Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorNarváez Rincón, Paulo César
dc.contributor.advisorOrjuela Londoño, Alvaro
dc.contributor.authorPalacios Corredor, Laura Marcela
dc.date.accessioned2020-05-26T17:01:41Z
dc.date.available2020-05-26T17:01:41Z
dc.date.issued2020-02-28
dc.identifier.citationformato APA: Palacios C, L. M. (2020). Secado por aspersión de mieles de caña como base para la obtención de productos instantáneos de panela. Bogotá: Universidad Nacional de Colombia
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77551
dc.description.abstractThis project developed a process for the spray drying of sugar cane honeys. The obtained technique allows overcoming typical agglomeration, caking and stickiness problems, and to minimize the use of encapsulating agents that negatively affect sensory attributes of the obtained powder product. The main factors affecting the spray drying of high-sugar content foods were studied: physicochemical and rheological properties of the honeys (sugars profile, density, surface tension and viscosity) and operating conditions (atomizer nozzle diameter, and air and feed flow ratio). In the study, the processed sugar cane honeys were obtained from sugarcane mills (trapiches) of three departments with the highest production of panela in the country (Cundinamarca, Boyacá and Valle). The best set of operating conditions were defined in order to ensure a high powder yield and recovery rate, with and without the use of additives during the drying process. Additionally, the samples without the additives were chemical analysis of the flavoring agents of panela (methyl pyrazine, furfural, propanoic acid) was carried out, and it was observed that those were stable under environmental conditions for at least 3 months, at storage temperatures between 15 and 24 ° C, and relative humidity less than 50%. It was also established that the use of film-forming additives (different from maltodextrin) in concentrations of less than 2% by weight enables a higher powder recovery without affecting the sensory spectrum of the product. Finally, a computational fluid dynamics (CFD) model was proposed for the spray drying process, and it can serve as a tool for subsequent up-scaling at the industrial level.
dc.description.abstractEn este proyecto se desarrolló un proceso de instantanización de panela usando la técnica de secado por aspersión de mieles de caña. La técnica permite superar los problemas típicos de aglomeración, apelmazamiento y pegajosidad, y minimizar el uso de agentes encapsulantes que afecten las propiedades sensoriales del producto en polvo obtenido. Se estudiaron los principales factores que afectan el secado por aspersión de alimentos con alto contenido de azúcar: propiedades fisicoquímicas y reológicas de las mieles (perfil de azúcares, densidad, tensión superficial y viscosidad) y condiciones de operación en el secado (diámetro de la boquilla del atomizador y relación de flujo de aire y de alimento). En el estudio se emplearon mieles de caña obtenidas en los trapiches de tres de los departamentos con mayor producción de panela en el país (Cundinamarca, Boyacá y Valle). Se establecieron las mejores condiciones de operación para maximizar el rendimiento y la tasa de recuperación del producto en polvo en el proceso de secado, con y sin el uso de aditivos. Adicionalmente, al producto en polvo sin aditivos se le realizó el análisis químico de los aportantes de aroma de la panela (metil pirazina, furfural, ácido propanoico), los cuales se mantuvieron estables durante al menos 3 meses, a temperaturas de almacenamiento entre 15 y 24°C, y humedades relativas menores a 50%. Igualmente, se estableció que el uso de aditivos formadores de película (diferentes a maltodextrina) en concentraciones menores al 2% en peso, permite incrementar sustancialmente la recuperación del polvo, sin afectar su espectro sensorial. Finalmente, se planteó un modelo del proceso de secado, basado en dinámica de fluidos computacional (CFD), el cual que servirá de herramienta para el escalado posterior a nivel industrial.
dc.format.extent233
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relationDOI: 10.15446/agron.colomb.v34n1supl.58429
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleSecado por aspersión de mieles de caña como base para la obtención de productos instantáneos de panela
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de investigación en procesos químicos y bioquímicos
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references(ICONTEC), I. C. de N. T. y C. (1996). NTC 852 -1. Cereales. Determinacion de densidad en masa.
dc.relation.referencesAcuña, O. (2008). Panela granulada: isotermas de sorción de humedad, modelos de ajuste y calor de sorción.
dc.relation.referencesAdhikari, B., Howes, T., Bhandari, B. ., & Truong, V. (2003a). In situ characterization of stickiness of sugar-rich foods using a linear actuator driven stickiness testing device. Journal of Food Engineering, 58(1), 11–22. https://doi.org/10.1016/S0260-8774(02)00328-X
dc.relation.referencesAdhikari, B., Howes, T., Bhandari, B. R., & Truong, V. (2003b). Characterization of the Surface Stickiness of Fructose–Maltodextrin Solutions During Drying. Drying Technology, 21(1), 17–34. https://doi.org/10.1081/DRT-120017281
dc.relation.referencesAdhikari, B., Howes, T., Bhandari, B. R., & Troung, V. (2004). Effect of addition of maltodextrin on drying kinetics and stickiness of sugar and acid-rich foods during convective drying: Experiments and modelling. Journal of Food Engineering, 62(1), 53–68.
dc.relation.referencesAdhikari, B., Howes, T., Lecomte, D., & Bhandari, B. R. (2005a). A glass transition temperature approach for the prediction of the surface stickiness of a drying droplet during spray drying. Powder Technology, 149(2–3), 168–179. https://doi.org/10.1016/j.powtec.2004.11.007
dc.relation.referencesAdhikari, B., Howes, T., Shrestha, A., & Bhandari, B. R. (2007). Effect of surface tension and viscosity on the surface stickiness of carbohydrate and protein solutions. Journal of Food Engineering, 79(4), 1136–1143. https://doi.org/10.1016/j.jfoodeng.2006.04.002
dc.relation.referencesAdhikari, B., Howes, T., Wood, B. J., & Bhandari, B. R. (2009a). The effect of low molecular weight surfactants and proteins on surface stickiness of sucrose during powder formation through spray drying. Journal of Food Engineering, 94(2), 135–143. https://doi.org/10.1016/j.jfoodeng.2009.01.022
dc.relation.referencesAgrospectiva, & Fedepanela. (2011). Instantanización de panela por aglomeración. Universidad Nacional de Colombia.
dc.relation.referencesAgrospectiva, & MINCIT. (2007). Propuesta sobre posibilidades futuras de negocios para la cadena de la panela. Bogotá.
dc.relation.referencesAguilera, J. M., del Valle, J. M., & Karel, M. (1995). Caking phenomena in amorphous food powders. Trends in Food Science and Technology, 6(5), 149. https://doi.org/10.1016/S0924-2244(00)89023-8
dc.relation.referencesAlamilla-Beltrán, L., Chanona-Pérez, J. J., Jiménez-Aparicio, A. R., & Gutiérrez-López, G. F. (2005). Description of morphological changes of particles along spray drying. Journal of Food Engineering, 67(1–2), 179–184. https://doi.org/10.1016/j.jfoodeng.2004.05.063
dc.relation.referencesAlarcón, A. L. (2017). Estudio del comportamiento de propiedades fisicoquímicas , reológicas y térmicas de jugos y mieles de caña panelera.
dc.relation.referencesAnandharamakrishnan, C., and S., P. I. (2015). 1 Introduction to spray drying. In Spray Drying Techniques for Food Ingredient Encapsulation.
dc.relation.referencesArias Giraldo, S., Ceballos Peñaloza, A. M., & Gutiérrez Mosquera, L. F. (2016). Determinación experimental de propiedades térmicas y físicas Para jugo de caña, miel y panela. Vitae.
dc.relation.referencesASTM Standard E1269. (2007). “Determining Specific Heat Capacity by DSC, 5432. https://doi.org/10.1520/E1269
dc.relation.referencesAstolfi-Filho, Z., Telis, V. R. N., de Oliveira, E. B., Coimbra, J. S. dos R., & Telis-Romero, J. (2011). Rheology and fluid dynamics properties of sugarcane juice. Biochemical Engineering Journal, 260–265. Retrieved from https://doi-org.ezproxy.unal.edu.co/10.1016/j.bej.2010.11.004%0Ahttp://hdl.handle.net/11449/72311
dc.relation.referencesAZTI Tecnalia. (2014). Tendencias alimentarias. Retrieved from http://www.foodtrendtrotters.com/2014/03/14/tendencias-en-nutricion-y-salud/
dc.relation.referencesBacio Parra, L. V. (2007). Optimización Multi-Objetivo en el Problema de Metodología de Superficie Multi-Respuesta. Centro de Investigación en Matemáticas, A. C. Retrieved from https://cimat.repositorioinstitucional.mx/jspui/bitstream/1008/69/2/TE 221.pdf
dc.relation.referencesBayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322–335. https://doi.org/10.1016/j.envsoft.2016.02.018
dc.relation.referencesBhandari, B.R, & Howes, T. (1999). Implication of glass transition for the drying and stability of dried foods. Journal of Food Engineering, 40(1–2), 71–79. https://doi.org/10.1016/S0260-8774(99)00039-4
dc.relation.referencesBhandari, Bhesh R., Datta, N., & Howes, T. (1997). Problems Associated With Spray Drying Of Sugar-Rich Foods. Drying Technology, 15(2), 671–684. https://doi.org/10.1080/07373939708917253
dc.relation.referencesBoonyai, P., Bhandari, B., & Howes, T. (2004). Stickiness measurement techniques for food powders: a review. Powder Technology, 145(1), 34–46. https://doi.org/10.1016/j.powtec.2004.04.039
dc.relation.referencesCarter, B. P., & Schmidt, S. J. (2012). Developments in glass transition determination in foods using moisture sorption isotherms. Food Chemistry, 132(4), 1693–1698. https://doi.org/10.1016/j.foodchem.2011.06.022
dc.relation.referencesCastellanos, O. F., Torres, L. M., & Flórez, D. H. (2010). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de la panela y su agroindustria en Colombia. Bogotá.
dc.relation.referencesCelis, T. (2017). UN COLOMBIANO CONSUME 19 KILOS DE PANELA CADA AÑO. La República, 21–23. Retrieved from https://www.agronegocios.co/agricultura/un-colombiano-consume-19-kilos-de-panela-cada-ano- 2622598
dc.relation.referencesCeuterick, M., Vandebroek, I., Torry, B., & Pieroni, A. (2008). Cross-cultural adaptation in urban ethnobotany: The Colombian folk pharmacopoeia in London. Journal of Ethnopharmacology, 120(3), 342–359. https://doi.org/10.1016/j.jep.2008.09.004
dc.relation.referencesClavijo, María. (2010). Estudio del efecto del uso de jugo de dos genotipos de caña de azúcar previamente descortezada y de la temperatura de la fuente de calentamiento sobre el proceso en la elaboración de panela granulada. Quito. https://doi.org/10.3171/2015.7.JNS151408
dc.relation.referencesColina, J., Guerra, M., Guilarte, D., & Alvarado, C. (2008). Evaluación de la funcionalidad de panelas artesanales como antioxidante y fuente de minerales. Archivos Latinoamericanos de Nutricion, 62(25), 1–17. https://doi.org/10.1021/jf020331q
dc.relation.referencesColina, J., Guerra, M., Guilarte, D., & Alvarado, C. (2012). Contenido de polifenoles y capacidad antioxidante de bebidas elaboradas con panela. Archivos Latinoamericanos de Nutrición, 62(3), 303–310. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84876776775&partnerID=tZOtx3y1
dc.relation.referencesCorpoica. (2003). Elaboración manuel de la panela granulada.
dc.relation.referencesCorpoica. (2007). Guía tecnológica para el manejo integral del sistema productivo de la caña panelera. Ministerio de Agricultura y Desarrollo Rural, Colombia; Corpoica, Bogotá, Colombia. Retrieved from http://www.panelamonitor.org/documents/519/guia-tecnologica-para-el-manejo-integral-del-siste/
dc.relation.referencesCortés, M., Ciro, H. J., Rodríguez, E., & Largo, E. (2012). Secado por aspersión de concentrado de caña panelera: una tecnología apropiada para mejorar la competitividad de la cadena. Universidad de Antioquia, 119. Retrieved from http://www.redalyc.org/articulo.oa?id=169823914009
dc.relation.referencesDe Maria, G. (2013). Panela: The natural nutritional sweetener. Agro Food Industry Hi-Tech, 24(6), 44–48. Retrieved from http://www.teknoscienze.com/articles/agro-food-industry-hi-tech-panela-the-natural-nutritional-sweetener.aspx#.VeCxFfl_N8s
dc.relation.referencesDefraeye, T. (2014). Advanced computational modelling for drying processes – A review. Applied Energy, 131, 323–344. https://doi.org/10.1016/j.apenergy.2014.06.027
dc.relation.referencesEsparza, M., & Antonio, J. (1990). Determinación de la humedad de equilibrio en panela. Agronomía Colombiana, 7, 70–75. Retrieved from http://www.panelamonitor.org/documents/575/determinacion-de-la-humedad-de-equilibrio-en-panel/
dc.relation.referencesEuromonitor, I. (2015). The Sugar Backlash and its Effects on Global Consumer Markets.
dc.relation.referencesExpósito, I., & Bringas, M. (2013). Ciencia y Tecnología de Alimentos Tecnología Enero - abril ISSN 0864-4497, pp. 45-48, 23(1), 45–48.
dc.relation.referencesFajardo, B. et al. (1999). Determinación de Algunas Propiedades Físicas y Mecánicas de la panela granulada. Revista de Ingeniería e Investigación, 43, 34–39. Retrieved from http://www.bdigital.unal.edu.co/23983/1/21079-71436-1-PB.pdf
dc.relation.referencesFAO. (2017). The future of food and agriculture. Trends and challenges. Roma. Retrieved from http://www.fao.org/3/a-i6583e.pdf
dc.relation.referencesFAOSTAT. (2017). FAOSTAT. Retrieved August 20, 2008, from http://www.fao.org/faostat/es/#data/QC
dc.relation.referencesFedepanela. (2015). En el mercado novedosas bebidas instantáneas de panela. Retrieved from http://www.fedepanela.org.co/index.php/publicaciones/noticias/88-novedosas-bebidas-instantaneas-de-panela-un-balance-ideal-entre-sabor-y-nutricion-1
dc.relation.referencesFedepanela. (2016). Centrales de mieles. Retrieved from http://www.fedepanela.org.co/index.php/publicacion/noticias/
dc.relation.referencesFedepanela. (2018). Cifras panela año 2017.
dc.relation.referencesFluent, A. (2016). ANSYS Engineering Analysis System User’s Manual (17th ed.). Houston.
dc.relation.referencesGahona, E. (2008). Introducción a la reología de alimentos. Universidad de Serna. Retrieved from http://datateca.unad.edu.co/contenidos/211613/Reologia_en_alimentos.pdf
dc.relation.referencesGarcía, A. A. D., & Castañeda, P. D. R. (2002). Análisis de las viscosidades de mieles y masas cocidas de las provincias de Santiago de Cuba y las tunas con vistas a establecer las variaciones más esperadas con la temperatura. Tecnología Química, XXII(2), 49-58. ISSN 0041-8420.
dc.relation.referencesGarcia, H., Peña, A., López, R., Duran, E., & Olvera, G. (2010). Desarrollo de un sistema de evaporación y concentración de jugos de múltiple efecto para mejorar la eficiencia térmica y productividad y disminuir el impacto ambiental en la producción de panela.
dc.relation.referencesGarcía, H. R. (1997). Caracterización nutricional de la panela. Corpoica.
dc.relation.referencesGarcía, J. M., Narváez, P. C., Heredia, F. J., Orjuela, Á., & Osorio, C. (2017). Physicochemical and sensory (aroma and colour) characterisation of a non-centrifugal cane sugar (“panela”) beverage. Food Chemistry, 228, 7–13. https://doi.org/10.1016/j.foodchem.2017.01.134
dc.relation.referencesGEA NIRO. (2012). The spray drying process. Retrieved February 15, 2014, from http://www.niro.com/niro/cmsdoc.nsf/WebDoc/ndkk5hmc6zSprayDryersSprayDryers
dc.relation.referencesGEA NIRO. (2018). spray drying. Small-scale solutions for R&D and production.
dc.relation.referencesGianfrancesco, A. (2009). SPRAY DRYING ENGINEERING : PARTICLE STICKINESS IN RELATION WITH AGGLOMERATION. Thèse. l’Institut des Sciences et Industries du Vivant et de l’Environnement. Retrieved from https://tel.archives-ouvertes.fr/pastel-00005602/document
dc.relation.referencesGoula, A. M., & Adamopoulos, K. G. (2005). Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties. Journal of Food Engineering, 66(1), 35–42. https://doi.org/10.1016/j.jfoodeng.2004.02.031
dc.relation.referencesGuerra, M. J., & Mujica, M. V. (2010). Physical and chemical properties of granulated cane sugar “panelas.” Sociedade Brasileira de Ciência e Tecnologia de Alimentos, 30(1), 250–257. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612010000100037
dc.relation.referencesGuerrero Useda, M., & Escobar Guzmán, J. (2015). Eficiencia técnica de la producción de panela The technical efficiency of Non Centrifugal Sugar production. Journal of Technology, 14(1), 107–116.
dc.relation.referencesGuevara L., M. A., & Belalcázar C., L. . (2017). NGL supersonic separator: modeling, improvement, and validation and adjustment of k-epsilon RNG modified for swirl flow turbulence model. Revista Facultad de Ingeniería, (82), 82–93. https://doi.org/10.17533/udea.redin.n82a11
dc.relation.referencesGutiérrez S., J. A. (2015). Modelación CFD y validación experimental del proceso de evaporación de agua en un secador por aspersión, 141. Retrieved from http://www.bdigital.unal.edu.co/51629/
dc.relation.referencesGuzmán G., S. P., & Castaño C., J. J. (2002). Secado por atomización del jugo de la caña de azúcar 1. Cenicafè, 53(4), 327–333. Retrieved from http://www.cenicafe.org/es/publications/arc053%252804%2529327-333.pdf
dc.relation.referencesHari, K., Jebitta, S. R., & Sivaraman, K. (2013). Production and characterization of sugarcane juice powder, 3, 20–34.
dc.relation.referencesHernández Ceja, Y. (2014). Elaboración de panela blanca a partir de jugo de caña purificado con carbón activado de bagazo y ultrafiltración. Universidad Veracruzana. Retrieved from http://www.panelamonitor.org/media/docrepo/document/files/elaboracion-de-panela-blanca-a-partir-de-jugo-de-cana-purificado-con-carbon-activado-de-bagazo-y-ultrafiltracion.pdf
dc.relation.referencesHines, W. W., & Montgomery, D. C. (1996). Probabilidad y estadística para ingeniería y administración (Tercera ed). México: compañia editorial continental, S.A. https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesICBF. (2015). Tabla de Composición de Alimentos Colombianos. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). (2009). NTC 1311- Productos agrícolas. Panela. Intipunya, P., Shrestha, A., Howes, T., & Bhandari, B. (2009). A modified cyclone stickiness test for characterizing food powders. Journal of Food Engineering, 94(3–4), 300–306. https://doi.org/10.1016/j.jfoodeng.2009.03.024
dc.relation.referencesJaffé, W. (2012). Azúcar no-centrifugada (Panela): producción mundial y comercio. Panela Monitor, 48.
dc.relation.referencesJaffé, W. R. (2012). Health Effects of Non-Centrifugal Sugar (NCS): A Review. Sugar Tech, 14(2), 87–94. https://doi.org/10.1007/s12355-012-0145-1
dc.relation.referencesJaffé, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43. https://doi.org/10.1016/j.jfca.2015.06.007
dc.relation.referencesJagannadha Rao, P. V. K., Das, M., & Das, S. K. (2009). Changes in physical and thermo-physical properties of sugarcane, palmyra-palm and date-palm juices at different concentration of sugar. Journal of Food Engineering, 90(4), 559–566.
dc.relation.referencesJagannadha Rao, P. V. K., Das, M., & S.K. Das. (2008). Thermophysical Properties of Sugarcane, Palmyra Palm, and Date-palm Granular Jaggery. International Journal of Food Properties, 11(4). Retrieved from http://dx.doi.org/10.1080/10942910701671281
dc.relation.referencesJagannadha Rao, Polamarasetty V K, Das, M., & Das, S. K. (2010). Effect of moisture content on glass transition and sticky point temperatures of sugarcane, palmyra-palm and date-palm jaggery granules. International Journal of Food Science and Technology, 45(1), 94–104. https://doi.org/10.1111/j.1365-2621.2009.02108.x
dc.relation.referencesJaskulski, M., Wawrzyniak, P., & Zbiciński, I. (2018). CFD simulations of droplet and particle agglomeration in an industrial counter-current spray dryer. Advanced Powder Technology, 29(7), 1724–1733. https://doi.org/10.1016/j.apt.2018.04.007
dc.relation.referencesJayasundera, M., Adhikari, B., Adhikari, R., & Aldred, P. (2011). The effect of protein types and low molecular weight surfactants on spray drying of sugar-rich foods. Food Hydrocolloids, 25(3), 459–469. https://doi.org/10.1016/j.foodhyd.2010.07.021
dc.relation.referencesJayasundera, M., Adhikari, B., Aldred, P., & Ghandi, A. (2009). Surface modification of spray dried food and emulsion powders with surface-active proteins: A review. Journal of Food Engineering, 93(3), 266–277. https://doi.org/10.1016/j.jfoodeng.2009.01.036
dc.relation.referencesJayasundera, Mithila, Adhikari, B., Adhikari, R., & Aldred, P. (2011). The effects of proteins and low molecular weight surfactants on spray drying of model sugar-rich foods: Powder production and characterisation. Journal of Food Engineering, 104(2), 259–271. https://doi.org/10.1016/j.jfoodeng.2010.12.017
dc.relation.referencesJayasundera, Mithila, Adhikari, B., Howes, T., & Aldred, P. (2011). Surface protein coverage and its implications on spray-drying of model sugar-rich foods: Solubility, powder production and characterisation. Food Chemistry, 128(4), 1003–1016. https://doi.org/10.1016/j.foodchem.2011.04.006
dc.relation.referencesJayasundera, Mithila, Adhikari, B., Howes, T., & Aldred, P. (2014). Corrigendum to “Surface protein coverage and its implications on spray-drying of model sugar-rich foods: Solubility, powder production and characterisation” [Food Chemistry 128 (2013) 1003–16]. Food Chemistry, 151, 161. https://doi.org/10.1016/j.foodchem.2013.11.017
dc.relation.referencesJiménez, N., Bohuon, P., Dornier, M., Bonazzi, C., Pérez, A. M., & Vaillant, F. (2012). Effect of water activity on anthocyanin degradation and browning kinetics at high temperatures (100–140°C). Food Research International, 47(1), 106–115. https://doi.org/10.1016/j.foodres.2012.02.004
dc.relation.referencesJohansen Crosby, E. (1989). Spray drying handbook. Drying Technology.
dc.relation.referencesKarthikeyan, J., & Samipillai, S. S. (2010). Sugarcane in therapeutics. Journal of Herbal Medicine and Toxicology, 4, 9–14. Retrieved from http://www.panelamonitor.org/media/docrepo/document/files/sugar-cane-in-therapeutics.pdf
dc.relation.referencesKemp, I. C., Hartwig, T., Herdman, R., Hamilton, P., Bisten, a., & Bermingham, S. (2015). Spray Drying with a Two-Fluid Nozzle to Produce Fine Particles: Atomisation, Scale-Up and Modelling. Drying Technology, 3937(November), 07373937.2015.1103748. https://doi.org/10.1080/07373937.2015.1103748
dc.relation.referencesKemp, Ian C., Wadley, R., Hartwig, T., Cocchini, U., See-Toh, Y., Gorringe, L., … Ricard, F. (2013). Experimental Study of Spray Drying and Atomization with a Two-Fluid Nozzle to Produce Inhalable Particles. Drying Technology. https://doi.org/10.1080/07373937.2012.710693
dc.relation.referencesKeshani, S., Daud, W. R. W., & Nourouzi, M. M. (2015). Spray drying: An overview on wall deposition, process and modeling. Journal of Food Engineering, 146, 152–162. https://doi.org/10.1016/j.jfoodeng.2014.09.004
dc.relation.referencesKeshani, S., Montazeri, M. H., Daud, W. R. W., & Nourouzi, M. M. (2015). CFD Modeling of Air Flow on Wall Deposition in Different Spray Dryer Geometries. Drying Technology. https://doi.org/10.1080/07373937.2014.966201
dc.relation.referencesKhaleel Abdul Fattah Mahmoud Al-Hasan. (2000). Effect of storage on flavour, colour and other sensory qualities of sugarcane juice. University of Putra, Malaysia. Retrieved from http://psasir.upm.edu.my/8426/1/FSMB_2000_17_A.pdf
dc.relation.referencesKhuenpet, K., Charoenjarasrerk, N., & Jaijit, S. (2016). Investigation of suitable spray drying conditions for sugarcane juice powder production with an energy consumption study. Agriculture and Natural Resources, 50(2), 139–145. https://doi.org/http://dx.doi.org/10.1016/j.anres.2015.08.003
dc.relation.referencesKrishnaiah, D., Nithyanandam, R., & Sarbatly, R. (2014). A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties. Critical Reviews in Food Science and Nutrition, 54(4), 449–473. https://doi.org/10.1080/10408398.2011.587038
dc.relation.referencesKuei-Yuan Chien. (1982). Predictions of channel and boundary layer flows with a low Reynolds number turbulence model. AIAA Journal, 20.
dc.relation.referencesKuriakose, R., & Anandharamakrishnan, C. (2010). Computational fluid dynamics (CFD) applications in spray drying of food products. Trends in Food Science & Technology, 21(8), 383–398. https://doi.org/10.1016/j.tifs.2010.04.009
dc.relation.referencesLabplant UK. (2004). SD-06 Spray dryer. Labplant. Assembly & operating instructions.
dc.relation.referencesLabuza, T. P., & Altunakar, B. (2006). 5 Water Activity Prediction and Moisture Sorption Isotherms. Water Activity in Foods (Vol. 100). https://doi.org/10.1002/9780470376454.ch5
dc.relation.referencesLangley, S. (2014). Negative attitude towards sugar changes consumer choices, research. Australian Food News. Retrieved from http://ausfoodnews.com.au/2014/11/26/negative-attitude-towards-sugar-changes-consumer-choices-research.html
dc.relation.referencesLangrish, T. A. G., & Fletcher, D. F. (2001). Spray drying of food ingredients and applications of CFD in spray drying. Chemical Engineering and Processing: Process Intensification, 40(4), 345–354. https://doi.org/10.1016/S0255-2701(01)00113-1
dc.relation.referencesLangrish, T. A. G., & Fletcher, D. F. (2003). Prospects for the Modelling and Design of Spray Dryers in the 21st Century. Drying Technology, 21(2), 197–215. https://doi.org/10.1081/DRT-120017743
dc.relation.referencesLargo A., E., Cortés R., M., & Ciro V., H. J. (2014). The adsorption thermodynamics of sugarcane (saccharum officinarum l.) powder obtained by spray drying technology. VITAE, Revista de La Facultad de Química Farmacéutica, 21(3), 165–177.
dc.relation.referencesLargo A., E., Cortés R., M., & Ciro V., H. J. (2015). Influence of Maltodextrin and Spray Drying Process Conditions on Sugarcane Juice Powder Quality. Revista Facultad Nacional de Agronomía, 68(1), 7509–7520. Retrieved from http://www.revistas.unal.edu.co/index.php/refame/article/viewFile/47839/49365
dc.relation.referencesLee, K. Y., Nurok, D., & Zlatkis, A. (1979). Determination of glucose, fructose and sucrose in molases by high-performance thin-layer chromatography. Journal of Chromatography A, 174(1), 187–193. https://doi.org/10.1016/S0021-9673(00)87049-1
dc.relation.referencesLin, J.-C., & Gentry, J. (2003). Spray Drying Drop Morphology: Experimental Study. Aerosol Science and Technology.
dc.relation.referencesMadariya, P. B., & Rao, K. J. (2012). A Study on Utilisation of Whey in Jaggery Production. Sugar Tech, 14(3), 295–303.
dc.relation.referencesMADR, M. de A. y D. (2018). Datos estadísticos cadena panela. Retrieved from http://www.agronet.gov.co/Paginas/Resultados-de-busqueda.aspx
dc.relation.referencesMaldonado Valderrama, J. (2006). Caracterización interfacial de proteínas y tensioactivos: aplicación a dispersiones alimentarias. Grupo de física de fluidos y biocoloides (Vol. Ph.D).
dc.relation.referencesMathlouthi, M., & Rogé, B. (2003). Water vapour sorption isotherms and the caking of food powders. Food Chemistry, 82(1), 61–71. https://doi.org/10.1016/S0308-8146(02)00534-4
dc.relation.referencesMeerod, K., Weerawatanakorn, M., & Pansak, W. (2019). Impact of Sugarcane Juice Clarification on Physicochemical Properties, Some Nutraceuticals and Antioxidant Activities of Non-centrifugal Sugar. Sugar Tech, (3), 471., 3, 471. https://doi.org/10.1007/s12355-018-0646-7.
dc.relation.referencesMestry, A. P., Mujumdar, A. S., & Thorat, B. N. (2011). Optimization of Spray Drying of an Innovative Functional Food: Fermented Mixed Juice of Carrot and Watermelon. Drying Technology, 29, 1121–1131. https://doi.org/10.1080/07373937.2011.566968
dc.relation.referencesMezhericher, M., Levy, A., & Borde, I. (2010). Spray drying modelling based on advanced droplet drying kinetics. Chemical Engineering and Processing: Process Intensification, 49(11), 1205–1213. https://doi.org/10.1016/j.cep.2010.09.002
dc.relation.referencesMInisterio de protección Social. (2006). Resolución 779 DE 2006, 2006(Marzo 17), 1–19.
dc.relation.referencesMinisterio de salud. (2016). Resolución número 3803 de 2016 - Recomendaciones de ingesta de energía y nutrientes (RIEN) para la población Colombiana. 22 De Agosto, 26. Retrieved from https://www.minsalud.gov.co/Normatividad_Nuevo/Resolución 3803 de 2016.pdf
dc.relation.referencesMinisterio de Salud y Protección Social, M. (2012). Concepto científico acrilamida en panela. Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/IA/INS/Concepto-acrilamida-panela.pdf
dc.relation.referencesMosquera, L. H. M. (2010). Influencia de la humedad y de la adición de solutos (maltodextrina o goma arábiga) en las propiedades fisicoquímicas de borojó y fresa en polvo. Universidad Politécnica de Valencia.
dc.relation.referencesMujica, M. V., Guerra, M., & Soto, N. (2008). Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia, 33(8), 598–603. Retrieved from http://www.redalyc.org/pdf/339/33933808.pdf
dc.relation.referencesMujumbar, A. S. (2006). Handbook of Industrial Drying.
dc.relation.referencesMujumdar, A S. (2015). Classification and Selection of industrial dryers.
dc.relation.referencesMuzaffar, K., & Kumar, P. (2015). Parameter optimization for spray drying of tamarind pulp using response surface methodology. Powder Technology, 279. https://doi.org/10.1016/j.powtec.2015.04.010
dc.relation.referencesNakasone, Yukio; Ikema, Yoichiro; Kobayashi, A. (1990). Changes in the composition of amino acids during manufacturing process of non-centrifuged cane sugar (Kokuto). Science Bulletin of the College of Agriculture, U. of the Ryukyus, 37, 35–39. Retrieved from http://www.panelamonitor.org/media/docrepo/document/files/changes-in-the-composition-of-amino-acids-during-manufacturing-process-of-non-centrifugal-cane-sugar-(kokuto).pdf
dc.relation.referencesNaranjo, W. (2008). Caracterización reológica y térmica de miel de dos variedades de caña. Universidad Técnica de Ambato.
dc.relation.referencesNielsen, S. (2001). food analysis (Vol. 40). https://doi.org/10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C
dc.relation.referencesNoor Afiqah Md Noor, Maizura Murad, & E. M. E. (2018). Physicochemical, antioxidant and microbial properties of fresh black stem sugarcane juice with addition of calamansi juice. Sains Malaysiana, 47(9), 2047–2054. Retrieved from http://journalarticle.ukm.my/12393/%0Ahttp://www.ukm.my/jsm/english_journals/vol47num9_2018/contentsVol47num9_2018.html
dc.relation.referencesNormand, V., Subramaniam, A., & Donnelly, J. (2013). Spray drying: Thermodynamics and operating conditions. Carbohydrate Polymers, 97(2), 489–495. https://doi.org/10.1016/j.carbpol.2013.04.096
dc.relation.referencesOakley, D. E., & Bahu, R. E. (1993). Computational modelling of spray dryers. Computers & Chemical Engineering, 17, S493–S498. https://doi.org/10.1016/0098-1354(93)80271-N
dc.relation.referencesOsorio, G. (2007). Buenas prácticas agrícolas -BPA- y buenas prácticas de manufactura -BPM- en la producción de caña y panela.
dc.relation.referencesPalacios C, L. M. (2012). Factibilidad técnica para la obtención de panela porcionada de alta velocidad de disolución a nivel de trapiche. Universidad Nacional de Colombia. Retrieved from http://www.bdigital.unal.edu.co/7834/
dc.relation.referencesPalzer, S. (2005). The effect of glass transition on the desired and undesired agglomeration of amorphous food powders. In Chemical Engineering Science (Vol. 60, pp. 3959–3968).
dc.relation.referencesParada Díaz, R. L. (2010). Adición de maltodextrina o goma arábiga a pulpa de fresa para la obtención de polvos liofilizados estables durante el almacenamiento. Universidad de las Américas Puebla. https://doi.org/4061045811781
dc.relation.referencesPatel, K. C., Chen, X. D., Lin, S. X. Q., & Adhikari, B. (2009). A composite reaction engineering approach to drying of aqueous droplets containing sucrose, maltodextrin (DE6) and their mixtures. AIChE Journal, 55(1), 217–231. https://doi.org/10.1002/aic.11642
dc.relation.referencesPatel, R. P., Patel, M. P., & Suthar, A. M. (2009). Spray Drying Technology: an overview. Indian Journal of Science and Technology. Retrieved from http://sdmimdjournal.in/index.php/indjst/article/view/30719
dc.relation.referencesPeña, A. (2009). Determinación de propiedades fisicoquimicas de jugos y mieles de caña panelera. Universidad Nacional de Colombia.
dc.relation.referencesPhanikumar, H. K. (2011). Sugarcane juice powder by spray drying technique. Science Tech Entrepreneur, 5. Retrieved from http://www.panelamonitor.org/media/docrepo/document/files/sugarcane-juice-powder-by-spray-drying-technique.pdf
dc.relation.referencesPinto, M., Kemp, I., Bermingham, S., Hartwig, T., & Bisten, A. (2014). Development of an axisymmetric population balance model for spray drying and validation against experimental data and CFD simulations. Chemical Engineering Research and Design, 92(4), 619–634. https://doi.org/10.1016/j.cherd.2013.12.019
dc.relation.referencesPrada, E., Garcia, H. R., & Chaves, A. (2014). Efectos de la presión de evaporación y la concentración de antiespumante y del uso de floculante y coadyuvante en la calidad de la miel y la panela Effects of evaporation pressure and antifoam concentration and the use of a flocculant and adjuvant on the. Corpoica Ciencia y Tecnología Agropecuaria, 15, 153–172.
dc.relation.referencesQudsieh, H. Y. M., Yusof, S., Osman, A., & Rahman, R. A. (2001). Physico-chemical changes in sugarcane (Saccharum officinarum var yellow cane) and the extracted juice at different portions of the stem during development and maturation. Food Chemistry, 75(2), 131–137. https://doi.org/10.1016/S0308-8146(00)00294-6
dc.relation.referencesQuesada, A., Afschar, A., & Wagner, F. (1994). Microbial production of propionic acid and vitamin B12 using molasses or sugar. Applied Microbiology and Biotechnology, 41(4), 378–383. https://doi.org/10.1007/BF00939023
dc.relation.referencesRao, P. V. K. J., Das, M., & Das, S. K. (2007). Jaggery – A Traditional Indian Sweetener. Indian Journal of Traditional Knowledge, 6(January), 95–102. Retrieved from http://nopr.niscair.res.in/bitstream/123456789/854/1/IJTK 6(1) (2007) 95-102.pdf
dc.relation.referencesRevelo, D. (2014). Microencapsulación de tomate de árbol (Solanum betaceum Cav.) mediante spray drying para aplicación en productos lácteos., 21.
dc.relation.referencesRodriguez, G., Garcia, H., & Roa Diaz, santacoloma, P. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de América Latina Producción de panela como estrategia de diversificación en áreas rurales de América Latina. Roma: FAO. Retrieved from http://www.fao.org/fileadmin/user_upload/ags/publications/AGSF_WD6s.pdf
dc.relation.referencesRojas, C., Tripaldi, P., & Dután, H. (2010). Desarrollo y optimización de una infusión aromática tipo tisana aplicando diseño de Plackett-Burman y optimización de máxima pendiente. Revista de Ciencias, 14, 103–115.
dc.relation.referencesRoos, Y. (1993). Melting and glass transitions of low molecular weight carbohydrates. Carbohydrate Research, 238, 39–48. https://doi.org/10.1016/0008-6215(93)87004-C
dc.relation.referencesRoos, Y. H. (2003). Thermal analysis, state transitions and food quality. Journal of Thermal Analysis and Calorimetry, 71(1), 197–203. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0037288959&partnerID=tZOtx3y1
dc.relation.referencesRoos, Yrjö H. (2002). Importance of glass transition and water activity to spray drying and stability of dairy powders. Le Lait, 82(4), 475–484. https://doi.org/10.1051/lait
dc.relation.referencesRoos, Yrjö H. (2007). Water Activity in Foods. (G. V. Barbosa-Cnovas, A. J. Fontana, S. J. Schmidt, & T. P. Labuza, Eds.), Water Activity in Foods: Fundamentals and Applications. Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1002/9780470376454
dc.relation.referencesRuano Uscategui, D. C., Ciro Velásquez, H., & Sepulveda Valencia, U. (2018). Estudio cinético de algunas características de calidad de un producto en polvo obtenido mediante secado por aspersión a partir de jugo de caña panelera y concentrado proteico de lactosuero dulce. Revista UIS Ingenierías, 17(2), 127–140. https://doi.org/10.18273/revuin.v17n2-2018012
dc.relation.referencesRuiz, P. C. (2014). Comparación del método HPLC y método de infrarrojos para la determinación de azúcares en la miel. Universidad de La Rioja.
dc.relation.referencesSaavedra-Leos, M. Z., Alvarez-Salas, C., Esneider-Alcalá, M. A., Toxqui-Terán, A., Pérez-García, S. A., & Ruiz-Cabrera, M. A. (2012). Towards an improved calorimetric methodology for glass transition temperature determination in amorphous sugars. CyTA - Journal of Food, 10(4), 258–267. https://doi.org/10.1080/19476337.2011.639960
dc.relation.referencesRuiz-Cabrera, M. a. (2012). Glass transition study in model food systems prepared with mixtures of fructose, glucose, and sucrose. Journal of Food Science, 77(5), E118-26. https://doi.org/10.1111/j.1750-3841.2012.02678.x
dc.relation.referencesSadripour, M., Rahimi, A., & Hatamipour, M. S. (2014). CFD modeling and experimental study of a spray dryer performance. Chemical Product and Process Modeling, 9(1), 15–24. https://doi.org/10.1515/cppm-2013-0034
dc.relation.referencesSander, A., & Penović, T. (2014). Droplet size distribution obtained by atomization with two-fluid nozzles in a spray dryer. Chemical Engineering and Technology, 37(12), 2073–2084. https://doi.org/10.1002/ceat.201400185
dc.relation.referencesSanthalakshmy, S., Don Bosco, S. J., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37–43. https://doi.org/10.1016/j.powtec.2015.01.016
dc.relation.referencesSENA. (2014). La cadena productiva de la caña panelera y la sostenibilidad. Retrieved from http://comunidad.udistrital.edu.co/iieud/files/2014/11/Presentaci%25C3%25B3n-Cadena-Productiva-de-La-Panela.pdf
dc.relation.referencesShi, Q., Fang, Z., & Bhandari, B. (2013). Effect of Addition of Whey Protein Isolate on Spray-Drying Behavior of Honey with Maltodextrin as a Carrier Material. Drying Technology. https://doi.org/10.1080/07373937.2013.783593
dc.relation.referencesShishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006
dc.relation.referencesSho, H. (2001). History and characteristics of Okinawan longevity food. Asia Pacific Journal of Clinical Nutrition, 10(2), 159–164.
dc.relation.referencesSIOC. (2010). Acuerdo de competitividad cadena agroindustrial de la panela.
dc.relation.referencesSkripnikov, D. (2016). Spray Droplet Size Distribution measurement. Lappeenranta University of Technology School. Superintendencia de Industria y Comercio(SIC). (2012). Cadena productiva de la panela en Colombia: diagnóstico de libre competencia (2010-2012). Retrieved from http://www.sic.gov.co/recursos_user/documentos/promocion_competencia/Estudios_Economicos/Panela2012.pdf
dc.relation.referencesTiwari, G. N., Prakash, O., & Kumar, S. (2004). Evaluation of convective heat and mass transfer for pool boiling of sugarcane juice. Energy Conversion and Management, 45(2), 171–179. https://doi.org/10.1016/S0196-8904(03)00143-2
dc.relation.referencesTontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science and Technology, 63, 91–102. https://doi.org/10.1016/j.tifs.2017.03.009
dc.relation.referencesTran, T. T. H., Jaskulski, M., & Tsotsas, E. (2017). Reduction of a model for single droplet drying and application to CFD of skim milk spray drying. Drying Technology, in press.(0), 1–13. https://doi.org/10.1080/07373937.2016.1263204
dc.relation.referencesTriana, N. (2015). Secado por aspersión vs panela en polvo.
dc.relation.referencesTruong, V., Bhandari, B. R., & Howes, T. (2005a). Optimization of co-current spray drying process for sugar-rich foods. Part II—Optimization of spray drying process based on glass transition concept. Journal of Food Engineering, 71(1), 66–72. https://doi.org/10.1016/j.jfoodeng.2004.10.018
dc.relation.referencesTruong, V., Bhandari, B. R., & Howes, T. (2005b). Optimization of co-current spray drying process of sugar-rich foods. Part I—Moisture and glass transition temperature profile during drying. Journal of Food Engineering, 71(1), 55–65. https://doi.org/10.1016/j.jfoodeng.2004.10.017
dc.relation.referencesTurchiuli, C., Gianfrancesco, A., Palzer, S., & Dumoulin, E. (2011). Evolution of particle properties during spray drying in relation with stickiness and agglomeration control. Powder Technology, 208(2), 433–440. https://doi.org/10.1016/j.powtec.2010.08.040
dc.relation.referencesValayetham, K. A. L. (2009). Development of spray dried sugar cane powder. Universiti Malaysia Pahang.
dc.relation.referencesVehring, R., Foss, W. R., & Lechuga-Ballesteros, D. (2007b). Particle formation in spray drying. Journal of Aerosol Science, 38(7), 728–746. https://doi.org/10.1016/j.jaerosci.2007.04.005
dc.relation.referencesVerma, a. K., Singh, S., Singh, S., & Dubey, A. (2012). 16S rDNA Sequence Based Characterization of Bacteria in Stored Jaggery in Indian Jaggery Manufacturing Units. Sugar Tech, 14(4), 422–427. https://doi.org/10.1007/s12355-012-0162-0
dc.relation.referencesVerma, V. K., & Narain, M. (1990). Moisture absorption isotherms of jaggery. Journal of Stored Products Research, 26(2), 61–66. https://doi.org/10.1016/0022-474X(90)90001-9
dc.relation.referencesVicente, J., Pinto, J., Menezes, J., & Gaspar, F. (2013). Fundamental analysis of particle formation in spray drying. Powder Technology, 247, 1–7.
dc.relation.referencesWang, S., & Langrish, T. (2009). A review of process simulations and the use of additives in spray drying. Food Research International, 42(1), 13–25. https://doi.org/10.1016/j.foodres.2008.09.006
dc.relation.referencesWang, Shuosi, & Langrish, T. (2010). The Use of Surface Active Compounds as Additives in Spray Drying. Drying Technology, 28(3), 341–348. https://doi.org/10.1080/07373931003641404
dc.relation.referencesWang, Shuosi, Langrish, T., & Adhikari, B. (2013). A Multicomponent Distributed Parameter Model for Spray Drying: Model Development and Validation with Experiments. Drying Technology, 31(13–14), 1513–1524. https://doi.org/10.1080/07373937.2013.813533
dc.relation.referencesWisniewski, R. (2015). Spray Drying Technology Review, (July), 1–46.
dc.relation.referencesWoo, M.W., Daud, W. R. W., Tasirin, S. M., & Talib, M. Z. M. (2009). Controlling food powder deposition in spray dryers: Wall surface energy manipulation as an alternative. Journal of Food Engineering, 94(2), 192–198. https://doi.org/10.1016/j.jfoodeng.2008.10.001
dc.relation.referencesWoo, Meng Wai, Daud, W. R. W., Mujumdar, A. S., Talib, M. Z. M., Hua, W. Z., & Tasirin, S. M. (2008). Comparative study of droplet drying models for CFD modelling. Chemical Engineering Research and Design, 86(9), 1038–1048. https://doi.org/10.1016/j.cherd.2008.04.003
dc.relation.referencesWoo, Meng Wai, Daud, W. R. W., Tasirin, S. M., & Talib, M. Z. M. (2008). Amorphous particle deposition and product quality under different conditions in a spray dryer. Particuology, 6(4), 265–270. https://doi.org/10.1016/j.partic.2008.03.008
dc.relation.referencesWrolstad, R. E., & Smith, D. E. (1959). Food Analysis. Nature (Vol. 184). https://doi.org/10.1038/1841347a0
dc.relation.referencesXia, B., & Sun, D.-W. (2002). Applications of computational fluid dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture, 34(1–3), 5–24. https://doi.org/10.1016/S0168-1699(01)00177-6
dc.relation.referencesZbicinski, I., Delag, A., Strumillo, C., & Adamiec, J. (2002). Advanced experimental analysis of drying kinetics in spray drying. In Chemical Engineering Journal (Vol. 86, pp. 207–216)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSpray drying
dc.subject.proposalSecado por aspersión
dc.subject.proposalpanela
dc.subject.proposalPanela
dc.subject.proposalmieles de caña
dc.subject.proposalSugarcane honey
dc.subject.proposalinstantizing
dc.subject.proposalinstantanización
dc.subject.proposalproductos en polvo
dc.subject.proposalPowder product
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito