Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorVarón Durán, Gloria Margarita
dc.contributor.advisorAmortegui Gil, Francisco Javier
dc.contributor.authorBarón Moreno, Fabián Enrique
dc.date.accessioned2020-05-19T16:04:47Z
dc.date.available2020-05-19T16:04:47Z
dc.date.issued2020-04-14
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77535
dc.description.abstractLas redes de transmisión de energía son limitadas principalmente por dos factores, flecha de la catenaria, cuyo aumento lleva a incumplir distancias de seguridad, y la temperatura del conductor, cuyo aumento produce pérdidas en su tensión de rotura y un envejecimiento prematuro. Para evitar esto, las redes de transmisión se dimensionan de dos formas: estática, suponiendo las peores condiciones de carga y medioambientales, y dinámica, usando la temperatura del conductor para ajustar la carga de la línea. Medir la temperatura en redes de transmisión de energía representa un reto dados los voltajes a los que ellas operan, para esto existen varios métodos y tecnologías que permiten medir directa o indirectamente la temperatura del conductor. Entre los métodos de medición directa está el uso de sensores de fibra óptica, los cuales tienen excelentes propiedades eléctricas y físicas propias de la fibra óptica. Dentro de los sensores ópticos están los sensores basados en redes de difracción de Bragg (FBG). En la presente investigación se hace uso de sensores FBG para medir la temperatura de un segmento a escala de una línea de transmisión bajo condiciones controladas, usando sensores FBG seleccionados de acuerdo con las condiciones de operación de las redes de transmisión colombianas. Se observa que la lluvia y radiación solar son las variables que más afectan la temperatura de la línea, se diseña un método de adhesión de los sensores FBG a la línea y finalmente se diseña un sistema de medición de energía para una línea ejemplo de 5 km.
dc.description.abstractPower transmission lines are mainly limited by two factors, Sag, since an increase of it can reduce the clearance to ground and nearby objects, and the temperature of the conductor, since a high temperature causes loss in tensile strength and a premature ageing. To avoid that, power transmission lines are rated in two ways: Static Rating, assuming the worst-case conditions of load and weather, and Dynamic Rating, using the temperature of the conductor to calculate the load of the line. Measuring the temperature of a power transmission line can be challenging due the high voltage that the sensors must withstand. Several methods and technologies exist to measure temperature directly or indirectly from the conductor. One of those direct measurement methods is the use of fiber optic-based sensors, which have excellent physical and electrical properties specific to fiber optics. Fiber Bragg Gratings sensors are one of the most used optical fiber sensor types. In this research FBG sensors are used to measure the temperature of a power line segment, under controlled conditions using FBG sensors selected according to the operation conditions of the Colombian power networks. It was observed that rain and solar radiation affect the temperature of the conductor. A union method of the FBG sensors to the line was designed and last, a temperature measuring system was designed for a 5 km sample power transmission line.
dc.format.extent99
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc380 - Comercio , comunicaciones, transporte::384 - Comunicaciones
dc.titleDiseño de un sistema de medición de temperatura para líneas de transmisión y distribución de energía utilizando sensores ópticos basados en redes de difracción de Bragg
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ingeniería – Telecomunicaciones
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Telecomunicaciones
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (CMUN)
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] J. Rosero and J. Chinchilla-Guarin, “Impact of Including Dynamic Line Rating Model on Colombian Power System,” 4th Int. Conf. Smart Energy Grid Eng., pp. 36–40, 2016.
dc.relation.references[2] D. Balango, B. Nemeth, and G. Gocsei, “Predicting conductor sag of power lines in a new model of dynamic line rating,” 33rd Electr. Insul. Conf. EIC 2015, no. June, pp. 41–44, 2015.
dc.relation.references[3] S. C. E. Jupe, D. Kadar, G. Murphy, M. G. Bartlett, and K. T. Jackson, “Application of a dynamic thermal rating system to a 132kV distribution network,” IEEE PES Innov. Smart Grid Technol. Conf. Eur., pp. 1–8, 2011.
dc.relation.references[4] M. Musavi, D. Chamberlain, and Q. Li, “Overhead conductor dynamic thermal rating measurement and prediction,” SMFG 2011 - IEEE Int. Conf. Smart Meas. Grids, Proc., no. 1, pp. 135–138, 2011.
dc.relation.references[5] D. J. Spoor and J. P. Roberts, “Development and Experimental Validation of a Weather-Based Dynamic Line Rating System,” IEEE PES Innov. Smart Grid Technol., 2011.
dc.relation.references[6] L. Bjerkan, “Application of fiber-optic bragg grating sensors in monitoring environmental loads of overhead power transmission lines.,” Appl. Opt., vol. 39, no. 4, pp. 554–560, 2000.
dc.relation.references[7] Q. Li, M. Musavi, and D. Chamberlain, “Overhead conductor thermal rating using neural networks,” SMFG 2011 - IEEE Int. Conf. Smart Meas. Grids, Proc., pp. 139–142, 2011.
dc.relation.references[8] M. Ntuli, R. Xezile, N. Mbuli, J. H. C. Pretorius, and L. Motsoeneng, “Increasing the capacity of transmission lines via current uprating: An updated review of benefits, considerations and developments,” Proc. 2016 Australas. Univ. Power Eng. Conf. AUPEC 2016, pp. 1–6, 2016.
dc.relation.references[9] A. H. Wijethunga, J. V. Wijayakulasooriya, J. B. Ekanayake, and N. De Silva, “Conductor temperature based low cost solution for dynamic line rating calculation of power distribution lines,” 2015 IEEE 10th Int. Conf. Ind. Inf. Syst. ICIIS 2015 - Conf. Proc., pp. 128–133, 2016.
dc.relation.references[10] I. Albizu, E. Fernández, A. J. Mazón, and J. Bengoechea, “Influence of the conductor temperature error on the overhead line ampacity monitoring systems,” IET Gener. Transm. Distrib., vol. 5, no. 4, p. 440, 2011.
dc.relation.references[11] L. C. Cradden and G. P. Harrison, “Adapting overhead lines to climate change: Are dynamic ratings the answer?,” Energy Policy, vol. 63, pp. 197–206, 2013.
dc.relation.references[12] J. A. Valencia Marín, C. A. García Botero, W. A. Martínez Moreno, and R. Rodríguez Hernández, “Proyección de la demanda de energía eléctrica y potencia máxima en Colombia,” UPME. SIEL, Bogotá, p. 55, 2016.
dc.relation.references[13] C. Desandré, M. Mathiou, V. Bottura, M. C. Borlino, L. Cerise, and E. Imperial, “Method for monitoring the electromagnetic impacts due to high voltage overheads lines in Aosta Valley,” IEEE Int. Symp. Electromagn. Compat., 2012.
dc.relation.references[14] R. Bhattarai, A. Haddad, H. Griffiths, and N. Harid, “Voltage uprating of overhead transmission lines,” Proc. Univ. Power Eng. Conf., 2010.
dc.relation.references[15] A. M. Mejía Solanilla, “Análisis técnico y económico de la repotenciación de líneas aéreas de alta tensión en un sistema de subtransmisión,” Universidad tecnológica de Pereira, 2008.
dc.relation.references[16] K. Kopsidas and S. M. Rowland, “Evaluating opportunities for increasing power capacity of existing overhead line systems,” IET Gener. Transm. Distrib., vol. 5, no. 1, p. 1, 2011.
dc.relation.references[17] B. Subba Reddy and D. Chatterjee, “Performance evaluation of high temperature high current conductors,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 3, pp. 1570–1579, 2016.
dc.relation.references[18] S. M. Téllez Gutiérrez, “Comportamiento de conductores eléctricos usados en líneas de transmisión ante esfuerzos electromecánicos y térmicos combinados,” Universidad Nacional de Colombia, 2011.
dc.relation.references[19] Minminas, “Reglamento Tecnico de Instalaciones Electricas, RETIE 2013,” 2013.
dc.relation.references[20] F. Jakl and A. Jakl, “Effect of elevated temperatures on mechanical properties of overhead conductors under steady state and short-circuit conditions,” IEEE Trans. Power Deliv., vol. 15, no. 1, pp. 242–246, 2000.
dc.relation.references[21] G. D. B. Moore P J, “Remote sensing of overhead line conductor temperature using an infra-red sensor,” IEE Conf. Publ., vol. 2000, no. CP478, pp. 385–389, 2000.
dc.relation.references[22] S. Beryozkina, A. Sauhats, A. Banga, and I. Jakusevics, “Testing thermal rating methods for the overhead high voltage line,” 12th Int. Conf. Environ. Electr. Eng. EEEIC 2013, pp. 215–220, 2013.
dc.relation.references[23] B. S. Reddy and D. Chatterjee, “Computation of current and temperature distribution for high temperature low sag conductors,” Proc. 6th IEEE Power India Int. Conf. PIICON 2014, pp. 1–6, 2014.
dc.relation.references[24] C. Tumelo-Chakonta and K. Kopsidas, “Assessing optimal conductor utilization under N-1 overload security studies,” 2013 IEEE Grenoble Conf. PowerTech, POWERTECH 2013, pp. 1–6, 2013.
dc.relation.references[25] IEEE Power Engineering Society, IEEE Guide for Determining the Effects of High-Temperature Operation on Conductors, Connectors, and Accessories, no. IEEE Std 1283TM-2004. 2005.
dc.relation.references[26] J. R. Harvey, “Effect of elevated temperature on the strength of aluminum conductors,” IEEE Trans. Power Appar. Syst., vol. 98, pp. 1769–1772, 1972.
dc.relation.references[27] A. N. Akpolat, S. V. Nese, and E. Dursun, “Towards to smart grid: Dynamic line rating,” Proc. - 2018 6th Int. Istanbul Smart Grids Cities Congr. Fair, ICSG 2018, pp. 96–100, 2018.
dc.relation.references[28] IEEE Power and Energy Society, IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors. 2013.
dc.relation.references[29] C. R. Black and W. A. Chisholm, “Key Considerations for the Selection of Dynamic Thermal Line Rating Systems,” IEEE Trans. Power Deliv., vol. 30, no. 5, pp. 2154–2162, 2015.
dc.relation.references[30] R. G. Olsen and K. S. Edwards, “A New Method for Real-Time Monitoring of High-Voltage Transmission Line Conductor Sag,” IEEE Power Eng. Rev., vol. 22, no. 4, pp. 62–63, 2002.
dc.relation.references[31] A. K. Kazerooni, J. Mutale, M. Perry, S. Venkatesan, and D. Morrice, “Dynamic thermal rating application to facilitate wind energy integration,” 2011 IEEE PES Trondheim PowerTech Power Technol. a Sustain. Soc. POWERTECH 2011, 2011.
dc.relation.references[32] E. M. Carlini, S. Favuzza, S. E. Giangreco, F. Massaro, and C. Quaciari, “Uprating an overhead line. Italian TSO applications for integration of RES,” 4th Int. Conf. Clean Electr. Power Renew. Energy Resour. Impact, ICCEP 2013, pp. 470–475, 2013.
dc.relation.references[33] S. Jupe, M. Bartlett, and K. Jackson, “Dynamic thermal ratings: The state of the art,” CIRED 21st Int. Conf. Electr. Distrib., no. June, pp. 6–9, 2011.
dc.relation.references[34] CIGRE, Thermal Behaviour of overhead Conductors. 2002.
dc.relation.references[35] X. Meng, H. Diao, M. Yang, and F. Chen, “A dynamic tracking approach to the temperature of overhead transmission lines based on electrical measurements,” Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2015-March, no. March, pp. 1–4, 2014.
dc.relation.references[36] W. G. B. 3. CIGRE, Guide for Application of Direct Real-time Monitoring Systems, no. June. 2012.
dc.relation.references[37] D. Balango, I. Pacsonyi, and B. Nemeth, “Overview of a new dynamic line rating system, from modelling to measurement,” IYCE 2015 - Proc. 2015 5th Int. Youth Conf. Energy, pp. 1–6, 2015.
dc.relation.references[38] D. L. Alvarez, J. A. Rosero, F. Faria Da Silva, C. L. Bak, and E. E. Mombello, “Dynamic line rating - Technologies and challenges of PMU on overhead lines: A survey,” Proc. - 2016 51st Int. Univ. Power Eng. Conf. UPEC 2016, vol. 2017-Janua, pp. 1–6, 2017.
dc.relation.references[39] H. Braendle, P. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, and K. Bohnert, “Reliability of fiber Bragg grating based sensors for downhole applications Reliability of ® ber Bragg grating based sensors for downhole applications,” vol. 4247, no. FEBRUARY 2003, pp. 364–376, 2015.
dc.relation.references[40] H. Nakstad and J. T. Kringlebotn, “Probing oil fields,” Nat. Photonics, vol. 2, no. March, pp. 147–149, 2008.
dc.relation.references[41] S. Poeggel, G. Leen, K. Bremer, and E. Lewis, “Miniature Optical fiber combined pressure- and temperature sensor for medical applications,” Proc. IEEE Sensors, vol. 4, no. 1, pp. 1–4, 2012.
dc.relation.references[42] G. Shambat et al., “A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications,” Appl. Phys. Lett., vol. 100, no. 21, 2012.
dc.relation.references[43] Ł. Dziuda and F. W. Skibniewski, “A new approach to ballistocardiographic measurements using fibre Bragg grating-based sensors,” Biocybern. Biomed. Eng., Feb. 2014.
dc.relation.references[44] G. Alvarez-Botero, F. E. Barón, C. C. Cano, O. Sosa, and M. Varón, “Optical sensing using fiber bragg gratings: fundamentals and applications,” IEEE Instrum. Meas. Mag., pp. 33–38, 2017.
dc.relation.references[45] M. Jones, “A sensitive issue,” Nat. Photonics, vol. 2, no. March, pp. 153–1554, 2008.
dc.relation.references[46] S. Adachi, “Distributed optical fiber sensors and their applications,” SICE Annu. Conf. 2008, pp. 329–333, 2008.
dc.relation.references[47] M. Niklès and F. Ravet, “Distributed fibre sensors: Depth and sensitivity,” Nat. Photonics, vol. 4, no. 7, pp. 431–432, Jul. 2010.
dc.relation.references[48] A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and applications in telecomunications and sensing. Boston, London: Artech House, 1999.
dc.relation.references[49] J. Stone, “Photorefractivity in GeO2-doped silica fiber,” J. Appl. Phys., vol. 62, pp. 4371–4374, 1987.
dc.relation.references[50] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett., vol. 14, no. 15, pp. 823–825, 1989.
dc.relation.references[51] Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol., vol. 8, no. 4, pp. 355–375, Apr. 1997.
dc.relation.references[52] F. E. Barón, G. Alvarez-Botero, F. Amortegui, D. Pastor, and M. Varon, “Temperature measurements on overhead lines using Fiber Bragg Grating sensors,” in 2017 IEEE international Instrumentation and Measurement Technology Conference, 2017, pp. 1128–1131.
dc.relation.references[53] S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments.,” Sensors (Basel)., vol. 12, no. 2, pp. 1898–918, Jan. 2012.
dc.relation.references[54] X. Dong, H. Zhang, B. Liu, and Y. Miao, “Tilted fiber Bragg gratings: Principle and sensing applications,” Photonic Sensors, vol. 1, no. 1, pp. 6–30, Dec. 2010.
dc.relation.references[55] W. Ecke, M. W. M. W. Schmitt, I. Jena, V. Paper, F. Gmbh, and C. Kg, “Fiber bragg gratings in industrial sensing,” in OSA Technical Conference OFC/NFOEC, 2013, pp. 1–67.
dc.relation.references[56] X. Li and Y. Li, “High Voltage Power Line Temperature and Strain Simultaneous Measurement Research Based on FBG,” 2010 Asia-Pacific Power Energy Eng. Conf., no. 2, pp. 1–4, 2010.
dc.relation.references[57] T. K. Gangopadhyay, M. C. Paul, and L. Bjerkan, “Fiber-optic sensor for real-time monitoring of temperature on high voltage (400KV) power transmission lines,” Int. Conf. Opt. Fiber Sens., vol. 7503, no. 1, pp. 75034M-75034M–4, Oct. 2009.
dc.relation.references[58] Z. Luo, H. Wen, H. Guo, and M. Yang, “A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings.,” Opt. Express, vol. 21, no. 19, pp. 22799–807, Sep. 2013.
dc.relation.references[59] L. Li, H. He, and Y. Lin, “Study on the spatial division multiplexing technique of fiber Bragg grating sensors,” 2009 Symp. Photonics Optoelectron. SOPO 2009, pp. 1–3, 2009.
dc.relation.references[60] A. Triana, D. Pastor, and M. Varon, “Enhancing the Multiplexing Capabilities of Sensing Networks using Spectrally Encoded Fiber Bragg Grating Sensors,” J. Light. Technol., vol. 34, no. 19, pp. 1–1, 2016.
dc.relation.references[61] MicronOptics, “Fiber Bragg Grating Array | os1200,” 2015. [Online]. Available: http://www.micronoptics.com/wp-content/uploads/2015/12/os1200_1512.pdf.
dc.relation.references[62] S. Fibres, “SmartTemp FBG Temperature Sensor,” SmartFibres, 2020. [Online]. Available: https://www.smartfibres.com/files/pdf/SmartTemp.pdf. [Accessed: 01-Feb-2020].
dc.relation.references[63] Corning, “Anaerobic Connector , LC Anaerobic Connector,” 2016. [Online]. Available: http://csmedia.corning.com/opcomm/Resource_Documents/spec_sheets_rl/fojp/95-201-98-SP_NAFTA_AEN.pdf.
dc.relation.references[64] Corning, “Corning ® ClearCurve ® Single-Mode Mid-Temperature Specialty Optical Fibers for Harsh Environments,” 2018. [Online]. Available: https://www.corning.com/media/worldwide/csm/documents/ClearCurve Single Mode Mid Temp.pdf.
dc.relation.references[65] MicronOptics, “os1100,” 2020. [Online]. Available: http://www.micronoptics.com/wp-content/uploads/2017/07/os1100-1.pdf.
dc.relation.references[66] Micron Optics (USA), “HYPERION Optical Sensing Instrument,” 2016. [Online]. Available: http://www.micronoptics.com/wp-content/uploads/2018/05/LUNA-Data-Sheet-Micron-si155_v2.pdf.
dc.relation.references[67] Micron Optics (USA), “TN1114 - UNDERSTANDING x55 DYNAMIC RANGE PERFORMANCE TN1114,” 2016. [Online]. Available: http://www.micronoptics.com/download/tn1114-understanding-x55-dynamic-range-performance/?wpdmdl=2562.
dc.relation.references[68] P. Insulators, “Fiber Optic Hole Post Insulator,” Datasheet, 2020. [Online]. Available: https://www.ppcinsulators.com/wp-content/uploads/2018/08/PPC-Fiber-Optic-Hole-Post-Flyer_US-letter_LQ.pdf.
dc.relation.references[69] OFS, “Wide Temperature AllWave® FLEX Zero Water Peak (ZWP) Single-Mode Fiber.” OFS, pp. 1–2, 2018.
dc.relation.references[70] M. Kovac, “OTLM System Line Management,” 2020. [Online]. Available: https://www.otlm.eu/energy/otlm-device/.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalOverhead Power Transmission lines
dc.subject.proposalSensores FBG
dc.subject.proposalOptical fiber sensors
dc.subject.proposalLíneas de transmisión
dc.subject.proposalFiber Bragg Gratings
dc.subject.proposalSensores de fibra óptica
dc.subject.proposalRedes de difracción de Bragg
dc.subject.proposalStatic line rating
dc.subject.proposalDynamic Line Rating
dc.subject.proposalDimensionamiento estático
dc.subject.proposalDimensionamiento dinámico
dc.subject.proposalTemperature measurement
dc.subject.proposalMedición de temperatura
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito