M. A., Cobenas, R. H. (2001). Scaling Up of Laboratory Relative Permeability Curves. An Advantageous Approach Based on Realistic Average Water Saturations. Society of Petroleum Engineers. doi:10.2118/69394-MS.
dc.relation.referencesDarvish, G. (2007). Physical Effects Controlling Mass Transfer in Matrix Fracture System During CO2 Injection into Chalk Fractured Reservoirs (Doctoral dissertation, Norwegian University of Science and Technology). Retrieved from https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/239279/122941_FULLTEXT01.pdf?sequence=1&isAllowed=y
dc.relation.referencesGarcia, M. (2005). Optimization of a CO2 Flood Design Wasson Field - West Texas (Master´s thesis, Texas A&M University). Retrieved from https://core.ac.uk/download/pdf/4271109.pdf
dc.relation.referencesGharbia, I. B., Flauraud, E., & Michel, A. (2015). Study of Compositional Multi-Phase Flow Formulations with Cubic EOS. Society of Petroleum Engineers. doi:10.2118/173249-MS.
dc.relation.referencesGlobal Energy Statistical Yearbook. (2019). World Energy Statistics. Retrieved from https://yearbook.enerdata.net/
dc.relation.referencesHerrera, C. (2016). Simulation of Nitrogen Injection as an Enhanced Recovery Method in a Tight Natural Fracture Sandstone Reservoir with Compositional Fluids (Master´s thesis, Universidad Nacional de Colombia). Retrieved from http://bdigital.unal.edu.co/53175/1/75090447.2016.pdf
dc.relation.referencesHoteit, H. (2011). Proper Modeling of Diffusion in Fractured Reservoirs. Society of Petroleum Engineers. doi:10.2118/141937-MS.
dc.relation.referencesKane, A. V. (1979). Performance Review of a Large-Scale CO2-WAG Enhanced Recovery Project, SACROC Unit Kelly-Snyder Field. Society of Petroleum Engineers. doi:10.2118/7091-PA.
dc.relation.referencesLeahy-Dios, A., Firoozabadi, A. (2007). Unified Model for Nonideal Multicomponent Molecular Diffusion Coefficients. The Global Home of Chemical Engineers. doi: 10.1002/aic.11279
dc.relation.referencesMoortgat, J., Firoozabadi, A. (2013). Fickian Diffusion in Discrete-Fractured Media from Chemical Potential Gradients and Comparison to Experiment. Energy Fuels. 2013; 27:5793-5805.
dc.relation.referencesOccidental petroleum. (2015). Oxy Denver Unit CO2 Subpart RR. Retrieved from https://www.epa.gov/sites/production/files/201512/documents/denver_unit_mrv_plan.pdf
dc.relation.referencesRen, S., Niu, A., Ren, B., Li, Y., Kang, W., Chen, G. Zhang, H. (2011). Monitoring on CO2 EOR and Storage in a CCS Demonstration Project of Jilin Oilfield China. Society of Petroleum Engineers. doi:10.2118/145440-MS
dc.relation.referencesRodriguez, F., & Galindo-Nava, A. (1994). A General Formulation for Compositional Reservoir Simulation. Society of Petroleum Engineers. doi:10.2118/28705-MS.
dc.relation.referencesS.A.S., E. (2019). Reservas de petróleo llegaron a 1.958 millones de barriles en 2018. Retrieved from https://www.larepublica.co/economia/reservas-de-petroleo-en-colombia-2018-2861481
dc.relation.referencesSchmall, L., Varavei, A., & Sepehrnoori, K. (2013). A Comparison of Various Formulations for Compositional Reservoir Simulation. Society of Petroleum Engineers. doi:10.2118/163630-MS.
dc.relation.referencesTabrizy, V. A. (2012). Investigated Miscible CO2 Flooding for Enhancing Oil Recovery in Wettability Altered Chalk and Sandstone Rocks (Doctoral dissertation, University of Stavanger).
dc.relation.referencesTNO. (2019). K12-B, CO2 storage and enhanced gas recovery. Retrieved from https://www.tno.nl/media/1581/357beno.pdf
dc.relation.referencesUPME. (2017). Balance de Gas Natural 2017. Retrieved from http://www1.upme.gov.co/Hidrocarburos/publicaciones/Balance_Gas_Natural_2017-2026_26122017_VF.pdf
dc.relation.referencesU.S. Department of the Interior: U.S. Geological Survey. (2015). Fundamentals of Carbon Dioxide- Enhanced Oil Recovery (CO2-EOR)—A Supporting Document of the Assessment Methodology for Hydrocarbon Recovery Using CO2-EOR Associated with Carbon Sequestration. Retrieved from https://pubs.usgs.gov/of/2015/1071/pdf/ofr2015-1071.pdf
dc.relation.referencesU.S. Department of the Interior: U.S. Geological Survey. (2017). Carbon Dioxide Enhanced Oil Recovery Performance According to the Literature. Retrieved from https://pubs.usgs.gov/sir/2017/5062/d/sir20175062_chapd.pdf
dc.relation.referencesWang, H., Ewing, R., Qin, G., & Lyons, S. L. (2006). An Eulerian-Lagrangian Formulation For Compositional Flow In Porous Media. Society of Petroleum Engineers. doi:10.2118/102512-MS
dc.relation.referencesWhitson, C. H., Brulé, M. R. (2000). Phase Behavior (Monograph Volume 20 Spe Henry L. Doherty Series edn.). Texas, SPE Monograph Series.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalInyección de CO2
dc.subject.proposalCO2 flooding
dc.subject.proposalEOR
dc.subject.proposalRecobro mejorado
dc.subject.proposalGas condensado
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito