Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorOlaya Florez, Jhon Jairo
dc.contributor.advisorRodil, Sandra
dc.contributor.authorSuarez Garcia, Oscar Javier
dc.date.accessioned2020-05-13T23:02:31Z
dc.date.available2020-05-13T23:02:31Z
dc.date.issued2017-04-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77516
dc.description.abstractIn this research, sulfonated styrene - divinylbenzene copolymers and sodium styrene - divinylbenzene - vinylbenzene sulfonate terpolymers were synthesized, which were characterized and used as polymer matrix for the production of nanocomposites with bismuth and tin particles. The synthesis of nanoparticles was carried out in the liquid phase by reduction with sodium borohydride of the bismuth chloride or tin salts, using dimethylformamide as the solvent. The stabilization of the nanoparticles in the liquid phase was achieved by a combined steric and electrostatic mechanism when using solutions of polymer and the nonionic surfactant polyoxyethylene 23 lauryl ether (brij 35). Two of the sulfonated terpolymers which exhibited the highest solubility in dimethylformamide, as well as the commercial nafion resin which is a fluorinated and sulfonated copolymer were selected as polymeric matrix. The particle size control variables during the synthesis were: brij concentration of 0.1 to 0.3%, concentration of metal in solution of 3 to 5 mM and the atomic ratio Bi / Sn of 0 to 100%. Suspension stability and nanoparticle growth kinetics were studied using the dynamic light scattering (DLS) technique. Suspensions of nanoparticles produced with a composition of 0.2% Brij 35 and 4 mM of metal had particle sizes of the order of 100 nm and good stability, for this reason they were selected to prepare the nanocomposite films for structural and electrochemical characterization. The obtained materials were characterized by the following techniques: X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), infrared (IR) spectroscopy, X-ray photoelectron (XPS) and dispersive energy (EDX), these analyzes allowed to verify the existence of a nanostructured material. Finally the functional application of the nanocomposites by square wave voltammetry (SWV) using the material as a coating on graphite electrodes was used to quantify heavy metals (Pb, Cd and Zn) in buffer solutions pH 5.6 as well as in waste water from industrial zinc coating processes. From the experimental results and the numerical simulation of the expected behavior of these materials, the electrochemical properties were compared with those of the bismuth film electrodes which have already been electrochemical sensors and were related to the structure of the obtained nanocomposite, always aiming at the possible application of this material as electrode in complex chemical environments such as industrial waste waters with heavy metal content. The nanocomposites produced presented a good performance in their application to quantify heavy metals in wastewater, however, it is necessary to improve the method of manufacture of the electrodes to achieve greater uniformity of the coatings and in this way improve the accuracy and decrease the variation of the experimental error.
dc.description.abstractEn esta investigación se sintetizaron copolímeros sulfonados de estireno - divinilbeceno y terpolímeros de estireno – divinilbenceno – vinilbencen sulfonato de sodio, los cuales fueron caracterizados y empleados como matriz polimérica para la producción de nanocompositos con partículas de bismuto y estaño. La síntesis de nanopartículas se realizó en fase líquida mediante la reducción con borohidruro de sodio de las sales de cloruro de bismuto o estaño, empleando como solvente dimetilformamida. La estabilización de las nanopartículas en fase líquida se logró mediante un mecanismo combinado estérico y electrostático al emplear soluciones de polímero y del tensoactivo no iónico polioxietilen 23 lauril éter (brij 35). Dos de los terpolímeros sulfonados que presentaron la mayor solubilidad en dimetilformamida, así como la resina comercial nafion que es un copolímero fluorado y sulfonado fueron seleccionados como matriz polimérica. Las variables de control del tamaño de partícula durante la síntesis fueron: concentración de brij 35 de 0.1 a 0.3 %, concentración de metal en solución de 3 a 5 mM y la relación atómica Bi/Sn de 0 a 100 %. Se estudiaron la estabilidad de las suspensiones y la cinética de crecimiento de nanopartículas mediante la técnica de dispersión de luz dinámica (DLS). Las suspensiones de nanopartículas producidas con una composición de 0.2 % de brij 35 y 4 mM de metal, presentaron tamaños de partícula del orden de 100 nm y una buena estabilidad, por esta razón fueron seleccionadas para preparar las películas de nanocomposito para su posterior caracterizaron estructural y electroquímica. Los materiales obtenidos se caracterizaron mediante las siguientes técnicas: difracción de rayos X (DRX), microscopía electrónica de barrido y de transmisión (SEM y TEM), espectroscopias infrarroja (IR), de fotoelectrones de rayos X (XPS) y de energía dispersiva (EDX), estos análisis permitieron verificar la existencia de un material nanoestructurado. Por último se evaluó la aplicación funcional de los nanocompositos mediante voltametría de onda cuadrada (SWV) usando el material como recubrimiento en electrodos de grafito para cuantificar metales pesados (Pb, Cd y Zn) en soluciones buffer pH 5.6 así como en aguas residuales procedentes de procesos industriales de zincado. A partir de los resultados experimentales y de la simulación numérica del comportamiento esperado de estos materiales, se compararon las propiedades electroquímicas con respecto a las de los electrodos de película de bismuto que ya han sido empelados como sensores en técnicas electro analíticas y se relacionaron con la estructura del nanocomposito obtenido, apuntando siempre hacia la posible aplicación de este material como electrodo en ambientes químicos complejos como lo son los vertimientos industriales con contenidos de metales pesados. Los nanocompositos producidos presentaron un buen rendimiento en su aplicación para cuantificar metales pesados en aguas residuales, sin embargo se hace necesario mejorar el método de fabricación de los electrodos para lograr mayor uniformidad de los recubrimientos y de esta manera mejorar la precisión y disminuir la variación del error experimental.
dc.format.extent216
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleObtención y caracterización electroquímica y estructural de nanocompositos de copolimeros sulfonados/bismuto – estaño
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectBisnano
dc.description.additionalDoctor en Ingeniería Ciencia y Tecnología de Materiales
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] J. Wang and J. Lu, “Bismuth film electrodes for adsorptive stripping voltammetry of trace nickel,” Electrochem. communiations, vol. 2, pp. 390–393, 2000. [2] E. A. Hutton, S. B. Ho, F. Weldon, M. R. Smyth, and J. Wang, “An introduction to bismuth ® lm electrode for use in cathodic electrochemical detection,” Electrochem. commun., vol. 3, pp. 707–711, 2001. [3] J. Wang, J. Lu, Ü. Anik, S. B. Hocevar, and B. Ogorevc, “Insights into the anodic stripping voltammetric behavior of bismuth film electrodes,” Anal. Chim. Acta, vol. 434, pp. 29–34, 2001. [4] W. I. Katz E and J. Wang, “Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles,” Electroanalysis, vol. 16, no. 1–2, pp. 19–44, 2004. [5] G.-J. Lee, C. K. Kim, M. K. Lee, and C. K. Rhee, “Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode.,” Talanta, vol. 83, no. 2, pp. 682–5, Dec. 2010. [6] J. Saturno, D. Valera, H. Carrero, and L. Fernández, “Electroanalytical detection of Pb, Cd and traces of Cr at micro/nano-structured bismuth film electrodes,” Sensors Actuators B Chem., vol. 159, no. 1, pp. 92–96, Nov. 2011. [7] G. Kefala and A. Economou, “Polymer-coated bismuth film electrodes for the determination of trace metals by sequential-injection analysis/anodic stripping voltammetry.,” Anal. Chim. Acta, vol. 576, no. 2, pp. 283–289, Aug. 2006. [8] G. X. Cao, O. Jimenez, F. Zhou, and M. Xu, “Nafion-coated bismuth film and nafion-coated mercury film electrodes for anodic stripping voltammetry combined on-line with ICP-mass spectrometry.,” J. Am. Soc. Mass Spectrom., vol. 17, no. 7, pp. 945–52, Jul. 2006. [9] J. Li, S. Guo, Y. Zhai, and E. Wang, “High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film.,” Anal. Chim. Acta, vol. 649, no. 2, pp. 196–201, Sep. 2009. [10] L. Jiang, Y. Wang, J. Ding, T. Lou, and W. Qin, “An ionophore–Nafion modified bismuth electrode for the analysis of cadmium(II),” Electrochem. commun., vol. 12, no. 2, pp. 202–205, Feb. 2010. [11] F. Torma, M. Kádár, K. Tóth, and E. Tatár, “Nafion/2,2’-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry.,” Anal. Chim. Acta, vol. 619, no. 2, pp. 173–82, Jul. 2008. [12] D. Li, J. Jia, and J. Wang, “A study on the electroanalytical performance of a bismuth film-coated and Nafion-coated glassy carbon electrode in alkaline solutions,” Anal. Chim. Acta, pp. 221–225, 2010. [13] D. Li, J. Jia, and J. Wang, “Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode.,” Talanta, vol. 83, pp. 332–336, Dec. 2010. [14] V. Rehacek, I. Hotovy, M. Vojs, T. Kups, and L. Spiess, “Nafion-coated bismuth film electrodes on pyrolyzed photoresist/alumina supports for analysis of trace heavy metals,” Electrochim. Acta, vol. 63, pp. 192–196, Feb. 2012. [15] C. Kokkinos and A. Economou, “Disposable Nafion-modified micro-fabricated bismuth-film sensors for voltammetric stripping analysis of trace metals in the presence of surfactants.,” Talanta, vol. 84, no. 3, pp. 696–701, May 2011. [16] C. H. Xiong, H. Q. Luo, and N. B. Li, “A stannum/bismuth/poly(p-aminobenzene sulfonic acid) film electrode for measurement of Cd(II) using square wave anodic stripping voltammetry,” J. Electroanal. Chem., vol. 651, no. 1, pp. 19–23, Jan. 2011. [17] D. Pan, L. Zhang, J. Zhuang, W. Lu, R. Zhu, and W. Qin, “New application of tin–bismuth alloy for electrochemical determination of cadmium,” Mater. Lett., vol. 68, pp. 472–474, Feb. 2012. [18] D. Pan, L. Zhang, J. Zhuang, T. Yin, and W. Qin, “A novel tin-bismuth alloy electrode for anodic stripping voltammetric determination of zinc,” Microchim. Acta, vol. 177, no. 1–2, pp. 59–66, 2012. [19] P. P. D. Askeland, Ciencia e ingenieria de los materiales. 2005. [20] C. C. Okpala, “Nanocomposites – An Overview,” Int. J. Eng. Res. Dev., vol. 8, no. 11, pp. 2278–67, 2013. [21] B. Jimenez, L. Pardo, F. Carmona, B. Jimenez, L. Pardo, and F. Carmona, “Materiales compuestos («composites») piezoelectrícos,” BOL.SOC.ESP.CERAM.VIDR, vol. 30, no. 5, pp. 8–11, 1991. [22] S. Zhao, “Introduction to nanocomposites What are composites ?” University of Nebraska-Dept. of Mechanical & Materials Eng, Lincoln-Nebraska, 2013. [23] L. Nicolais and G. Carotenuto, Metal-Polymer Nanocomposites. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. [24] A. Kraynov and T. E. Müller, “Concepts for the Stabilization of Metal Nanoparticles in Ionic Liquids,” in Applications of Ionic Liquids in Science and Technology, p. 235. [25] B. a. Rozenberg and R. Tenne, “Polymer-assisted fabrication of nanoparticles and nanocomposites,” Prog. Polym. Sci., vol. 33, no. 1, pp. 40–112, Jan. 2008. [26] J. M. de Benito, “Desarrollo de nuevas membranas para la separación de iones metálicos y aplicaciones electroquimicas,” Universidad Autonoma de Barcelona, 2006. [27] D. N. Muraviev, J. Macanás, M. Farre, M. Muñoz, and S. Alegret, “Novel routes for inter-matrix synthesis and characterization of polymer stabilized metal nanoparticles for molecular recognition devices,” Sensors Actuators B Chem., vol. 118, no. 1–2, pp. 408–417, Oct. 2006. [28] E. V. Zolotukhina and T. a. Kravchenko, “Synthesis and kinetics of growth of metal nanoparticles inside ion-exchange polymers,” Electrochim. Acta, vol. 56, no. 10, pp. 3597–3604, Apr. 2011. [29] M. Yang, “Catalytic activities of PtBi nanoparticles toward methanol electrooxidation in acid and alkaline media,” J. Power Sources, vol. 229, pp. 42–47, May 2013. [30] H. Yang, J. Li, X. Lu, G. Xi, and Y. Yan, “Reliable synthesis of bismuth nanoparticles for heavy metal detection,” Mater. Res. Bull., vol. 48, no. 11, pp. 4718–4722, Nov. 2013. [31] L. Balan and D. Burget, “Synthesis of metal/polymer nanocomposite by UV-radiation curing,” Eur. Polym. J., vol. 42, no. 12, pp. 3180–3189, Dec. 2006. [32] D. Ma, J. Zhao, Y. Zhao, X. Hao, L. Li, L. Zhang, Y. Lu, and C. Yu, “Synthesis of bismuth nanoparticles and self-assembled nanobelts by a simple aqueous route in basic solution,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 395, pp. 276–283, Feb. 2012. [33] F. Wang, R. Tang, H. Yu, P. C. Gibbons, W. E. Buhro, and S. Louis, “Size- and Shape-Controlled Synthesis of Bismuth Nanoparticles,” chem mater, vol. 20, pp. 3656–3662, 2008. [34] A. Ram, C.N Govindaraj, “Elemental Nanowires,” in Nanotubes and Nanowires, Cambridge: Royal Society of Chemistry, 2011, p. 531. [35] H. Yu, P. C. Gibbons, and W. E. Buhro, “Bismuth, tellurium, and bismuth telluride nanowires,” Journal of Materials Chemistry, vol. 14, no. 4. pp. 595–602, 2004. [36] A. Dong, R. Tang, and W. E. Buhro, “Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires.,” J. Am. Chem. Soc., vol. 129, no. 40, pp. 12254–62, Oct. 2007. [37] H. Jiang, K. Moon, H. Dong, F. Hua, and C. P. Wong, “Size-dependent melting properties of tin nanoparticles,” Chem. Phys. Lett., vol. 429, no. 4–6, pp. 492–496, Oct. 2006. [38] Y. H. Jo, J. C. Park, J. U. Bang, H. Song, and H. M. Lee, “New Synthesis Approach for Low Temperature Bimetallic Nanoparticles: Size and Composition Controlled Sn–Cu Nanoparticles,” J. Nanosci. Nanotechnol., vol. 11, no. 2, pp. 1037–1041, Feb. 2011. [39] S.-S. Chee and J.-H. Lee, “Reduction synthesis of tin nanoparticles using various precursors and melting behavior,” Electron. Mater. Lett., vol. 8, no. 6, pp. 587–593, Dec. 2012. [40] S. Panigrahi, “Studies on growth kinetics of nanoparticles Formation In Bulk Solution,” National institute of technology, 2010. [41] J. F. Xu, W. Ji, J. Y. Lin, S. H. Tang, and Y. W. Du, “Preparation of ZnS nanoparticles by ultrasonic radiation method,” Appl. Phys. A Mater. Sci. Process., vol. 66, no. 6, pp. 639–641, Jun. 1998. [42] S. H. Othman, S. Abdul Rashid, T. I. Mohd Ghazi, and N. Abdullah, “Dispersion and Stabilization of Photocatalytic TiO2 Nanoparticles in Aqueous Suspension for Coatings Applications,” J. Nanomater., vol. 2012, pp. 1–10, 2012. [43] J.-H. Lee, S. U. S. Choi, S. P. Jang, and S. Y. Lee, “Production of aqueous spherical gold nanoparticles using conventional ultrasonic bath.,” Nanoscale Res. Lett., vol. 7, no. 1, p. 420, Jan. 2012. [44] S. Anandan, A. M. Asiri, and M. Ashokkumar, “Ultrasound assisted synthesis of Sn nanoparticles-stabilized reduced graphene oxide nanodiscs.,” Ultrason. Sonochem., vol. 21, no. 3, pp. 920–3, May 2014. [45] G.-J. Lee, H.-M. Lee, and C.-K. Rhee, “Bismuth nano-powder electrode for trace analysis of heavy metals using anodic stripping voltammetry,” Electrochem. commun., vol. 9, no. 10, pp. 2514–2518, Oct. 2007. [46] R. K. Verma, K. Kumar, and S. B. Rai, “Near infrared induced optical heating in laser ablated Bi quantum dots.,” J. Colloid Interfaz Sci., vol. 390, no. 1, pp. 11–6, Jan. 2013. [47] G. Saito, C. Zhu, and T. Akiyama, “Surfactant-assisted synthesis of Sn nanoparticles via solution plasma technique,” Adv. Powder Technol., vol. 25, no. 2, pp. 728–732, Mar. 2014. [48] G. Saito, S. Hosokai, M. Tsubota, and T. Akiyama, “Nickel Nanoparticles Formation from Solution Plasma Using Edge-Shielded Electrode,” Plasma Chem. Plasma Process., vol. 31, no. 5, pp. 719–728, Aug. 2011. [49] J. J. De Yoreo and P. G. Vekilov, “Principles of Crystal Nucleation and Growth,” Rev. Mineral. geochemistry, vol. 54, pp. 57–90, 2003. [50] Manuel Alejo Perez, “Growth mechanisms of metal nanoparticles,” in Recent avances in nanoscience, vol. 661, no. 2, S. A. Dassie, Ed. 2007, pp. 1–18. [51] T. Sugimoto, “Preparation of monodispersed colloidal particles,” Advances in Colloid and Interfaz Science, vol. 28. pp. 65–108, Jan-1987. [52] E. Van Keuren, E. Georgieva, and M. Durst, “Kinetics of the Growth of Anthracene Nanoparticles,” Journal of Dispersion Science and Technology, vol. 24, no. 5. pp. 721–729, 08-Jan-2003. [53] E. M. Wong, J. E. Bonevich, and P. C. Searson, “Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions,” vol. 5647, no. 98, pp. 7770–7775, 1998. [54] P. S. Hale, L. M. Maddox, J. G. Shapter, N. H. Voelcker, M. J. Ford, and E. R. Waclawik, “Growth Kinetics and Modeling of ZnO Nanoparticles,” vol. 82, no. 5, 2007. [55] G. Oskam, A. Nellore, R. L. Penn, and P. C. Searson, “The Growth Kinetics of TiO 2 Nanoparticles from Titanium(IV) Alkoxide at High Water/ Titanium Ratio,” no. Iv, pp. 1734–1738, 2003. [56] L. Vitos, A. V Ruban, H. L. Skriver, and J. Kolla, “The surface energy of metals,” Srface Sci., vol. 411, pp. 186–202, 1998. [57] P. Aranda, M. Darder, R. Fernández-Saavedra, M. López-Blanco, and E. Ruiz-Hitzky, “Relevance of polymer- and biopolymer-clay nanocomposites in electrochemical and electroanalytical applications,” Thin Solid Films, vol. 495, no. 1–2, pp. 104–112, 2006. [58] Rajesh, T. Ahuja, and D. Kumar, “Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications,” Sensors Actuators, B Chem., vol. 136, no. 1, pp. 275–286, 2009. [59] C. C. Mayorga-Martinez, M. Cadevall, M. Guix, J. Ros, and A. Merkoçi, “Bismuth nanoparticles for phenolic compounds biosensing application.,” Biosens. Bioelectron., vol. 40, no. 1, pp. 57–62, Feb. 2013. [60] B. Domènech, J. Bastos-arrieta, A. Alonso, J. Macanás, M. Muñoz, and D. N. Muraviev, “Bifunctional Polymer-Metal Nanocomposite Ion Exchange Materials,” 2012. [61] A. J. Bard, “Electrochemical methods, fundamentals and applications.” 1980. [62] J. Wang, “Stripping Analysis - Encyclopedia of Electrochemistry.” 2007. [63] A. B. Miles and R. G. Compton, “The theory of square wave voltammetry at uniformly accessible hydrodynamic electrodes,” J. Electroanal. Chem., vol. 487, no. 2, pp. 75–89, Jun. 2000. [64] a Economou, “Recent developments in on-line electrochemical stripping analysis--an overview of the last 12 years.,” Anal. Chim. Acta, vol. 683, no. 1, pp. 38–51, Dec. 2010. [65] W. Siriangkhawut, S. Pencharee, K. Grudpan, and J. Jakmunee, “Sequential injection monosegmented flow voltammetric determination of cadmium and lead using a bismuth film working electrode.,” Talanta, vol. 79, no. 4, pp. 1118–1124, Sep. 2009. [66] E. a. Hutton, S. B. Hočevar, B. Ogorevc, and M. R. Smyth, “Bismuth film electrode for simultaneous adsorptive stripping analysis of trace cobalt and nickel using constant current chronopotentiometric and voltammetric protocol,” Electrochem. commun., vol. 5, no. 9, pp. 765–769, Sep. 2003. [67] S. Legeai, S. Bois, and O. Vittori, “A copper bismuth film electrode for adsorptive cathodic stripping analysis of trace nickel using square wave voltammetry,” J. Electroanal. Chem., vol. 591, no. 1, pp. 93–98, Jun. 2006. [68] A. Królicka and A. Bobrowski, “Bismuth film electrode for adsorptive stripping voltammetry – electrochemical and microscopic study,” Electrochem. commun., vol. 6, no. 2, pp. 99–104, Feb. 2004. [69] E. a Hutton, J. T. van Elteren, B. Ogorevc, and M. R. Smyth, “Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP-MS.,” Talanta, vol. 63, no. 4, pp. 849–55, Jul. 2004. [70] J. Wang and J. Lu, “Stripping voltammetry with the electrode material acting as a ` built-in ’ internal standard u Anik Kirg,” Electrochem. commun., vol. 3, pp. 703–706, 2001. [71] B. A. Pablo Richter, M. Inés Toral, “Anodic Stripping Voltammetric Determination of Mercury in Water by Using a New Electrochemical Flow Through Cell,” Electroanalysis, vol. 14, no. 18, pp. 1288–1293, 2002. [72] E. B. João Rodrigo Santos, José L. F. C. Lima, M. Beatriz Quinaz, J. Antonio Rodríguez, “Construction and Evaluation of a Gold Tubular Electrode for Flow Analysis: Application to Speciation of Antimony in Water Samples,” Electroanalysis, vol. 19, no. 6, pp. 723–730, 2007. [73] E. B. J. Dzurov and J. A. A.C. Broekaert, “Flow-through stripping chronopotentiometry for the monitoring of mercury in waste waters,” J. Anal. Chem., vol. 362, pp. 201–204, 1998. [74] D. T. P. Sandra G. Hazelton, “Ultratrace Determination of Inorganic Selenium without Signal Calibration,” Anal. Chem., vol. 79, no. 12, pp. 4558–4563, 2007. [75] J. F. Van Staden and M. C. Matoetoe, “Simultaneous determination of traces of iron ( II ) and iron ( III ) using differential pulse anodic stripping voltammetry in a ¯ ow-through con ® guration on a glassy carbon electrode,” Anal. Chim. Acta, vol. 376, pp. 325–330, 1998. [76] J. . van Staden and M. . Matoetoe, “Simultaneous determination of copper, lead, cadmium and zinc using differential pulse anodic stripping voltammetry in a flow system,” Anal. Chim. Acta, vol. 411, no. 1–2, pp. 201–207, May 2000. [77] M. V Fyodorov and K. Z. Brainina, “Modified carbon-containing electrodes in stripping voltammetry of metals Part I . Glassy carbon and carbon paste electrodes,” J Solid State Electrochem, vol. 12, pp. 1185–1204, 2008. [78] N. Y. Stozhko, N. A. Malakhova, M. V Fyodorov, and K. Z. Brainina, “Modified carbon-containing electrodes in stripping voltammetry of metals . Part II . Composite and microelectrodes,” pp. 1219–1230, 2008. [79] O. Keller and J. Buffle, “Voltammetric and reference microelectrodes with integrated microchannels for flow through microvoltammetry. 1. The microcell,” Anal. Chem., vol. 72, no. 5, pp. 936–42, Mar. 2000. [80] O. Keller and J. Buffle, “Voltammetric and reference microelectrodes with integrated microchannels for flow through microvoltammetry. 2. Coupling the microcell to a supported liquid membrane preconcentration technique,” Anal. Chem., vol. 72, no. 5, pp. 943–948, Mar. 2000. [81] E. O. Jorge, M. M. M. Neto, and M. M. Rocha, “A mercury-free electrochemical sensor for the determination of thallium(I) based on the rotating-disc bismuth film electrode.,” Talanta, vol. 72, no. 4, pp. 1392–9, Jun. 2007. [82] J. Wang, J. Lu, S. Hocevar, P. Farias, and B. Ogorevc, “Bismuth-coated carbon electrodes for anodic stripping voltammetry,” Anal. Chem., vol. 72, no. 14, pp. 3218–22, Jul. 2000. [83] E. a Hutton, S. B. Hocevar, L. Mauko, and B. Ogorevc, “Bismuth film electrode for anodic stripping voltammetric determination of tin.,” Anal. Chim. Acta, vol. 580, no. 2, pp. 244–50, Nov. 2006. [84] a Economou, “Bismuth-film electrodes: recent developments and potentialities for electroanalysis,” TrAC Trends Anal. Chem., vol. 24, no. 4, pp. 334–340, Apr. 2005. [85] E. Tesarová, A. Heras, A. Colina, V. Ruiz, I. Svancara, K. Vytras, and J. López-Palacios, “A spectroelectrochemical approach to the electrodeposition of bismuth film electrodes and their use in stripping analysis.,” Anal. Chim. Acta, vol. 608, no. 2, pp. 140–6, Feb. 2008. [86] G. Hwang, W. Han, J. Park, and S. Kang, “An electrochemical sensor based on the reduction of screen-printed bismuth oxide for the determination of trace lead and cadmium,” Sensors Actuators B, vol. 135, pp. 309–316, 2008. [87] N. Serrano, a Alberich, J. Diazcruz, C. Arino, and M. Esteban, “Signal splitting in the stripping analysis of heavy metals using bismuth film electrodes: Influence of concentration range and deposition parameters,” Electrochim. Acta, vol. 53, no. 22, pp. 6616–6622, Sep. 2008. [88] Y. Wu, N. B. Li, and H. Q. Luo, “Simultaneous measurement of Pb, Cd and Zn using differential pulse anodic stripping voltammetry at a bismuth/poly(p-aminobenzene sulfonic acid) film electrode,” Sensors Actuators B Chem., vol. 133, no. 2, pp. 677–681, Aug. 2008. [89] J. K. B. Bernardelli, F. R. Lapolli, C. M. G. D. S. Cruz, and J. B. Floriano, “Determination of zinc and cadmium with characterized Electrodes of carbon and polyurethane modified by a bismuth film,” Mater. Res., vol. 14, no. 3, pp. 366–371, Sep. 2011. [90] G.-H. Hwang, W.-K. Han, S.-J. Hong, J.-S. Park, and S.-G. Kang, “Determination of trace amounts of lead and cadmium using a bismuth/glassy carbon composite electrode.,” Talanta, vol. 77, no. 4, pp. 1432–6, Feb. 2009. [91] E. Svobodová, L. Baldrianová, S. B. Hočevar, and I. Švancara, “Electrochemical Stripping Analysis of Selected Heavy Metals at Antimony Trioxide-Modified Carbon Paste Electrode,” Int. J. Electrochem. Sci., vol. 7, pp. 197–210, 2012. [92] V. Rehacek, I. Hotovy, and M. Vojs, “Bismuth-coated diamond-like carbon microelectrodes for heavy metals determination,” Sensors Actuators B Chem., vol. 127, no. 1, pp. 193–197, Oct. 2007. [93] Z. Guo, F. Feng, Y. Hou, and N. Jaffrezic-Renault, “Quantitative determination of zinc in milkvetch by anodic stripping voltammetry with bismuth film electrodes.,” Talanta, vol. 65, no. 4, pp. 1052–5, Feb. 2005. [94] L. Lin, N. S. Lawrence, S. Thongngamdee, J. Wang, and Y. Lin, “Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode.,” Talanta, vol. 65, no. 1, pp. 144–148, Jan. 2005. [95] J. V Kamat, S. K. Guin, J. S. Pillai, and S. K. Aggarwal, “Scope of detection and determination of gallium(III) in industrial ground water by square wave anodic stripping voltammetry on bismuth film electrode.,” Talanta, vol. 86, pp. 256–65, Oct. 2011. [96] S. Hocevar, S. Daniele, C. Bragato, and B. Ogorevc, “Reactivity at the film/solution interfaz of ex situ prepared bismuth film electrodes: A scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM) investigation,” Electrochim. Acta, vol. 53, no. 2, pp. 555–560, Dec. 2007. [97] D.-H. Kim, S.-H. Lee, J.-K. Kim, and G.-H. Lee, “Structure and electrical transport properties of bismuth thin films prepared by RF magnetron sputtering,” Appl. Surf. Sci., vol. 252, no. 10, pp. 3525–3531, Mar. 2006. [98] C. Kokkinos, A. Economou, I. Raptis, and T. Speliotis, “Disposable microfabricated bismuth microelectrode arrays for trace metal analysis by stripping voltammetry,” Procedia Eng., vol. 25, pp. 880–883, 2011. [99] S. Mammeri, S. Ouichaoui, H. Ammi, H. Hammoudi, and C. a. Pineda-Vargas, “Sputtering and surface state evolution of Bi under oblique incidence of 120keV Ar+ ions,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 269, no. 9, pp. 909–914, May 2011. [100] M. F. Ortiz Bastos, “Recubrimientos de bismuto depositados por la técnica sputtering D.C. pulsado.” p. 149, 2012. [101] I. Jairo and A. Baron, “T e s i s,” Universidad Nacional Autonoma de Mexico, 2012. [102] Z. Zou, a Jang, E. Macknight, P. Wu, J. Do, P. Bishop, and C. Ahn, “Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement,” Sensors Actuators B Chem., vol. 134, no. 1, pp. 18–24, Aug. 2008. [103] L. a. Piankova, N. a. Malakhova, N. Y. Stozhko, K. Z. Brainina, a. M. Murzakaev, and O. R. Timoshenkova, “Bismuth nanoparticles in adsorptive stripping voltammetry of nickel,” Electrochem. commun., vol. 13, no. 9, pp. 981–984, Sep. 2011. [104] T. P. Gujar, V. R. Shinde, S. S. Kulkarni, H. M. Pathan, and C. D. Lokhande, “Room temperature electrodeposition and characterization of bismuth ferric oxide (BFO) thin films from aqueous nitrate bath,” Appl. Surf. Sci., vol. 252, no. 10, pp. 3585–3590, Mar. 2006. [105] W. J. Yi, Y. Li, G. Ran, H. Q. Luo, and N. B. Li, “A glassy carbon electrode modified with antimony and poly(p-aminobenzene sulfonic acid) for sensing lead(II) by square wave anodic stripping voltammetry,” Microchim. Acta, vol. 179, no. 1–2, pp. 171–177, Aug. 2012. [106] D. Pan, L. Zhang, J. Zhuang, T. Yin, and W. Qin, “A novel tin-bismuth alloy electrode for anodic stripping voltammetric determination of zinc,” Microchim. Acta, vol. 177, no. 1–2, pp. 59–66, Dec. 2011. [107] A. J. Seen, “Nafion : an excellent support for metal-complex catalysts,” J. Mol. Catal. A, vol. 177, no. January, pp. 105–112, 2001. [108] J. Zen and M. Lee, “Determination of Traces of Nickel(,” Society, no. 13, pp. 3238–3243, 1993. [109] J.-M. Zen, F.-S. Hsu, N.-Y. Chi, S.-Y. Huang, and M.-J. Chung, “Effect of model organic compounds on square-wave voltammetric stripping analysis at the Nafion/chelating agent mercury film electrodes,” Anal. Chim. Acta, vol. 310, no. 3, pp. 407–417, Jul. 1995. [110] L. Chen, Z. Su, X. He, Y. Liu, C. Qin, Y. Zhou, Z. Li, L. Wang, Q. Xie, and S. Yao, “Square wave anodic stripping voltammetric determination of Cd and Pb ions at a Bi/Nafion/thiolated polyaniline/glassy carbon electrode,” Electrochem. commun., vol. 15, no. 1, pp. 34–37, Feb. 2012. [111] X. Y. Xie, H. Q. Luo, and N. B. Li, “Determination of azo compounds by differential pulse voltammetry at a bismuth/poly(p-aminobenzene sulfonic acid) film electrode and application for detection in food stuffs,” J. Electroanal. Chem., vol. 639, no. 1–2, pp. 175–180, Feb. 2010. [112] G. Jin, Y. Zhang, and W. Cheng, “Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid,” Sensors Actuators B Chem., vol. 107, no. 2, pp. 528–534, Jun. 2005. [113] K. Agnieska, R. Metelka, A. Bobrowski, E. Norkus, K. Kalcher, and K. Vytras, “Bismuth-film-plated carbon paste electrodes,” Electrochem. commun., vol. 4, pp. 193–196, 2002. [114] S. Legeai, K. Soropogui, M. Cretinon, O. Vittori, A. Heeren De Oliveira, F. Barbier, and M.-F. Grenier-Loustalot, “Economic bismuth-film microsensor for anodic stripping analysis of trace heavy metals using differential pulse voltammetry.,” Anal. Bioanal. Chem., vol. 383, no. 5, pp. 839–47, Nov. 2005. [115] S. Legeai and O. Vittori, “A Cu/Nafion/Bi electrode for on-site monitoring of trace heavy metals in natural waters using anodic stripping voltammetry: An alternative to mercury-based electrodes,” Anal. Chim. Acta, vol. 560, no. 1–2, pp. 184–190, Feb. 2006. [116] Y. Q. Tian, H. Q. Luo, and N. B. Li, “Stannum film electrode for square wave voltammetric determination of trace copper(II),” J. Solid State Electrochem., vol. 16, no. 2, pp. 529–533, Apr. 2012. [117] B. L. Li, Z. L. Wu, C. H. Xiong, H. Q. Luo, and N. B. Li, “Anodic stripping voltammetric measurement of trace cadmium at tin-coated carbon paste electrode.,” Talanta, vol. 88, pp. 707–10, Jan. 2012. [118] E. Czop, A. Economou, and A. Bobrowski, “A study of in situ plated tin-film electrodes for the determination of trace metals by means of square-wave anodic stripping voltammetry,” Electrochim. Acta, vol. 56, no. 5, pp. 2206–2212, Feb. 2011. [119] H. Q. L. Yun Qing Tian, Nian Bing Li, “Simultaneous Determination of Trace Zinc(II) and Cadmium(II) by Differential Pulse Anodic Stripping Voltammetry Using a MWCNTs–NaDBS Modified Stannum Film Electrode,” Electroanalysis, vol. 21, no. 23, pp. 2584–2589, 2009. [120] R. León, M. Albero, and R. Cruz, “Síntesis, caracterización y aplicación del ps entrecruzado a partir de residuos de ps,” Rev. Iberoam. Polim., vol. 8, no. 2, pp. 112–137, 2007. [121] O. Okay, “Macroporous copolymer networks,” Prog. Polym. Sci., vol. 25, no. 6, pp. 711–779, Aug. 2000. [122] H. Okamura, Y. Takatori, M. Tsunooka, and M. Shirai, “Synthesis of random and block copolymers of styrene and styrenesulfonic acid with low polydispersity using nitroxide-mediated living radical polymerization technique,” Polymer (Guildf)., vol. 43, no. 11, pp. 3155–3162, 2002. [123] M. Ahmed, M. A. Malik, S. Pervez, and M. Raffiq, “Effect of porosity on sulfonation of macroporous styrene-divinylbenzene beads,” Eur. Polym. J., vol. 40, no. 8, pp. 1609–1613, Aug. 2004. [124] P. Akkaramongkolporn, T. Ngawhirunpat, and P. Opanasopit, “Preparation and evaluation of differently sulfonated styrene-divinylbenzene cross-linked copolymer cationic exchange resins as novel carriers for drug delivery.,” AAPS PharmSciTech, vol. 10, no. 2, pp. 641–8, Jan. 2009. [125] C. A. L. Santamaria, “Modelo de Estabilidad de Emulsiones Poliméricas,” Univ. Nac. Colomb., pp. 1–180, 2011. [126] D. R. Stutman, A. Klein, M. S. El-Aasser, and J. W. Vanderhoff, “Mechanism of core/shell emulsion polymerization,” Ind. Eng. Chem. Prod. Res. Dev., vol. 24, no. 3, pp. 404–412, 1985. [127] Q. Q. Liu, L. Wang, A. G. Xiao, H. J. Yu, and Q. H. Tan, “A hyper-cross-linked polystyrene with nano-pore structure,” Eur. Polym. J., vol. 44, no. 8, pp. 2516–2522, 2008. [128] M. Instruments, “Inform White Paper Dynamic Light Scattering,” 2011. [129] Horiba, “a Guidebook To Particle Size Analysis,” 2012. [130] O. New and Y. Paris, “Dimethylformamide: purification, tests for purity and physical properties,” Pure Appl. Chem., vol. 49, no. 6, pp. 885–892, 1977. [131] D. Beamson, G. Briggs, High Resolution XPS of Organic Polymers, vol. 70, no. 1. John Wiley & Sons, Inc., 1992. [132] Universidad de Santiago de Compostela, “Comparacion entre las tecnicas SEM y TEM.” [Online]. Available: http://lbts.usc.es/wikidocente/wiki.php/MicroscopíaElectrons/CompTec. [133] V. Mirceski, S. B. Hocevar, B. Ogorevc, R. Gulaboski, and I. Drangov, “Diagnostics of anodic stripping mechanisms under square-wave voltammetry conditions using bismuth film substrates.,” Anal. Chem., vol. 84, no. 10, pp. 4429–36, May 2012. [134] D. Britz, Digital Simulation in Electrochemistry 3rd Edition, vol. 666. 2005. [135] M. Summers and J. Eastoe, “Applications of polymerizable surfactants,” Adv. Colloid Interfaz Sci., vol. 100–102, no. SUPPL., pp. 137–152, 2003. [136] “NIST X-ray Photoelectron Spectroscopy (XPS) Database, Version 3.” . [137] R. K. Verma, K. Kumar, and S. B. Rai, “Near infrared induced optical heating in laser ablated Bi quantum dots.,” J. Colloid Interfaz Sci., vol. 390, no. 1, pp. 11–6, Jan. 2013. [138] R. H. Perry and D. W. Green, “Perry’s Chemical Engineers' Handbook,” in Perry’s Chemical Engineers' Handbook, 7th ed., Mc Graw HIll, 1997. [139] C. C. Mayorga-Martinez, M. Cadevall, M. Guix, J. Ros, and A. Merkoçi, “Bismuth nanoparticles for phenolic compounds biosensing application,” Biosens. Bioelectron., vol. 40, no. 1, pp. 57–62, 2013. [140] C. Lien, C. Hu, K. Chang, Y. Tsai, and D. S. Wang, “Electrochimica Acta A study on the key factors affecting the sensibility of bismuth deposits toward Sn 2 + : Effects of bismuth microstructures on the Sn 2 + pre-deposition,” Electrochim. Acta, vol. 105, pp. 665–670, 2013. [141] D. Kong, Y. Chen, P. Wan, S. Liu, Z. U. H. Khan, and B. Men, “Pre-plating of Bismuth film electrode with coexisted Sn2+ in electrolyte,” Electrochim. Acta, vol. 125, pp. 573–579, 2014. [142] S. Mohapatra and P. Pramanik, “Synthesis and stability of functionalized iron oxide nanoparticles using organophosphorus coupling agents,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 339, no. 1–3, pp. 35–42, 2009. [143] L. Ojamäe, C. Aulin, H. Pedersen, and P. O. Käll, “IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles,” J. Colloid Interfaz Sci., vol. 296, no. 1, pp. 71–78, 2006. [144] H. Z. M. Ismail F.M., “NIST XPS Database Detail Page Bi,” Z. Phys. Chemie, vol. 267, p. 667, 1986. [145] K. S.-K. Choi W.-K., Jung H.-J., “NIST XPS Database Detail Page Sn1,” J. Vac. Sci. Technol., vol. A14, p. 359, 1996. [146] M. A. Stranick M.A., “NIST XPS Database Detail Page Sn2,” Surf. Sci. Spectra, vol. 2, p. 50, 1993. [147] J. G. Wijmans and R. W. Baker, “The solution-diffusion model: a review,” J. Memb. Sci., vol. 107, no. 1–2, pp. 1–21, 1995. [148] B. S. Z. HE, “INFLUENCE OF FUNCTIONAL GROUP ON STRUCTURE PS (1986).pdf,” Chinese J. Polym. Sci., vol. 2, pp. 157–164, 1986. [149] K. Matsumoto, H. Hasegawa, and H. Matsuoka, “Synthesis of sodium-polystyrenesulfonate-grafted nanoparticles by core-cross-linking of block copolymer micelles,” Tetrahedron, vol. 60, no. 34, pp. 7197–7204, 2004. [150] M. Amirinejad, S. S. Madaeni, K.-S. Lee, U. Ko, E. Rafiee, and J.-S. Lee, “Sulfonated poly(arylene ether)/heteropolyacids nanocomposite membranes for proton exchange membrane fuel cells,” Electrochim. Acta, vol. 62, pp. 227–233, Feb. 2012. [151] J. Singh, P. Khanra, T. Kuila, M. Srivastava, A. K. Das, N. H. Kim, B. J. Jung, D. Y. Kim, S. H. Lee, D. W. Lee, D.-G. Kim, and J. H. Lee, “Preparation of sulfonated poly(ether–ether–ketone) functionalized ternary graphene/AuNPs/chitosan nanocomposite for efficient glucose biosensor,” Process Biochem., vol. 48, no. 11, pp. 1724–1735, Nov. 2013. [152] C. R. Martins, G. Ruggeri, and M. A. De Paoli, “Synthesis in Pilot Plant Scale and Physical Properties of Sulfonated Polystyrene,” J. Braz. Chem. Soc., vol. 14, no. 5, pp. 797–802, 2003. [153] X. Wang, E. D. Sudol, and M. S. El-Aasser, “Emulsion polymerization of styrene using the homopolymer of a reactive surfactant,” Macromolecules, vol. 17, no. 22, pp. 6865–6870, 2001. [154] A. Guyot and K. Tauer, “Reactive surfactants in emulsion polymerization,” in Advances in Polymer Science, vol. 111, 1994, pp. 43–65. [155] R. Krishnamoorti, “S trategies for Nanopar ticles,” MRS Bull., vol. 32, no. April, 2007. [156] H. Lin, Z. Lei, Z. Jiang, C. Hou, D. Liu, M. Xu, Z. Tian, and Z. Xie, “Supersaturation-Dependent Surface Structure Evolution: From Ionic, Molecular to Metallic Micro/Nanocrystals,” 2013. [157] H. Chen, Z. Li, Z. Wu, and Z. Zhang, “A novel route to prepare and characterize Sn-Bi nanoparticles,” J. Alloys Compd., vol. 394, no. 1–2, pp. 282–285, 2005. [158] K. Liang, X. Tang, L. Yu, N. Wang, and W. Hu, “Investigation of preparation and characteristics of Sn-Bi eutectic powders derived from a high shear mechanical approach,” J. Alloys Compd., vol. 509, no. 41, pp. 9836–9841, 2011. [159] F. Frongia, M. Pilloni, A. Scano, A. Ardu, C. Cannas, A. Musinu, G. Borzone, S. Delsante, R. Novakovic, and G. Ennas, “Synthesis and melting behaviour of Bi, Sn and Sn-Bi nanostructured alloy,” J. Alloys Compd., vol. 623, pp. 7–14, 2015. [160] W. W. Zhu, N. B. Li, and H. Q. Luo, “Simultaneous determination of chromium(III) and cadmium(II) by differential pulse anodic stripping voltammetry on a stannum film electrode.,” Talanta, vol. 72, no. 5, pp. 1733–1737, Jul. 2007. [161] J. K. B. Bernardelli, F. R. Lapolli, C. M. G. D. S. Cruz, and J. B. Floriano, “Determination of zinc and cadmium with characterized Electrodes of carbon and polyurethane modified by a bismuth film,” Mater. Res., vol. 14, no. 3, pp. 366–371, 2011. [162] J. Dini, Electrodeposition The Materials Science of Coatings and Substrates, 1st ed. 1993. [163] S. B. Hočevar, I. Švancara, K. Vytřas, and B. Ogorevc, “Novel electrode for electrochemical stripping analysis based on carbon paste modified with bismuth powder,” Electrochim. Acta, vol. 51, no. 4, pp. 706–710, 2005. [164] L. Cao, J. Jia, and Z. Wang, “Sensitive determination of Cd and Pb by differential pulse stripping voltammetry with in situ bismuth-modified zeolite doped carbon paste electrodes,” Electrochim. Acta, vol. 53, no. 5, pp. 2177–2182, 2008. [165] C. Kokkinos, A. Economou, I. Raptis, C. E. Efstathiou, and T. Speliotis, “Novel disposable bismuth-sputtered electrodes for the determination of trace metals by stripping voltammetry,” Electrochem. commun., vol. 9, no. 12, pp. 2795–2800, 2007. [166] C. Kokkinos, A. Economou, I. Raptis, and C. E. Efstathiou, “Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb(II) and Cd(II) by anodic stripping voltammetry,” Electrochim. Acta, vol. 53, no. 16, pp. 5294–5299, 2008. [167] H. Xu, L. Zeng, D. Huang, Y. Xian, and L. Jin, “A Nafion-coated bismuth film electrode for the determination of heavy metals in vegetable using differential pulse anodic stripping voltammetry: An alternative to mercury-based electrodes,” Food Chem., vol. 109, no. 4, pp. 834–839, 2008. [168] H. Miyoshi, “Diffusion coefficients of ions through ion-exchange membranes for Donnan dialysis using ions of the same valence,” Chem. Eng. Sci., vol. 52, no. 7, pp. 1087–1096, 1997.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalNanocomposites
dc.subject.proposalNanocompositos
dc.subject.proposalSulfonated polymers
dc.subject.proposalPolímeros sulfonados
dc.subject.proposalNafion
dc.subject.proposalNafion
dc.subject.proposalBismuth
dc.subject.proposalBismuto
dc.subject.proposalEstaño
dc.subject.proposalTin
dc.subject.proposalElectroquímica
dc.subject.proposalElectrochemistry
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito