Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorPlazas de Pinzón, María Cristina
dc.contributor.advisorBarbosa Parada, Nathaly
dc.contributor.authorNiño Duarte, Franklin
dc.date.accessioned2020-06-10T16:18:05Z
dc.date.available2020-06-10T16:18:05Z
dc.date.issued2019-12-05
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77637
dc.description.abstractLa cuantificación de actividad es una labor importante dentro de las aplicaciones de la Medicina Nuclear, ya que de ésta dependen la dosimetría para la terapia con radionúclidos, la planificación de tratamiento y la efectividad del mismo. A su vez la cuantificación depende de la reproducibilidad de las técnicas y la precisión en la adquisición de la información necesaria para estos procesos. Este trabajo evalúa la reproducibilidad y precisión para la cuantificación de actividad de I-131 mediante técnicas imagenológicas y no imagenólogicas. Para cuantificar con precisión mediante las técnicas empleadas (SPECT-CT, Sonda de captación tiroidea y Geiger-Müller), se requiere la corrección de efectos degradantes asociados con procesos físicos que afectan la información recuperada, como el fondo, atenuación, dispersión, tiempo muerto, entre otros. A su vez es necesario definir una geometría de medición que permita reproducir estos procesos. Para cada técnica fue calculado un Factor de Calibración (FC) que permite convertir la información corregida en unidades de actividad. Se realizaron distintas pruebas para la estimación de los efectos de influencia y su posterior corrección para cada técnica. Se encontró que las técnicas empleadas son reproducibles para las geometrías definidas. De igual forma se determinó el FC para I-131 en cada una de estas geometrías con un adecuado grado de precisión. Para técnicas imagenológicas se encontró que el FC calculado es independiente de la técnica de adquisición, sin embargo, muestra dependencia con el volumen de la fuente. Se obtuvo para SPECT-CT un FC=(1,24 +/- 0,13) cpm/kBq, para la sonda de captación tiroidea un FC= (7,44 +/- 0,01) cpm/kBq, para los detectores Geiger-Müller un FCH1(x)= (33,75 +/- 14,22$)x^ (-2,82 +/- 1,24) uSv/h/GBq y FCH2(x)= (20,47 +/- 11,15)x^ (-2,45 +/- 1,48) uSv/h/GBq, estos últimos en función de la distancia al detector.
dc.description.abstractQuantification of activity is an important work within the applications of Nuclear Medicine, since dosimetry for radionuclide therapy, treatment planning and its effectiveness depend on it. In turn quantification depends on the reproducibility of the techniques and precision in acquiring the information needed for these processes. This study evaluates the reproducibility and accuracy for the quantification of activity I-131 by imaging and non-imaging techniques. To quantify accurately by the techniques used (SPECT-CT, Thyroid uptake probe and Geiger-Müller), the correction of degrading effects associated with physical processes that affect the information retrieved, such as background, attenuation, dispersion, dead time is required , among others. In turn, it is necessary to define a measurement geometry that allows reproducing these processes. For each technique a Calibration Factor (CF) was calculated, which allows the corrected information to be converted into units of activity. Different tests were performed to estimate the influence effects and their subsequent correction for each technique. It was found that the techniques used are reproducible for the defined geometries. In the same way the CF was determined for I-131 in each of these geometries with an adequate degree of precision. For imaging techniques it was found that the calculated CF is independent of the acquisition technique, however, it shows dependence on the volume of the source. A CF=(1,24 +/- 0,13) cpm/kBq was obtained for SPECT-CT, for the thyroid uptake probe a CF= (7,44 +/- 0,01) cpm/kBq, for Geiger-Müller detectors a CFH1(x)= (33,75 +/- 14,22$) x^ (-2,82 +/- 1,24) uSv/h/GBq and CFH2(x)= (20,47 +/- 11,15) x^ (-2,45 +/- 1,48) uSv/h/GBq, the latter depending on the distance to the detector.
dc.format.extent108
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.titleEvaluación de la reproducibilidad y precisión para diferentes técnicas de cuantificación en Medicina Nuclear
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagister en Física Médica
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Física Médica
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Física
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesIrene Buvat, Eric Frey, Alan Green, and Michael Ljungberg. Quantitative Nuclear Medicine Imaging: concepts, requirements and methods. Human Health Reports, 9, 2014.
dc.relation.referencesTECNOLÓGICA NUCLEAR Y PROTECCIÓN RADIOLÓGICA. Glosario de seguridad tecnológica del oiea.
dc.relation.referencesGobierno de Canarias. https://www3.gobiernodecanarias.org/sanidad/scs/contenidoGenerico, 19 de Abril de 2020.
dc.relation.referencesRachel A Powsner, Edward R Powsner, and Rachel A Powsner. Essential Nuclear Medicine Physics. 2006.
dc.relation.referencesInternational Bureau of Weights, Measures, Barry N Taylor, and Ambler Thompson. The international system of units (SI). US Department of Commerce, Technology Administration, 2001.
dc.relation.referencesCraig Edwards. Fundamental quantities and units for ionizing radiation icru report 60, 1999.
dc.relation.referencesPedro L Esquinas, Jesse Tanguay, Marjorie Gonzalez, Milan Vuckovic, Cristina RodrÍguez-RodrÍguez, Urs O H afeli, and Anna Celler. Accuracy, reproducibility, and uncertainty analysis of thyroid-probe-based activity measurements for determination of dose calibrator settings. Medical physics, 43(12):6309-6321, 2016.
dc.relation.referencesSimon R Cherry, James A Sorenson, and Michael E Phelps. Physics in Nuclear Medicine. Elsevier Health Sciences, 2012.
dc.relation.referencesAndrew Taylor Jr, Jack A Ziffer, Ann Steves, Dennis Eshima, VB Delaney, and JD Welchel. Clinical comparison of I-131 orthoiodohippurate and the kit formulation of Tc-99m mercaptoacetyltriglycine. Radiology, 170(3):721{725, 1989.
dc.relation.referencesDavid Dowsett, Patrick A Kenny, and R Eugene Johnston. The physics of diagnostic imaging. CRC Press, 2006.
dc.relation.referencesJennifer Prekeges. Nuclear Medicine Instrumentation (book). Jones & Bartlett Publishers, 2012.
dc.relation.referencesGlenn F Knoll. Radiation Detection and Measurement. John Wiley & Sons, 2010.
dc.relation.referencesGustav Brolin. Image-based Partial-Volume Correction in SPECT: Application to 177Lu radionuclide therapy. 2011.
dc.relation.referencesBIODEX. https://biodex.com/, 1 de Noviembre de 2019.
dc.relation.referencesALDERSON PHANTOMS. http://rsdphantoms.com//, 3 de Noviembre de 2019.
dc.relation.referencesIAEA, Human Healt Campus. https://humanhealth.iaea.org/, 17 de Noviembre de 2019.
dc.relation.referencesSOCIEDAD ESPAÑOLA DE FÍSICA MÉDICA. Fundamentos de Física Médica. Vol2. Radiodiagnóstico: Bases Físicas, equipos y control de calidad. Madrid: ADI, 2012.
dc.relation.referencesV Chisté and MM Bé. Table of radionuclides (vol. 1-a= 1 to 150). Monographie BIPM-5, 1, 2004.
dc.relation.referencesGE Healthcare. Discovery NM/CT 670, 2011.
dc.relation.referencesMC Cantone. ICRP publication 106: Radiation Dose to Patients from Radiopharmaceuticals: a third amendment to ICRP 53. 2009.
dc.relation.referencesJeffry A Siegel, Stephen R Thomas, James B Stubbs, Michael G Stabin, Marguerite T Hays, Kenneth F Koral, James S Robertson, Roger W Howell, Barry W Wessels, Darrell R Fisher, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. Journal of Nuclear Medicine, 40(2):37S-61S, 1999.
dc.relation.referencesYuni K Dewaraja, Michael Ljungberg, Alan J Green, Pat B Zanzonico, Eric C Frey, Wesley E Bolch, A Bertrand Brill, Mark Dunphy, Darrell R Fisher, Roger W Howell, et al. MIRD pamphlet no. 24: guidelines for quantitative 131i SPECT in dosimetry applications. Journal of Nuclear Medicine, 54(12):2182-2188, 2013.
dc.relation.referencesY Chain and Luis Illanes. Radiofármacos en Medicina Nuclear fundamentos y aplicación clínica. Recuperado de: http://sedici. unlp. edu. ar/bitstream/handle/10915/46740/Documento completo. pdf, 2015.
dc.relation.referencesMarcelo Tatit Sapienza and José Willegaignon. Radionuclide therapy: current status and prospects for internal dosimetry in individualized therapeutic planning. Clinics, 74, 2019.
dc.relation.referencesAlicia MAROTO SÁNCHEZ. Incertidumbre en métodos analíticos de rutina. Tarragona-España, 2002. PhD thesis, Tesis Doctoral, Universitat Rovira i Virgili. Facultad de Química.
dc.relation.referencesMai Khuong Nguyen, Tuong T Truong, Marcela Morvidone, and Habib Zaidi. Scattered radiation emission imaging: Principles and applications. International journal of biomedical imaging, 2011, 2011.
dc.relation.referencesVahid Changizi, Abbas Takavar, Azadeh Babakhani, and Mahdi Sohrabi. Scatter correction for heart SPECT images using TEW method. Journal of applied clinical medical physics, 9(3):136-140, 2008.
dc.relation.referencesSyed Naeem Ahmed. Physics and Engineering of Radiation Detection. Academic Press, 2007.
dc.relation.referencesAbdullah Norhayati, Sara Deraman Siti, Sa e Saleha, and Sya q Jawari Mohd. Performance Assessment of a Thyroid Counter.
dc.relation.referencesEric C Frey, John L Humm, and Michael Ljungberg. Accuracy and precision of radioactivity quanti cation in Nuclear Medicine images. In Seminars in nuclear medicine, volume 42, pages 208{218. Elsevier, 2012.
dc.relation.referencesJohannes Zeintl, Alexander Hans Vija, Amos Yahil, Joachim Hornegger, and Torsten Kuwert. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. Journal of Nuclear Medicine, 51(6):921-928, 2010.
dc.relation.referencesPhilipp Ritt, Hans Vija, Joachim Hornegger, and Torsten Kuwert. Absolute quanti cation in SPECT. European journal of nuclear medicine and molecular imaging, 38(1):69-77, 2011.
dc.relation.referencesMpumelelo Nyathi, Enoch Sithole, and Ouma Rama . Quanti cation of partial volume effects in planar imaging. Iranian Journal of Nuclear Medicine, 24(2):115-120, 2016.
dc.relation.referencesRonald Boellaard, Nanda C Krak, Otto S Hoekstra, and Adriaan A Lammertsma. Effects of noise, image resolution, and ROI de nition on the accuracy of standard uptake values: a simulation study. Journal of Nuclear Medicine, 45(9):1519-1527, 2004.
dc.relation.referencesCapintec INC. Captus 3000 Thyroid Uptake System Owners Manual, 2001.
dc.relation.referencesTécnicas Radiofísicas. http://trf.es/es/product-items/gm-rady/, 2 de Octubre de 2019.
dc.relation.referencesInstituto Nacional de Cancerología. Descripción de Actividad para el Control de Calidad de Gammacámaras. page 30, 2018.
dc.relation.referencesInstituto Nacional de Cancerología. Instructivo para la calibración del equipo Captus 3000. page 8, 2016.
dc.relation.referencesDaryl Graham Beth A. Harkness S. Cheenu Kappadath Mark T. Madsen Richard J. Massoth James A. Patton Sharon L. White Lawrence E. Williams Wesley W. Wooten James R. Halama, Chair. Acceptance Testing and Annual Physics Survey Recommendations for Gamma Camera, SPECT, and SPECT/CT Systems The Report of AAPM Task Group 177. pages 1-55, 2019.
dc.relation.referencesAmerican College of Radiology et al. National electrical manufacturers association (nema) standards publication for data compression standards. NEMA Publication PS-2, Washington, DC, 1989.
dc.relation.referencesIAEA TECDOC. 602. Quality Control of Nuclear Medicine instruments 1991. issn 1011-4289. International Atomic Energy Agency, Vienna.
dc.relation.referencesEllinor Busemann Sokole, Anna P lachcínska, Alan Britten, Maria Lyra Georgosopoulou, Wendy Tindale, Rigobert Klett, et al. Routine quality control recommendations for nuclear medicine instrumentation. European journal of nuclear medicine and molecular imaging, 37(3):662-671, 2010.
dc.relation.referencesPat Zanzonico. Routine quality control of clinical Nuclear Medicine instrumentation: a brief review. Journal of Nuclear Medicine, 49(7):1114-1131, 2008.
dc.relation.referencesMaximiliano Huerfano Correa et al. Validación del programa imagej para cuanti cación de imágenes en dosimetría interna para pacientes de terapia con 131I. PhD thesis, Universidad Nacional de Colombia-Sede Bogotá.
dc.relation.referencesRichard B Schwartz, Basem M Garada, AL Komaro , HM Tice, M Gleit, FA Jolesz, and BL Holman. Detection of intracranial abnormalities in patients with chronic fatigue syndrome: comparison of MR imaging and SPECT. AJR. American journal of roentgenology, 162(4):935-941, 1994.
dc.relation.referencesJinsong Ouyang, Georges El Fakhri, and Stephen C Moore. Improved activity estimation with MC-JOSEM versus TEW-JOSEM in SPECT. Medical physics, 35(5):2029-2040, 2008.
dc.relation.referencesPaul Mercea. Quanti cation of longitudinal tumor changes using PET imaging in 3D Slicer. 2013.
dc.relation.referencesMichael Ljungberg, Sven-Erik Strand, and Michael A King. Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging. CRC Press, 2012.
dc.relation.referencesM Silosky, V Johnson, C Beasley, and S Cheenu Kappadath. Characterization of the count rate performance of modern gamma cameras. Medical physics, 40(3):032502, 2013.
dc.relation.referencesRalph Adams and Duane Zimmerman. Methods for calculating the deadtime of Anger camera systems. Journal of Nuclear Medicine, 14(7):496-498, 1973.
dc.relation.referencesSarah J Chittenden, Brenda E Pratt, Kay Pomeroy, Peter Black, Clive Long, Nicholas Smith, Susan E Buckley, Frank H Saran, and Glenn D Flux. Optimization of equipment and methodology for whole body activity retention measurements in children undergoing targeted radionuclide therapy. Cancer biotherapy & radiopharmaceuticals, 22(2):243-249, 2007.
dc.relation.referencesIAEA CRP. Dosimetry in Molecular Radiotherapy for Personalized Patient Treatments. https://www.iaea.org/newscenter/news/new-crp-dosimetry-in-radiopharmaceutical- therapy-for-personalized-patient-treatment-e23005.
dc.relation.referencesErick Mora Ramírez. Evaluación de la uniformidad intrínseca en gamma cámaras del servicio de medicina nuclear del Hospital San Juan de Dios. Revista de Ciencia y Tecnología Vol. 25 Núm. 1 y 2 2009, 2009.
dc.relation.referencesGopal B Saha. Physics and Radiobiology of Nuclear Medicine. Springer Science & Business Media, 2012.
dc.relation.referencesIAEA. IAEA-NMQC Toolkit for Fiji Application, Version 1.00, User´s Manual. https://humanhealth.iaea.org/HHW/MedicalPhysics/NuclearMedicine/QualityAssurance/NMQC-Plugins/index.html, 2017.
dc.relation.referencesMargarita Núñez. Control de calidad de los sistemas de detección usados en Medicina Nuclear. Esc. Univ. Tecnol. Médica. UdelaR, Montevideo, Uruguay. Com. Tecnólogos ALASBIMN, 2008.
dc.relation.referencesHC Rajpoot. Solid angle subtended by a rectangular right pyramid (solid/hollow) at its apex. 2019.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalActivity quantification
dc.subject.proposalCuantificación de actividad
dc.subject.proposalI-131
dc.subject.proposalI-131
dc.subject.proposalPrecision
dc.subject.proposalPrecisión
dc.subject.proposalFactor de calibración
dc.subject.proposalCalibration factor
dc.subject.proposalImagenológicas
dc.subject.proposalImaging
dc.subject.proposalNo Imaging
dc.subject.proposalNo imagenológicas
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito