Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorBustamante Rúa, Moisés Oswaldo
dc.contributor.authorGuerra Yepes, Lina Marcela
dc.date.accessioned2020-06-08T22:02:25Z
dc.date.available2020-06-08T22:02:25Z
dc.date.issued2019-08-30
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77625
dc.description.abstractEsta investigación examina la literatura sobre los procesos de remediación biológica de suelos contaminados con mercurio, a través del uso de hongos macroscópicos. Para esto, se realizó el método de revisión sistemática de la literatura (RSL), empleando una investigación exploratoria donde se utilizó la búsqueda documental de artículos publicados en la base de datos de SCOPUS. Las ecuaciones de búsqueda identificaron 33 estudios que cumplen con los requisitos de los criterios de inclusión y exclusión, dando respuesta a las preguntas de investigación derivadas del objetivo planteado. Aunque los estudios relacionan la capacidad de acumulación, captación o concentración de metales pesados en los hongos macroscópicos, específicamente el mercurio. Estos no presentan planteamientos de procesos o protocolos de biorremediación de suelos contaminados con mercurio, usando hongos macroscópicos como agente biológico de remediación. Lo que abre hacia el futuro un área de investigación para el desarrollo sostenible y sustentable de procesos industriales productores de contaminantes como el mercurio. (Tomado de la fuente)
dc.description.abstractThis research examines the literature on the biological remediation processes of soils contaminated with mercury, through the use of macroscopic fungi. For this, the systematic literature review (SLR) method was carried out, using an exploratory investigation where the documentary search of articles published in the SCOPUS database was used. The search equations identified 33 studies that meet the requirements of the inclusion and exclusion criteria, answering the research questions derived from the objective. Although the studies relate the capacity of accumulation, uptake or concentration of heavy metals in macroscopic fungi, specifically mercury. These do not present approaches to processes or protocols for bioremediation of soils contaminated with mercury using macroscopic fungi as a biological remediation agent. This opens up a future research area for the sustainable and sustainable development of industrial processes that produce pollutants such as mercury. (Tomado de la fuente)
dc.format.extent69 paginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
dc.titleAvances en la remediación biológica del mercurio: hongos macroscópicos como potenciales agentes de biorremediación
dc.typeTrabajo de grado - Maestría
dcterms.audienceEspecializada
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Minerales
dc.contributor.researchgroupGrupo de Investigaciones en Geología, Minas y Metalurgia Extractiva - CIMEX
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería - Recursos Minerales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal..edu.co/
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAhmad, I, S Hayat, y J Pichtel. «Heavy metal contamination of soil: problems and remedies. » Science Publishers, 2005.
dc.relation.referencesAlexander, M. Biodegradation and Bioremediation. San Diego: Academic Press, 1994.
dc.relation.referencesAllen, R. O., & Steinnes, E. (1978). Concentrations of some potentially toxic metals and other trace elements in wild mushrooms from Norway. Chemosphere, 7(4), 371–378. https://doi.org/10.1016/0045-6535(78)90138-8
dc.relation.referencesAtlas, R M, y R Bartha. «Hydrocarbon biodegradation and oil spill. » Advances in microbial ecology, 1992: 287-338.
dc.relation.referencesÁvila, E. (2004). La pequeña minería y los nuevos desafíos de la gestión pública. https://books.google.com.br/books?hl=en&lr=&id=r-b1tDl_Y6EC&oi=fnd&pg=PA1&dq=HENTSCHEL+T.,+HRUSCHKA+F.,+PRIESTER+M.&ots=Nf6t_k8JbW&sig=VH1s_wu95afldEJjHdXYpimLCus
dc.relation.referencesAyangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. In International Journal of Environmental Research and Public Health (Vol. 14, Issue 1). https://doi.org/10.3390/ijerph14010094
dc.relation.referencesBaath, E. «Effects of heavy metals in soil on microbial processes and populations. » Water, Air and Soil Pollution, 1989: 47(3-4), 335-379.
dc.relation.referencesBarbosa Amaya, Héctor Fernando. Cuadernillo de Apuntes de "REMEDIACIÓN DE SUELOS". México, 2011.
dc.relation.referencesBerdonces, M. A. L., Higueras, P. L., Fernández-Pascual, M., Borreguero, A. M., & Carmona, M. (2017). The role of native lichens in the biomonitoring of gaseous mercury at contaminated sites. Journal of environmental management, 186, 207-213.
dc.relation.referencesCalle, L. A. (2016). Metodologías para hacer la revisión de literatura de una investigación. Recuperado de https://www.researchgate.net/publication/301748735_Metodologias_para_hacer_la_revision_de_literatura_ de_una_investigacion.
dc.relation.referencesCasthilhos, Z C, E D Bidone, y S M Hartz. «Bioaccumulation of mercury by Tucunare (Cichla ocellaris) from Tapajos River region, Brazilian Amazon: a field dose-response approach. » Bulletin of environmental contamination and toxicology, 2001: 66(5) 631-637.
dc.relation.referencesChiras, D. D. (1991). Environmental science (Vol. 14, Issue 3). https://doi.org/10.31729/jnma.1240
dc.relation.referencesChojnacka, A., Drewnowska, M., Jarzyńska, G., Nnorom, I. C., & Falandysz, J. (2012). Mercury in Yellow-cracking Boletes X erocomus subtomentosus mushrooms and soils from spatially diverse sites: Assessment of bioconcentration potential by species and human intake. Journal of Environmental Science and Health, Part A, 47(13), 2094-2100.
dc.relation.referencesChudzyński, K., Jarzyńska, G., Stefańska, A., & Falandysz, J. (2011). Mercury content and bio-concentration potential of Slippery Jack, Suillus luteus, mushroom. Food Chemistry, 125(3), 986-990.
dc.relation.referencesCompart, L. C. A., Machado, K. M. G., Matheus, D. R., & Cardoso, A. V. (2007). Immobilization of Psilocybe castanella on ceramic (slate) supports and its potential for soil bioremediation. World Journal of Microbiology and Biotechnology, 23(10), 1479-1483.
dc.relation.referencesCoprinus comatus (O.F.Müll.) Pers. in GBIF Secretariat (2019). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2020-05-25.
dc.relation.referencesCortez, H, J Pingarrón, J A Muñoz, y A Ballest. «Bioremediation of soils contaminated with metalliferous mining wastes. » Trends in Bioremediation and Phytoremediation, 2010: 283-299.
dc.relation.referencesDamodaran, D., & Shetty, V. B. (2011). Mushrooms in the Remediation of Heavy Metals From Soil. International Journal of Environmental Pollution Control & Management, 3(1), 89–101. https://docplayer.net/49268908-Mushrooms-in-the-remediation-of-heavy-metals-from-soil.html
dc.relation.referencesDamodaran, D., Vidya Shetty, K., & Raj Mohan, B. (2014). Uptake of certain heavy metals 76 Procesos de biorremediación en el tratamiento de residuos sólidos del cigarillo from contaminated soil by mushroom-Galerina vittiformis. Ecotoxicology and Environmental Safety, 104(1), 414–422.
dc.relation.referencesDas, N. (2005). Natural Product Radiance Heavy metals biosorption by mushrooms. Natural Product Radiance, 4, 454–459.
dc.relation.referencesDiman, N. S., & Bahmanpour, H. (2013). Environmental biotechnology and its impact on sustainability. Global Journal of Science, Engineering and Technology, 14(14), 2322–2441. http://www.gjset.org
dc.relation.referencesDrewnowska, M., Nnorom, I. C., & Falandysz, J. (2014). Mercury in the Grisette, Amanita vaginata Fr. and soil below the fruiting bodies. Journal of Environmental Science and Health, Part B, 49(7), 521-526.
dc.relation.referencesElizabeth Paisio, C., Solange González, P., & Andrea Talano Elizabeth Agostini, M. (2012). Remediación biológica de Mercurio: Recientes avances. Rev Latinoam Biotecnol Amb Algal, 3(2), 119–146.
dc.relation.referencesElsevier. (2018). Data | Curated. Connected. Complete. 2018-10-12 08:57:59. https://www.elsevier.com/solutions/scopus
dc.relation.referencesElsevier Publicaciones. (2018). ¿Qué es la revisión por pares? 1–6. https://www.elsevier.com/reviewers/what-is-peer-review
dc.relation.referencesFalandysz, J. (2016). Mercury bio-extraction by fungus Coprinus comatus: a possible bioindicator and mycoremediator of polluted soils? Environmental Science and Pollution Research, 23(8), 7444-7451.
dc.relation.referencesFalandysz, J., Zhang, J., Wang, Y., Krasińska, G., Kojta, A., Saba, M., ... & Liu, H. (2015). Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: accumulation, distribution and probable dietary intake. Science of The Total Environment, 537, 470-478.
dc.relation.referencesFalandysz, J., Krasińska, G., Pankavec, S., & Nnorom, I. C. (2014). Mercury in certain Boletus mushrooms from Poland and Belarus. Journal of Environmental Science and Health, Part B, 49(9), 690-695.
dc.relation.referencesFalandysz, J., Mazur, A., Kojta, A. K., Jarzyńska, G., Drewnowska, M., Dryżałowska, A., & Nnorom, I. C. (2013). Mercury in fruiting bodies of dark honey fungus (Armillaria solidipes) and beneath substratum soils collected from spatially distant areas. Journal of the Science of Food and Agriculture, 93(4), 853-858.
dc.relation.referencesFalandysz, J., Widzicka, E., Kojta, A. K., Jarzyńska, G., Drewnowska, M., Dryżałowska, A., ... & Nnorom, I. C. (2012). Mercury in Common Chanterelles mushrooms: Cantharellus spp. update. Food chemistry, 133(3), 842-850.
dc.relation.referencesFundación Española para la Ciencias y la Tecnología. (2019). Base de datos de Scopus | Recursos Científicos. Recursos Científicos-Fecyt. https://www.recursoscientificos.fecyt.es/licencias/productos-contratados/scopus
dc.relation.referencesGerhardt, K.E, X. D Huang, B.R Glick, y B.M Greenberg. «Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. » Plant Sci, 2009: 20-30.
dc.relation.referencesGBIF: The Global Biodiversity Information Facility. (2019). What is GBIF? GBIF. https://www.gbif.org/what-is-gbif
dc.relation.referencesGong, X., Li, S., Sun, X., Zhang, L., Zhang, T., & Wei, L. (2017). Maturation of green waste compost as affected by inoculation with the white-rot fungi Trametes versicolor and Phanerochaete chrysosporium. Environmental technology, 38(7), 872-879.
dc.relation.referencesGuirao-Goris, J. A., Olmedo Salas, A., & Ferrer Ferrandis, E. (2008). El artículo de revisión. Revista iberoamericana de enfermería comunitaria, 1(1), 1-25.
dc.relation.referencesHalliday, C. G. (1985, January). Seed Treatment Formulations: Development of a Protocol. In Pesticide Formulations and Application Systems: Fourth Symposium. ASTM International.
dc.relation.referencesHoriike, T., & Yamashita, M. (2015). A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Appl. Environ. Microbiol., 81(9), 3062-3068.
dc.relation.referencesJarzyńska, G., & Falandysz, J. (2011). The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques. Journal of Environmental Science and Health Part A, 46(6), 569-573.
dc.relation.referencesJosé Álvarez, Víctor Sotero, Antonio Brack Egg, César A, Ipenza Peralta. Minería aurífera en Madre de Dios y contamnación con mercurio. Lima: Súper Gráfica E.I.R.L, 2011.
dc.relation.referencesKojta, A. K., & Falandysz, J. (2016). Soil-to-mushroom transfer and diversity in total mercury content in two edible Laccaria mushrooms. Environmental Earth Sciences, 75(18), 1264.
dc.relation.referencesKojta, A. K., Zhang, J., Wang, Y., Li, T., Saba, M., & Falandysz, J. (2015). Mercury contamination of fungi genus Xerocomus in the Yunnan Province in China and the region of Europe. Journal of Environmental Science and Health, Part A, 50(13), 1342-1350.
dc.relation.referencesKrasińska, G., & Falandysz, J. (2016). Mercury in Orange Birch Bolete Leccinum versipelle and soil substratum: bioconcentration by mushroom and probable dietary intake by consumers. Environmental Science and Pollution Research, 23(1), 860-869.
dc.relation.referencesKrasińska, G., & Falandysz, J. (2015). Mercury in Hazel Bolete Leccinum griseum and soil substratum: distribution, bioconcentration and dietary exposure. Journal of Environmental Science and Health, Part A, 50(12), 1259-1264.
dc.relation.referencesKumah, A. (2006). Sustainability and gold mining in the developing world. Journal of Cleaner Production, 14(3), 315–323. https://doi.org/10.1016/j.jclepro.2004.08.007
dc.relation.referencesLaskowski, R., Niklińska, M., & Maryański, M. (1994). Heavy metals in forest litter: a chemical time-bomb.
dc.relation.referencesLau, B. F., & Abdullah, N. (2016). Sclerotium-Forming Mushrooms as an Emerging Source of Medicinals: Current Perspectives. Current Perspectives. In Mushroom Biotechnology: Developments and Applications (pp. 111–136). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802794-3.00007-2
dc.relation.referencesLondoño Franco, L. F., Londoño Muñoz, P. T., & Muñoz Garcia, F. G. (2016). LOS RIESGOS DE LOS METALES PESADOS EN LA SALUD HUMANA Y ANIMAL. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 14(2), 145. https://doi.org/10.18684/bsaa(14)145-153
dc.relation.referencesLovelock, J E. Gaia: A New Look at Life on Earth. Oxford, UK.: Oxford University Press, 2000.
dc.relation.referencesMaćkiewicz, D., & Falandysz, J. (2012). Total mercury in Yellow Knights (Tricholoma equestre) mushrooms and beneath soils. Bulletin of environmental contamination and toxicology, 89(4), 755-758.
dc.relation.referencesМалов, А. М., Луковникова, Л. В., Аликбаева, Л. А., Якубова, И. Ш., & Щеголихин, Д. К. (2018). Результаты биомониторинга ртутного загрязнения территории мегаполиса. Гигиена и санитария, 97(12), 1189-1194.
dc.relation.referencesMahbub, K. R., Krishnan, K., Naidu, R., & Megharaj, M. (2016). Mercury resistance and volatilization by Pseudoxanthomonas sp. SE1 isolated from soil. Environmental technology & innovation, 6, 94-104.
dc.relation.referencesMalov, A. (2008, July). Mercury Pollution in the Ground of Saint-Petersburg. In Materials of 31st AMOP Technical Seminar on Environmental Contamination and Response. Canada. Calgary, 2008. www. etc-cte. ec. gc. ca/news/conferences_e. html.
dc.relation.referencesMikryukov, V. S., & Dulya, O. V. (2018). Fungal communities in organic and mineral soil horizons in an industrially polluted boreal forest. Biodiversity, 19(3-4), 161-171.
dc.relation.referencesMoney, N. P. (2016). Fungal Cell Biology and Development. In The Fungi: Third Edition (pp. 37–66). Elsevier Inc. https://doi.org/10.1016/B978-0-12-382034-1.00002-5
dc.relation.referencesNriagu, J O. « Global metal pollution: poisoning the biosphere? » Environment: Science and Policy for Sustainable Development, 1990: 32(7), 7-33.
dc.relation.referencesOECD. (2001). Strategies for Sustainable Development INTERNATIONAL DEVELOPMENT The DAC Guidelines Strategies for Sustainable Development «. www.oecd.org
dc.relation.referencesOlivero Verbel, Jesús, y Boris Johnson Restrepo. El Lado Gris de la Minería de Oro: La contaminación con mercurio en el norte de Colombia. Cartegena: Universidad de Cartagena, 2002.
dc.relation.referencesONU. Objetivos de Desarrollo del Milenio: Una Mirada Desde América Latina y el Caribe. Santiago de Chile: Naciones Unidas, 2005.
dc.relation.referencesPaisio, Cintia Elizabeth, Paola Solange González, Melina Andrea Talano, y Elizabeth Agostini. «Remediación biológica de Mercurio: Recientes avances.» Revista Latinoamericana de Biotecnología Ambiental y Algal, 2012: 119.
dc.relation.referencesPaoli, L., Munzi, S., Guttová, A., Senko, D., Sardella, G., & Loppi, S. (2015). Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy). Ecological Indicators, 52, 362-370.
dc.relation.referencesPNUMA. El Convenio de Minamata sobre el Mercurio y su implementación en la región de América Latina y el Caribe. Uruguay: PNUMA/ORPALC, 2014.
dc.relation.references—. Programa de las Naciones Unidas para el Medio Ambiente. Nairobi: Programa de las Naciones Unidas para el Medio Ambiente, 2008.
dc.relation.referencesPressly, Linda. BBC MUNDO. 23 de septiembre de 2013. http://www.bbc.co.uk/mundo/noticias/2013/09/130919_salud_mercurio_envenenamiento_poblacion_gtg (último acceso: 15 de marzo de 2015).
dc.relation.referencesProchacki, H., & Engelhardt-Zasada, C. (1974). Epidermophyton stockdaleae sp. nov. Mycopathologia et mycologia applicata, 54(3), 341-345.
dc.relation.referencesRamírez-Ramírez, F. J., De León-Peguero, N. G., Cansino-Vega, R. A., Arellano-Contreras, D., & Ochoa-Ayala, D. (2009). ¿Cómo redactar un artículo científico de revisión?. Revista Médica MD, 1(2), 21-22.
dc.relation.referencesRieder, S. R., Brunner, I., Horvat, M., Jacobs, A., & Frey, B. (2011). Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils. Environmental pollution, 159(10), 2861-2869.
dc.relation.referencesRodríguez, L.A, I Padilla, H Tayibi, y A. López Delgado. «Concerns on liquid mercury and mercury-containing wastes: A review of the treatment technologies for the safe storage. » J Environ Man, 2012: 197-205.
dc.relation.referencesROJAS, L., PRIN, J. L., NORIEGA, J., ALBORNOZ, L. A., HIDALGO-PRADA, B., & RAMÍREZ, A. (2008). DETERMINACIÓN DE MERCURIO EN SUELOS DEL SECTOR MINERO LAS CLARITAS, ESTADO BOLÍVAR, MEDIANTE PROCESOS ANALITICOS DE ESPECIACIÓN Y MICROSCOPÍA ELECTRÓNICA DE BARRIDO (MEB). SABER, 20(3).
dc.relation.referencesSaba, M., Falandysz, J., & Nnorom, I. C. (2016). Evaluation of vulnerability of Suillus variegatus and Suillus granulatus mushrooms to sequester mercury in fruiting bodies. Journal of Environmental Science and Health, Part B, 51(8), 540-545.
dc.relation.referencesScopus. (2019). Scopus content coverage by subject area. www.elsevier.
dc.relation.referencesSkvortsova, I. N., Rappoport, A. V., Prokof’eva, T. V., & Andreeva, A. E. (2006). Biological properties of soils in the Moscow State University Botanical Garden: the branch on Prospekt Mira. Eurasian Soil Science, 39(7), 771-778.
dc.relation.referencesStihi, C., Radulescu, C., Busuioc, G., Popescu, I. V, Gheboianu, A., & Ene, A. (n.d.). STUDIES ON ACCUMULATION OF HEAVY METALS FROM SUBSTRATE TO EDIBLE WILD MUSHROOMS.
dc.relation.referencesSullia, S. Fungal Diversity and Bioremediation. 2003. http://fbae.org/2009/FBAE/website/special-topics_student_zone_fungal_diversity_and_bioremediat.html.
dc.relation.referencesUnz, R F, y K L Shuttleworth. «Microbial mobilization and immobilization of heavy metals. » Current opinion in biotechnology, 1996: 7(3), 307-310.
dc.relation.referencesVan Emden, J. H. (1958). Control ofRhizoctonia solani Kühn in potatoes by disinfection of seed tubers and by chemical treatment of the soil. European Potato Journal, 1(1), 52-64.
dc.relation.referencesWCED. (2018). Report of the World Commission on Environment and Development: Our Common Future: Report of the World Commission on Environment and Development. World Commission on Environment and Development, 1–300. https://doi.org/10.1080/07488008808408783
dc.relation.referencesWeinberg, Jack, y Orgánicos Persistentes. Introducción a la Contaminación por Mercurio para las ONG. 2010.
dc.relation.referencesWiedemeier, T H, H S Rifai, C J Newell, y J T Wilson. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. NY: John Wiley & Sons, 1999.
dc.relation.referencesWiejak, A., Wang, Y. Z., Zhang, J., & Falandysz, J. (2016). Mercury in Sclerotia of Wolfiporia Extensa (Peck) Ginns Fungus Collected Across of the Yunnan Land. Guang pu xue yu guang pu fen xi= Guang pu, 36(9), 3083-3086.
dc.relation.referencesZhou, Q. X., An, X. L., & Wei, S. H. (2008). Heavy metal pollution ecology of macro-fungi: research advances and expectation. Ying yong sheng tai xue bao= The journal of applied ecology, 19(8), 1848-1853.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBioremediation
dc.subject.proposalBiorremediación
dc.subject.proposalMercurio
dc.subject.proposalMercury
dc.subject.proposalHongos macroscópicos
dc.subject.proposalMacroscopic Fungi
dc.subject.proposalBiotecnología
dc.subject.proposalBiotechnology
dc.title.translatedAdvances in the biological remediation of mercury: macroscopic fungi as potential bioremediation agents.
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito