Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorCastellanos-Domínguez, César Germán
dc.contributor.advisorCardona-Morales, Óscar
dc.contributor.authorRuales-Torres, Anderson Alberto
dc.date.accessioned2020-05-13T22:09:23Z
dc.date.available2020-05-13T22:09:23Z
dc.date.issued2020
dc.identifier.citationRuales-Torres, A. A. 2020. Characterization of faults in rotating machines using multivariate component analysis. masters, Universidad Nacional de Colombia-Sede Manizales.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77515
dc.description.abstractThis thesis aims to develop a set of methodologies that allow the feature extraction and blind source separation, to diagnose the different types of faults in gearboxes and bearings. First, it is proposed the implementation of fault detection algorithms in a gearbox with 10 fault types, where it is obtained success percentages above 85 %. Thus, the results of the classification show that feature extraction methodology is significant. Second, an analysis of different methods of blind source separation is realized, which highlights the characteristic frequencies of the fault, showing that they are a useful tool in the identification. Finally, multiple-constrained Independent Component Analysis mcICA is proposed, taking advantage of the information encoded by the signal envelope to fault localization. Therefore, the methodology discussed in this document provides both the evaluation of the state of health and the machine maintenance process. (Texto tomado de la fuente)
dc.description.abstractLa presente tesis pretende desarrollar un conjunto de metodología que permitan la extracción de características y la separación de fuentes ocultas, con el fin de diagnosticar los distintos tipos de fallos en cajas de engranajes y rodamientos. Primero, se propone la implementación de algoritmos para la detección de fallas en una caja de engranajes con 10 tipos de fallas, donde se obtuvo porcentajes de acierto por encima del 85 %, así, los resultados de clasificación muestran que la metodología empleada para la extracción de características es significativa. Segundo, se realiza un análisis de diferentes métodos de separación de fuentes ocultas, los cuales logran resaltar las frecuencias características de la falla, evidenciando que son una herramienta útil en la identificación. Finalmente, se propone un algoritmo de Análisis de Componentes Independientes basado en múltiples restricciones mcICA, aprovechando la información codificada por la envolvente de la señal para localizar la falla. Por lo tanto, la metodología tratada en este documento contribuye tanto a la evaluación del estado de salud como al proceso de mantenimiento de la máquina.
dc.format.extent75
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleCharacterization of faults in rotating machines using multivariate component analysis
dc.title.alternativeCaracterización de fallas en máquinas rotativas usando análisis de componentes multivariado
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial
dc.contributor.researchgroupGrupo de Control y Procesamiento Digital de Señales
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesAbboud, D., M. Elbadaoui, W. A. Smith, and R. B. Randall 2019. Advanced bearing diagnostics: A comparative study of two powerful approaches. Mechanical Systems and Signal Processing.
dc.relation.referencesAlvarez-Meza, A. M., A. Orozco-Gutierrez, and G. Castellanos-Dominguez 2017. Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns. Frontiers in neuroscience, 11:550.
dc.relation.referencesAntoni, J. 2005. Blind separation of vibration components: Principles and demonstrations. Mechanical Systems and Signal Processing, 19(6):1166 – 1180. Special Issue: Blind Source Separation.
dc.relation.referencesAtoui, I., H. Meradi, R. Boulkroune, and R. Saidi 2013. Fault detection and diagnosis in rotating machinery by vibration monitoring using fft and wavelet techniques. In 2013 8th international workshop on systems, signal processing and their applications (WoSSPA), Pp. 401–406. IEEE.
dc.relation.referencesBelouchrani, A., K. Abed-Meraim, J.-F. Cardoso, and E. Moulines 1997. A blind source separation technique using second-order statistics. IEEE Transactions on signal processing, 45(2):434–444.
dc.relation.referencesCaesarendra, W. and T. Tjahjowidodo 2017. A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing. Machines, 5(4):21.
dc.relation.referencesCardona-Morales, O. 2011. Análisis tiempo-frecuencia de señales de vibraciones mecánicas para la detección de fallos en máquinas rotativas. masters, Universidad Nacional de Colombia-Sede Manizales.
dc.relation.referencesCardona-Morales, O. and G. Castellanos-Dominguez 2018. Fault diagnostic of machines under variable speed operating conditions using order tracking and novelty detection. In Advances in Condition Monitoring of Machinery in Non-Stationary Operations, A. Timofiejczuk, F. Chaari, R. Zimroz, W. Bartelmus, and M. Haddar, eds., Pp. 179–189, Cham. Springer International Publishing.
dc.relation.referencesCardona-Morales, O., E. F. Sierra-Alonso, and G. Castellanos-Dominguez 2018. Bearing fault identification based on blind extraction of cyclostationary signals using order tracking. In Advances in Condition Monitoring of Machinery in Non-Stationary Operations, A. Timofiejczuk, F. Chaari, R. Zimroz, W. Bartelmus, and M. Haddar, eds., Pp. 191–201, Cham. Springer International Publishing.
dc.relation.referencesCardoso, J.-F. 1999. High-order contrasts for independent component analysis. Neural computation, 11(1):157–192.
dc.relation.referencesCardoso, J.-F. and A. Souloumiac 1993. Blind beamforming for non-gaussian signals. In IEE proceedings F (radar and signal processing), volume 140, Pp. 362–370. IET.
dc.relation.referencesCerrada, M., J. Aguilar, J. Altamiranda, and R.-V. Sánchez 2019. A hybrid heuristic algorithm for evolving models in simultaneous scenarios of classification and clustering. Knowledge and Information Systems, 61(2):755–798.
dc.relation.referencesCerrada, M., R.-V. Sánchez, F. Pacheco, D. Cabrera, G. Zurita, and C. Li 2016. Hierarchical feature selection based on relative dependency for gear fault diagnosis. Applied Intelligence, 44(3):687–703.
dc.relation.referencesChen, J., Z. Li, J. Pan, G. Chen, Y. Zi, J. Yuan, B. Chen, and Z. He 2016. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review. Mechanical systems and signal processing, 70:1–35.
dc.relation.referencesChoi, S., A. Cichocki, and A. Beloucharni 2002. Second order nonstationary source separation. J. VLSI Signal Process. Syst., 32(1-2):93–104.
dc.relation.referencesFan, X. and M. J. Zuo 2006. Gearbox fault detection using hilbert and wavelet packet transform. Mechanical Systems and Signal Processing, 20(4):966 – 982.
dc.relation.referencesGiusti, R. and G. E. Batista 2013. An empirical comparison of dissimilarity measures for time series classification. In 2013 Brazilian Conference on Intelligent Systems, Pp. 82–88. IEEE.
dc.relation.referencesHaidong, S., J. Hongkai, L. Xingqiu, and W. Shuaipeng 2018. Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine. Knowledge-Based Systems, 140:1–14.
dc.relation.referencesHuang, D.-S. and J.-X. Mi 2007. A new constrained independent component analysis method. IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, 18(5):1532–1535.
dc.relation.referencesHyvarinen, A. 1999. Fast and robust fixed-point algorithms for independent component analysis. IEEE transactions on Neural Networks, 10(3):626–634.
dc.relation.referencesHyvärinen, A., J. Karhunen, and E. Oja 2004. Independent component analysis, volume 46. John Wiley & Sons.
dc.relation.referencesHyvärinen, A. and E. Oja 2000. Independent component analysis: algorithms and applications. Neural networks, 13(4-5):411–430.
dc.relation.referencesIgba, J., K. Alemzadeh, C. Durugbo, and E. T. Eiriksson 2016. Analysing rms and peak values of vibration signals for condition monitoring of wind turbine gearboxes. Renewable Energy, 91:90–106.
dc.relation.referencesIsermann, R. 2005. Model-based fault-detection and diagnosis–status and applications. Annual Reviews in control, 29(1):71–85.
dc.relation.referencesIsermann, R. 2006. Fault-diagnosis systems: an introduction from fault detection to fault tolerance. Springer Science & Business Media.
dc.relation.referencesJardine, A. K., D. Lin, and D. Banjevic 2006. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7):1483–1510.
dc.relation.referencesJiang, G., H. He, J. Yan, and P. Xie 2018. Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox. IEEE Transactions on Industrial Electronics, 66(4):3196–3207.
dc.relation.referencesJing, L., M. Zhao, P. Li, and X. Xu 2017. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Measurement, 111:1–10.
dc.relation.referencesJing, S. X., S. T. Guo, J. F. Leng, and X. Y. Zhao 2014. Application of fault diagnosis method based on cica to gearbox. In Mechatronics and Mechanical Engineering I, volume 664 of Applied Mechanics and Materials, Pp. 148–152. Trans Tech Publications.
dc.relation.referencesKass, S., A. Raad, and J. Antoni 2019. Self-running fault diagnosis method for rolling element bearing. In Mechanism, Machine, Robotics and Mechatronics Sciences, R. Rizk and M. Awad, eds., Pp. 127–140, Cham. Springer International Publishing.
dc.relation.referencesKim, J.-S. and S.-K. Lee 2018. Identification of tooth fault in a gearbox based on cyclostationarity and empirical mode decomposition. Structural Health Monitoring, 17(3):494–513.
dc.relation.referencesKopsaftopoulos, F. and S. Fassois 2013. A functional model based statistical time series method for vibration based damage detection, localization, and magnitude estimation. Mechanical Systems and Signal Processing, 39(1-2):143–161.
dc.relation.referencesKumar, A. and R. Kumar 2018. Role of signal processing, modeling and decision making in the diagnosis of rolling element bearing defect: A review. Journal of Nondestructive Evaluation, 38(1):5.
dc.relation.referencesLei, Y., Z. He, and Y. Zi 2008. A new approach to intelligent fault diagnosis of rotating machinery. Expert Systems with Applications.
dc.relation.referencesLei, Y., M. J. Zuo, Z. He, and Y. Zi 2010. A multidimensional hybrid intelligent method for gear fault diagnosis. Expert Systems with Applications, 37(2):1419–1430.
dc.relation.referencesLeng, J., S. Jing, and C. Luo 2018. Fault feature extraction of single-channel signal from gearbox based on eemd and cica. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), 11(1):69–75.
dc.relation.referencesLi, C., R.-V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Vásquez 2015. Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis. Neurocomputing, 168:119–127.
dc.relation.referencesLu, W. and J. C. Rajapakse 2006. ICA with Reference. Neurocomputing, 69(16-18):2244–2257.
dc.relation.referencesMedina, R., X. Alvarez, D. Jadán, M. Cerrada, R.-V. Sánchez, and J. C. Macancela 2017. Poincaré plot features from vibration signal for gearbox fault diagnosis. In 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Pp. 1–6. IEEE.
dc.relation.referencesMiao, F., R. Zhao, X. Wang, and L. Jia 2020. A new fault feature extraction method for rotating machinery based on multiple sensors. Sensors, 20(6):1713.
dc.relation.referencesPopescu, T. D. 2010. Blind separation of vibration signals and source change detection–application to machine monitoring. Applied Mathematical Modelling, 34(11):3408–3421.
dc.relation.referencesQiu, H., J. Lee, J. Lin, and G. Yu 2006. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. Journal of sound and vibration, 289(4-5):1066–1090.
dc.relation.referencesRandall, R. B. and J. Antoni 2011. Rolling element bearing diagnosticsˆa€”a tutorial. Mechanical Systems and Signal Processing, 25(2):485 – 520.
dc.relation.referencesRandall, R. B., J. Antoni, and S. Chobsaard 2001. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Mechanical Systems and Signal Processing, 15(5):945–962.
dc.relation.referencesShen, Z., Z. He, X. Chen, C. Sun, and Z. Liu 2012. A monotonic degradation assessment index of rolling bearings using fuzzy support vector data description and running time. Sensors, 12(8):10109–10135.
dc.relation.referencesSierra-Alonso, E. F., O. Cardona-Morales, C. D. Acosta-Medina, and G. Castellanos- Dominguez 2014. Spectral correlation measure for selecting intrinsic mode functions. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, E. Bayro-Corrochano and E. Hancock, eds., Pp. 231–238, Cham. Springer International Publishing.
dc.relation.referencesSingh, D. S. and Q. Zhao 2016. Pseudo-fault signal assisted emd for fault detection and isolation in rotating machines. Mechanical Systems and Signal Processing, 81:202–218.
dc.relation.referencesSmith, W. A. and R. B. Randall 2015a. Rolling element bearing diagnostics using the case western reserve university data: A benchmark study. Mechanical Systems and Signal Processing, 64-65:100 – 131.
dc.relation.referencesSmith, W. A. and R. B. Randall 2015b. Rolling element bearing diagnostics using the case western reserve university data: A benchmark study. Mechanical Systems and Signal Processing, 64-65:100 – 131.
dc.relation.referencesTao, Y., X. Wang, R.-V. S´anchez, S. Yang, and Y. Bai 2019. Spur gear fault diagnosis using a multilayer gated recurrent unit approach with vibration signal. IEEE Access, 7:56880–56889.
dc.relation.referencesTaylor, J. 1994. The vibration analysis handbook. Vibration Consultants.
dc.relation.referencesVan Der Maaten, L., E. Postma, and J. Van den Herik 2009. Dimensionality reduction: a comparative. J Mach Learn Res, 10(66-71):13.
dc.relation.referencesWang, D. and P. W. Tse 2012. A new blind fault component separation algorithm for a single-channel mechanical signal mixture. Journal of Sound and Vibration, 331(22):4956 – 4970.
dc.relation.referencesWang, Z., J. Chen, G. Dong, and Y. Zhou 2011. Constrained independent component analysis and its application to machine fault diagnosis. Mechanical Systems and Signal Processing.
dc.relation.referencesWu, T. and X. Xiong 2019. Fault feature extraction method of rolling bearings based on citd and fastica. In 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), Pp. 849–854. IEEE.
dc.relation.referencesYan, X. and M. Jia 2018. A novel optimized svm classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing. Neurocomputing, 313:47–64.
dc.relation.referencesYang, T., Y. Guo, X. Wu, J. Na, and R.-F. Fung 2018. Fault feature extraction based on combination of envelope order tracking and cica for rolling element bearings. Mechanical Systems and Signal Processing, 113:131 – 144. SI: IMETI-MechElectro.
dc.relation.referencesYang, Y. and S. Nagarajaiah 2014. Blind identification of damage in time-varying systems using independent component analysis with wavelet transform. mechanical systems and signal processing, 47(1-2):3–20.
dc.relation.referencesYellin, D. and E. Weinstein 1994. Criteria for multichannel signal separation. IEEE transactions on signal processing, 42(8):2158–2168.
dc.relation.referencesZhang, Z. L. 2008. Morphologically constrained ICA for extracting weak temporally correlated signals. Neurocomputing, 71(7-9):1669–1679.
dc.relation.referencesZvokelj, M., S. Zupan, and I. Prebil 2016. Eemd-based multiscale ica method for slewing bearing fault detection and diagnosis. Journal of Sound and Vibration, 370:394–423.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalRodamiento de elementos rodantes
dc.subject.proposalRolling element bearing
dc.subject.proposalSeñales de vibración
dc.subject.proposalVibration signals
dc.subject.proposalLocalización de fallas
dc.subject.proposalFault localization
dc.subject.proposalIndependent component analysis
dc.subject.proposalAnálisis de componentes independientes
dc.subject.proposalExtracción de características
dc.subject.proposalFeature extraction
dc.subject.proposalVibration analysis
dc.subject.proposalAnálisis de vibraciones
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito