Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCamacho Tamayo, Jesús Hernán
dc.contributor.advisorRubiano Sanabria, Yolanda
dc.contributor.authorCarranza Díaz, Andrea Katherín
dc.date.accessioned2020-05-13T23:24:05Z
dc.date.available2020-05-13T23:24:05Z
dc.date.issued2019-12-13
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77517
dc.description.abstractEl suelo es un recurso no renovable, por esto es importante conocerlo y saber interpretarlo para lograr un manejo eficiente del mismo. Por esto, es necesaria una técnica que permita un adecuado monitoreo del suelo y que pueda ser utilizada como herramienta para tomar decisiones con respecto a su uso y manejo adecuado. El objetivo de este estudio fue estimar el contenido de agua de suelos mediante el análisis de su respuesta espectral, en el infrarrojo cercano (NIR), para la calibración de modelos de predicción. Se trabajó con tres suelos de diferente origen: un suelo proveniente del municipio de Puerto Gaitán (Meta), un suelo de la región del Espinal (Tolima), y un suelo del municipio de Mosquera (Cundinamarca). Cada muestra fue llevada al contenido de agua deseado para posteriormente obtener sus curvas espectrales e igualmente determinar su contenido de agua por un método convencional. Se obtuvieron en total cuatro modelos de predicción, uno para cada suelo y uno de los tres en conjunto, por medio de una regresión de mínimos cuadrados parciales (PLSR) y un análisis de componente principales (PCA). En los cuatro casos, se obtuvieron modelos con buena capacidad predictiva (R2 mayores a 0,85 y RMSE menores de 0,04), tanto individualmente para cada tipo de suelo, como para el modelo en el que fueron analizados los tres suelos en conjunto. A partir de los anteriores resultados, se puede decir que el uso de la espectroscopía de reflectancia difusa en el rango del infrarrojo cercano (NIR) es una buena opción para determinar el contenido de agua en el suelo.
dc.description.abstractThe soil is a non-renewable resource, so it is important to know how to interpret it to achieve an efficient management. In order to determine its water content, it is necessary to use methods that can become costly, laborious and with high response times, which can reduce the accuracy of the data. Therefore, a technique is needed to allow an adequate soil monitoring and that can be used as a tool to make decisions regarding its use and proper management. The objective of this study was to estimate the soil water content by analysing its spectral response, in the near infrared (NIR), for the calibration of prediction models. Three soils of different origin were analysed: a soil from the municipality of Puerto Gaitán (Meta), a soil from the region of Espinal (Tolima), and a soil from the municipality of Mosquera (Cundinamarca). Each sample was taken to the desired water content to subsequently obtain its spectral curves and determine its water content by a conventional method. A total of four prediction models were obtained, one for each soil and one for the set of three, through of a partial least square regression (PLSR) and a principal component analysis (PCA). In the four cases, models with good predictive capacity (R2 greater than 0.85 and RMSE smaller than 0.04) were obtained, both individually for each type of soil and for the model of the three types of soil together. According to the previous results, the use of diffuse reflectance spectroscopy in the near infrared range (NIR) is an good option to determinate the water content in the soil.
dc.format.extent74
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.titleEspectroscopía de reflectancia difusa – NIR para la determinación del contenido de agua en el suelo
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ingeniería - Ingeniería Agrícola. Línea de Investigación: Adecuación de Tierras y manejo Sostenible
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícola
dc.contributor.researchgroupIngeniería de Biosistemas
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesÅngström, A. (1925). The Albedo of Various Surfaces of Ground. 7(1925), 323–342. Retrieved from https://www.jstor.org/stable/519495
dc.relation.referencesBach, H., & Mauser, W. (1994). Modelling and model verification of the spectral reflectance of soils under varying moisture conditions. Proceedings of IGARSS ’94 - 1994 IEEE International Geoscience and Remote Sensing Symposium, 4(1 988), 2354–2356. https://doi.org/10.1109/IGARSS.1994.399735
dc.relation.referencesBastidas-Obando, E., & Carbonell, J. (2010). Caracterización espectral y mineralógica de los suelos del valle del río Cauca por espectroscopía visible e infrarroja ( 400 - 2 . 500 nm ). Agronomía Colombiana, 28(2), 291–301.
dc.relation.referencesBellinaso, H., Demattê, J. A. M., & Romeiro, S. A. (2010). Soil spectral library and its use in soil classification. Revista Brasileira de Ciência Do Solo, 34(3), 861–870. https://doi.org/10.1590/S0100-06832010000300027
dc.relation.referencesBen-Dor, E., Heller, D., & Chudnovsky, A. (2008). A Novel Method of Classifying Soil Profiles in the Field using Optical Means. Soil Science Society of America Journal, 72(4), 1113. https://doi.org/10.2136/sssaj2006.0059
dc.relation.referencesBishop, J. L. (1994). Infrared Spectroscopic Analyses on the Nature of Water in Montmorillonite. Clays and Clay Minerals, 42(6), 702–716. https://doi.org/10.1346/CCMN.1994.0420606
dc.relation.referencesBonett, J. P. (2013). Uso de la espectroscopía de reflectancia difusa (MIR) para la determinación de las propiedades químicas en suelos agrícolas de Colombia. 104. Retrieved from http://www.bdigital.unal.edu.co/45658/
dc.relation.referencesBryant, R., Thoma, D., Moran, S., Holifield, C., Goodrich, D., Keefer, T., … Skirvin, S. (2003). Evaluation of Hyperspectral, Infrared Temperature and Radar Measurements for Monitoring Surface Soil Moisture. First Interagency Conference in the Watersheds, 528–533. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.533.4720&rep=rep1&type=pdf
dc.relation.referencesCamacho-Tamayo, Jesús H., Rubiano S., Y., & Hurtado S., M. del P. (2014). Near-infrared (NIR) diffuse reflectance spectroscopy for the prediction of carbon and nitrogen in an Oxisol. Agronomía Colombiana, 32(1), 86–94. https://doi.org/10.15446/agron.colomb.v32n1.38967
dc.relation.referencesCamacho-Tamayo, Jesús H, Forero-Cabrera, N. M., Ramírez-López, L., & Rubiano, Y. (2017). Near-infrared spectroscopic assessment of soil texture in an oxisol of the eastern plains of Colombia. 20(201), 5–185. https://doi.org/10.14483/udistrital.jour.colomb.for.2017.1.a01
dc.relation.referencesCamacho-Tamayo, Jesús Hernán. (2013). Uso de la reflectancia difusa -NIR en la determinación de características físicas y químicas de un Oxisol. Carimagüa -Meta. Universidad Nacional de Colombia. Sede Bogotá., 149. https://doi.org/10.1109/TVCG.2014.2346898
dc.relation.referencesCarter, W. T. (1931). Color analysis of soils with spectrophotometer. American Soil Survey Association Bulletin, B12, 169–170.
dc.relation.referencesChang, C.-W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. R. (2001). Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Science Society of America Journal, 65(2), 480. https://doi.org/10.2136/sssaj2001.652480x
dc.relation.referencesChang, C.-W., Laird, D. A., R., C., & Hurburgh, J. (2005). Influence of Soil Moisture on Near-Infrared Reflectance. Soil Science, 170(4), 244–255. https://doi.org/10.1097/01.ss.0000162289.40879.7b
dc.relation.referencesChristy, C. D. (2008). Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Computers and Electronics in Agriculture, 61(1), 10–19. https://doi.org/10.1016/j.compag.2007.02.010
dc.relation.referencesClark, R. N. (1999). Spectroscopy of Rocks and Minerals and Principles of Spectroscopy. Manual of Remote Sensing. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing (Vol. 3).
dc.relation.referencesDemattê, J. A. M., Sousa, A. A., Alves, M. C., Nanni, M. R., Fiorio, P. R., & Campos, R. C. (2006). Determining soil water status and other soil characteristics by spectral proximal sensing. Geoderma, 135, 179–195. https://doi.org/10.1016/J.GEODERMA.2005.12.002
dc.relation.referencesEsbensen, K. H., Guyot, D., Westad, F., & Houmoller, L. P. (2002). Multivariate Data Analysis: In Practice : an Introduction to Multivariate Data Analysis and Experimental Design. Retrieved from https://books.google.com.co/books?id=Qsn6yjRXOaMC
dc.relation.referencesGaskin, G. J., & Miller, J. D. (1996). Measurement of Soil Water Content Using a Simplified Impedance Measuring Technique. Journal of Agricultural Engineering Research, 63(2), 153–159. https://doi.org/10.1006/JAER.1996.0017
dc.relation.referencesGe, Y., Morgan, C. L. S., & Ackerson, J. P. (2014). VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact. Geoderma, 221–222, 61–69. https://doi.org/10.1016/j.geoderma.2014.01.011
dc.relation.referencesGonzález López, R. A. (2008). Evaluación de algoritmos para estimar la derivada de presión en pruebas de pozos. Ingeniería y Región, 5, 91–98.
dc.relation.referencesHerrmann, R., & Onkelinx, C. (1986). Quantities and units in clinical chemistry: Nebulizer and flame properties in flame emission and absorption spectrometry (Recommendations 1986). Pure and Applied Chemistry, Vol. 58, p. 1737. https://doi.org/10.1351/pac198658121737
dc.relation.referencesHester, J. B. (1939). The relation of soil texture and color to the organic matter. Soil Science Society of America Proceedings, 112–114.
dc.relation.referencesHummel, J. ., Sudduth, K. ., & Hollinger, S. . (2001). Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Computers and Electronics in Agriculture, 32(2), 149–165. https://doi.org/10.1016/S0168-1699(01)00163-6
dc.relation.referencesHunt, G. R. (1977). SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED. GEOPHYSICS, 42(3), 501–513. https://doi.org/10.1190/1.1440721
dc.relation.referencesIdso, S. B., Jackson, R. D., Reginato, R. J., Kimball, B. A., & Nakayama, F. S. (1975). The Dependence of Bare Soil Albedo on Soil Water Content. Journal of Applied Meteorology, 14(1), 109–113. https://doi.org/10.1175/1520-0450(1975)014<0109:TDOBSA>2.0.CO;2
dc.relation.referencesInstituto Geográfico Agustín Codazzi - IGAC. (2004). Estudio general de suelos y zonificación de tierras departamento de Tolima. Bogotá: Instituto Geográfico Agustín Codazzi, Subdireccion de Agrologia.
dc.relation.referencesK. A. Sudduth, & J. W. Hummel. (1993). Soil Organic Matter, CEC, and Moisture Sensing with a Portable NIR Spectrophotometer. Transactions of the ASAE, 36(6), 1571–1582. https://doi.org/10.13031/2013.28498
dc.relation.referencesLobell, D., & Asner, G. (2002). Moisture effects on soil reflectance. Soil Science Society of America Journal, 66(3), 722–727. https://doi.org/10.2136/sssaj2002.7220
dc.relation.referencesMcDowell, M. L., Bruland, G. L., Deenik, J. L., Grunwald, S., & Knox, N. M. (2012). Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy. Geoderma, 189–190, 312–320. https://doi.org/10.1016/j.geoderma.2012.06.009
dc.relation.referencesMosquera, C. S., Martínez, M. J., Guerrero, J. A., & Hansen, E. W. (2007). Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia. Revista Colombia de Química, 39, 213–225.
dc.relation.referencesMouazen, A. M., Karoui, R., De Baerdemaeker, J., & Ramon, H. (2006). Characterization of Soil Water Content Using Measured Visible and Near Infrared Spectra. Soil Science Society of America Journal, 70(4), 1295. https://doi.org/10.2136/sssaj2005.0297
dc.relation.referencesMouazen, Abdul Mounem, De Baerdemaeker, J., & Ramon, H. (2005). Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil and Tillage Research, 80(1–2), 171–183. https://doi.org/10.1016/j.still.2004.03.022
dc.relation.referencesMurray, I. (2004). Scattered information: philosophy and practice of near infrared spectroscopy. Near Infrared Spectroscopy: Proceedings of the 11th International Conference, 1–12.
dc.relation.referencesNawar, S., Buddenbaum, H., Hill, J., Kozak, J., & Mouazen, A. M. (2016). Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research, 155, 510–522. https://doi.org/10.1016/J.STILL.2015.07.021
dc.relation.referencesNeema, D. L., Shah, A., & Patel, A. N. (1987). A statistical optical model for light reflection and penetration through sand. International Journal of Remote Sensing, 8(8), 1209–1217. https://doi.org/10.1080/01431168708954765
dc.relation.referencesNocita, M. (2014). The contribution of diffuse reflectance spectroscopy to soil organic carbon analysis : from laboratory to airborne spectroscopy.
dc.relation.referencesNocita, M., Stevens, A., Noon, C., & van Wesemael, B. (2013). Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma, 199, 37–42. https://doi.org/10.1016/j.geoderma.2012.07.020
dc.relation.referencesNocita, M., Stevens, A., & van Wesemael, B. (2011). Improving spectral techniques to determine soil organic carbon by accounting for soil moisture effects. 60(2), 3214–3215.
dc.relation.referencesNocita, M., Stevens, A., van Wesemael, B., Brown, D. J., Shepherd, K. D., Towett, E., … Montanarella, L. (2015). Soil spectroscopy: An opportunity to be seized. Global Change Biology, 21(1), 10–11. https://doi.org/10.1111/gcb.12632
dc.relation.referencesO’Neal, A. M. (1927). The effect of moisture on the color of certain Iowa soils. Soil Science Society of America Journal, B8, 158–174.
dc.relation.referencesOGEN, Y., FAIGENBAUM-GOLOVIN, S., GRANOT, A., SHKOLNISKY, Y., GOLDSHLEGER, N., & BEN-DOR, E. (2019). Removing Moisture Effect on Soil Reflectance Properties: A Case Study of Clay Content Prediction. Pedosphere, 29(4), 421–431. https://doi.org/10.1016/S1002-0160(19)60811-8
dc.relation.referencesOMM. (2011). Hidrología-De la medición a la información hidrológica OMM-No 168. Retrieved from www.wmo.int
dc.relation.referencesOrdóñez Delgado, N., & Bolívar Gamboa, A. (2014). Levantamiento agrológico del Centro Agropecuario (Universidad Nacional de Colombia & Instituto Geográfico Agustín Codazzi. Subdirección de Agrología, Eds.). Bogotá: Imprenta Nacional de Colombia.
dc.relation.referencesPalmer, K. F., & Williams, D. (1974). Optical properties of water in the near infrared. J. Opt. Soc. Am., 64(8), 1107–1110. https://doi.org/10.1364/JOSA.64.001107
dc.relation.referencesReich, G. (2005). Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2005.01.020
dc.relation.referencesRuiz, A. (2006). Origen, formación, estructura y comportamiento de la arcilla de Bogotá. Universidad de Los Andes.
dc.relation.referencesSkoog, D. A., Holler, F. J., & Crouch, S. R. (2007). Principles of Instrumental Analysis. Retrieved from https://books.google.com.co/books?id=GrOsQgAACAAJ
dc.relation.referencesSlaughter, D. C., Pelletier, M. G., & Upadhyaya, S. K. (2001). Sensing Soil Moisture Using NIR Spectroscopy. 17(2), 241–247.
dc.relation.referencesSoil Survey Staff. (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. In Soil Science. https://doi.org/10.1097/00010694-197704000-00011
dc.relation.referencesSomers, B., Gysels, V., Verstraeten, W. W., Delalieux, S., & Coppin, P. (2010). Modelling moisture-induced soil reflectance changes in cultivated sandy soils: a case study in citrus orchards. European Journal of Soil Science, 61(6), 1091–1105. https://doi.org/10.1111/j.1365-2389.2010.01305.x
dc.relation.referencesStenberg, B, & Viscarra Rossel, R. A. (2010). Proximal Soil Sensing. In R. A. Viscarra Rossel, A. B. McBratney, & B. Minasny (Eds.), Proximal Soil Sensing. https://doi.org/10.1007/978-90-481-8859-8
dc.relation.referencesStenberg, Bo, Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Visible and Near Infrared Spectroscopy in Soil Science. In Advances in Agronomy (Vol. 107, pp. 163–215). https://doi.org/10.1016/S0065-2113(10)07005-7
dc.relation.referencesTopp, G. C., Reynolds, W. D., Green, R. E., & Dalton, F. N. (1992). Development of Time-Domain Reflectometry for Measuring Soil Water Content and Bulk Soil Electrical Conductivity. In Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice: Vol. sssaspecialpubl (pp. 143–167). https://doi.org/10.2136/sssaspecpub30.c8
dc.relation.referencesTwomey, S. A., Bohren, C. F., & Mergenthaler, J. L. (1986). Reflectance and albedo differences between wet and dry surfaces. Applied Optics, 25(3), 431. https://doi.org/10.1364/AO.25.000431
dc.relation.referencesWang, H., Peng, J., Xie, C., Bao, Y., & He, Y. (2015). Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors, 15(5), 11889–11927. https://doi.org/10.3390/s150511889
dc.relation.referencesWeidong, L., Baret, F., Xingfa, G., Qingxi, T., Lanfen, Z., & Bing, Z. (2002). Relating soil surface moisture to reflectance. Remote Sensing of Environment, 81(2–3), 238–246. https://doi.org/10.1016/S0034-4257(01)00347-9
dc.relation.referencesWhalley, W. R., Dean, T. J., & Izzard, P. (1992). Evaluation of the capacitance technique as a method for dynamically measuring soil water content. Journal of Agricultural Engineering Research, 52, 147–155. https://doi.org/10.1016/0021-8634(92)80056-X
dc.relation.referencesWhalley, W. R., Leeds-Harrison, P. B., & Bowman, G. E. (1991). Estimation of soil moisture status using near infrared reflectance. Hydrological Processes, 5(3), 321–327. https://doi.org/10.1002/hyp.3360050312
dc.relation.referencesWhalley, W. R., & Stafford, J. V. (1992). Real-time sensing of soil water content from mobile machinery: Options for sensor design. Computers and Electronics in Agriculture, 7(4), 269–284. https://doi.org/10.1016/S0168-1699(05)80010-9
dc.relation.referencesWhiting, M. L., Li, L., & Ustin, S. L. (2004). Predicting water content using Gaussian model on soil spectra. Remote Sensing of Environment, 89(4), 535–552. https://doi.org/10.1016/J.RSE.2003.11.009
dc.relation.referencesWilson, M. J. (2019). The importance of parent material in soil classification: A review in a historical context. Catena, 182(May), 104131. https://doi.org/10.1016/j.catena.2019.104131
dc.relation.referencesWold, H. (1973). Nonlinear Iterative Partial Least Squares (NIPALS) Modelling: Some Current Developments. In Multivariate Analysis–III (pp. 383–407). https://doi.org/10.1016/B978-0-12-426653-7.50032-6
dc.relation.referencesZamora, J., & Cristancho, F. (2008). La Humedad en las Propiedades Fisicas del Suelo. 1–20. Retrieved from http://gfnun.unal.edu.co/fileadmin/content/gruposdeinvestigacion/fisicanuclear/Tesis/JCZamoraTG08.pdf
dc.relation.referencesZhu, Y. (1984). Study on the rule of soil reflectance varied with different soil moisture. Soil Journal (Chine), 21, 194–202.
dc.relation.referencesZossi, S., & Sorol, N. (2010). Espectroscopia por infrarrojo cercano (NIRS): Su aplicación en análisis de jugos de caña de azúcar. Revista Industrial y Agrícola de Tucumán, 87(1), 01–06.
dc.relation.referencesAGROSAVIA. (n.d.). Centro de Investigación Carimagua. Retrieved October 21, 2019, from https://www.agrosavia.co/nosotros/sedes/centro-de-investigación-carimagua
dc.relation.referencesAlvarado, P. (1991). Estudio semidetallado de suelos sector Carimagua-Gaviotas (Departamentos del Meta y Vichada). (p. 336). p. 336. Retrieved from http://hdl.handle.net/20.500.12324/18314 Alvarado, P. (1991). Estudio semidetallado de suelos sector Carimagua-Gaviotas (Departamentos del Meta y Vichada). (p. 336). p. 336. Retrieved from http://hdl.handle.net/20.500.12324/18314
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSpectral response
dc.subject.proposalRespuesta espectral
dc.subject.proposalPrecision agriculture
dc.subject.proposalAgricultura de precisión
dc.subject.proposalPartial least squares regression
dc.subject.proposalRegresión de mínimos cuadrados parciales
dc.subject.proposalAnálisis de componentes principales
dc.subject.proposalPrincipal component analysis
dc.subject.proposalNear infrared
dc.subject.proposalInfrarrojo cercano
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito