Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorPavas Martínez, Fabio Andrés
dc.contributor.advisorMojica Nava, Eduardo Alirio
dc.contributor.authorGonzález Castro, Nelson Yesid
dc.date.accessioned2020-06-16T20:04:47Z
dc.date.available2020-06-16T20:04:47Z
dc.date.issued2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77655
dc.description.abstracthis document contains three main parts. First, it was proposed to model the source of generation through probabilistic models. To solve this objective, a model of probabilistic prediction for solar irradiance, based on a historical data, was developed. The model allows predicting irradiance several days in advance. Second, it was proposed to analyze the behavior of the microgrid in frequency and voltage regulation and propose for it demand and generation variability sceneries in the system, and to analyze, additionally, if there is any phenomenon when the physical installation distances of the components were modi ed. In order to solve these points, the dynamic models for each component of the microgrid, used for the case study, have been developed, and from there the results obtained are observed and reported. Finally, it was proposed an algorithm that allows to plan the size of distributed generations considering criteria of reliability.
dc.description.abstractEste documento contiene tres partes principales. Primero, se propuso modelar la fuente de generación a través de modelos probabilísticos. Para dar solución a este objetivo se desarrolló un modelo de predicción probabilística de la irradiancia solar usando en un histórico de datos. El modelo permite predecir la irradiancia con varios días de anticipación. Segundo, se propuso analizar el comportamiento de la microrred en los temas de regulación de frecuencia y voltaje y proponer para ellos escenarios de variabilidad de demanda y generación en el sistema y analizar, adicionalmente, si existe algún fenómeno cuando las distancias físicas de instalación de los componentes se varían. Para dar solución a estos puntos, se han desarrollado los modelos dinámicos de cada uno de los componentes de la microrred que se usa para caso de estudio, y de ahí se observan y reportan los resultados obtenidos. Por último, se propone un algoritmo para planear la dimensión de las generaciones distribuidas teniendo en cuenta criterios de confiabilidad.
dc.format.extent128
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física::537 - Electricidad y electrónica
dc.titleDefinición de criterios de diseño para una microrred eléctrica a través de criterios de confiabilidad
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.contributor.researchgroupPROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesBarros, R. C., De-Carvalho, A., and Freitas, A. (2015). Automatic Design of Decision-Tree Induction Algorithms.
dc.relation.referencesBarsali, S., Ceraolo, M., Pelacchi, P., and Poli, D. (2002). Control techniques of dispersed generators to improve the continuity of electricity supply. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2:789-794.
dc.relation.referencesBillinton, R. and Allan, R. N. (1996). Reliability Evaluation of Power Systems.
dc.relation.referencesBoland, J. (2008). Time series modelling of solar radiation.
dc.relation.referencesBosch, J. L., López, G., and Batlles, F. J. (2008). Daily solar irradiation estimation over a mountainous area using arti cial neural networks. Renewable Energy, 33(7):1622-1628.
dc.relation.referencesChowdhury, A. A. and Koval, D. O. (2009). Power Distribution System Reliability.
dc.relation.referencesChowdhury, S., Chowdhury, S. P., and Crossley, P. (2009). Microgrids and active distribution networks.
dc.relation.referencesDave, M. K. (2017). Modeling of PV arrays based on datasheet. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016.
dc.relation.referencesDenholm, P. and Margolis, R. M. (2007). Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies. Energy Policy, 35(9):4424-4433.
dc.relation.referencesEslami, A. and Ghanbari, T. (2019). New mathematical model from system standpoint to analyse and mitigate PV leakage current of large PV strings/arrays. IET Generation, Transmission and Distribution, 13(4):543-552.
dc.relation.referencesESMAP and SOLARGIS (2019). Atlas interactivo - IDEAM. Recuperado de: https://globalsolaratlas.info/download/colombia.
dc.relation.referencesFalahati, B., Shahverdi, M., Fajri, P., and Kargarian, A. (2019). Loss of Load Probability of Power Systems Considering the High PHEV Penetration Rates. 2018 IEEE Conference on Technologies for Sustainability, SusTech 2018.
dc.relation.referencesFarahani, K. M. (2012). Modeling and Analysis of a Flywheel Energy Storage System for Voltage Regulation. PhD thesis.
dc.relation.referencesFethi, O., Dessaint, L. A., and Al-Haddad, K. (2004). Modeling and simulation of the electric part of a grid connected micro turbine. 2004 IEEE Power Engineering Society General Meeting, 2:2212-2219.
dc.relation.referencesGE Energy Report (2010). Western Wind and Solar Integration Study. New York, (May):536.
dc.relation.referencesGómez, N. (2011). Energización de las zonas no interconectadas a partir de las energías renovables solar y eólica. Master's thesis.
dc.relation.referencesGonzález Castro, N. Y., Cusgüen Gómez, C. A., Mojica Nava, E. A., and Pavas Martínez, F. A. (2017). Estrategias de control de calidad de energía en microrredes rurales. Revista UIS Ingenierías, 16(2):93-104.
dc.relation.referencesHatziargyriou, N. (2013). Microgrids: Architectures and Control. Wiley.
dc.relation.referencesIDEAM (2019). Atlas interactivo - IDEAM. Recuperado de: http://atlas.ideam.gov.co/.
dc.relation.referencesIEEE Power and Energy Society (2012). IEEE 1366-2012: Guide for Electric Power Distribution Reliability Indices. IEEE Power Engineering Society 1999 Winter Meeting, 2012(May):1-43.
dc.relation.referencesInman, R. H., Pedro, H. T., and Coimbra, C. F. (2013). Solar forecasting methods for renewable energy integration. Progress in Energy and Combustion Science, 39(6):535-576.
dc.relation.referencesKariniotakis, G. N., Soultanis, N. L., Tsouchnikas, A. I., Papathanasiou, S. A., and Hatziargyriou, N. D. (2005). Dynamic modeling of MicroGrids. 2005 International Conference on Future Power Systems, 2005.
dc.relation.referencesKhatib, T., Mohamed, A., and Sopian, K. (2013). A review of photovoltaic systems size optimization techniques. Renewable and Sustainable Energy Reviews, 22:454-465.
dc.relation.referencesKopp, G. and Lean, J. L. (2011). A new, lower value of total solar irradiance: Evidence and climate signi cance. Geophysical Research Letters, 38(1).
dc.relation.referencesKostylev, V. and Pavlovski, A. (2011). Solar power forecasting performance - towards industry standards. 1st International Workshop on the Integration of Solar Power into Power Systems, Aarhus, Denmark, pages 1-8.
dc.relation.referencesKumar, S., Sahu, H. S., and Nayak, S. K. (2019). Estimation of MPP of a Double Diode Model PV Module from Explicit I-V Characteristic. IEEE Transactions on Industrial Electronics, 66(9):7032-7042.
dc.relation.referencesLasseter, R. H. (2007). Microgrids and distributed generation. Journal of Energy Engineering.
dc.relation.referencesLauret, P., David, M., Fock, E., Bastide, A., and Riviere, C. (2006). Bayesian and sensitivity analysis approaches to modeling the direct solar irradiance. Journal of Solar Energy Engineering, Transactions of the ASME, 128(3):394-405.
dc.relation.referencesLauret, P., Voyant, C., Soubdhan, T., David, M., and Poggi, P. (2015). A benchmarking of machine learning techniques for solar radiation forecasting in an insular context. Solar Energy, 112:446-457.
dc.relation.referencesLopes, J. A., Moreira, C. L., and Madureira, A. G. (2006). De ning control strategies for microgrids islanded operation. IEEE Transactions on Power Systems, 21(2):916-924.
dc.relation.referencesLuo, X., Singh, C., and Zhao, Q. (2000). Loss-of-load probability calculation using Learning Vector Quantization. PowerCon 2000 - 2000 International Conference on Power System Technology, Proceedings, 3:1707-1712.
dc.relation.referencesMirzapour, O. (2017). Photovoltaic parameter estimation using heuristic optimization. pages 792-797.
dc.relation.referencesNagpal, M., Moshref, A., Morison, G. K., and Kundur, P. (2001). Experience with testing and modeling of gas turbines. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2(WINTER MEETING):652-656.
dc.relation.referencesOka, N., Baba, T., Takahashi, Y., Fujiwara, K., Ishihara, Y., Ko, E., Nishikawa, S., and Kato, H. (2017). Reverse current simulation in PV array composed of di erent modules for interchangeability evaluation of thin lm PV modules. 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017, pages 1-5.
dc.relation.referencesOliver, A., Rodríguez, E., and Mazorra-Aguiar, L. (2018). Wind Field and Solar Radiation Characterization and Forecasting.
dc.relation.referencesPadullés, J., Ault, G. W., and McDonald, J. R. (2000). Integrated SOFC plant dynamic model for power systems simulation. Journal of Power Sources, 86(1):495-500.
dc.relation.referencesPalma-Behnke, R., Jimenez-Estevez, G. A., Saez, D., Montedonico, M., Mendoza-Araya, P., Hernandez, R., and Poblete, C. M. (2019). Lowering Electricity Access Barriers by Means of Participative Processes Applied to Microgrid Solutions: The Chilean Case. Proceedings of the IEEE, 107(9):1857-1871.
dc.relation.referencesPavlovic, T. (2020). The Sun and Photovoltaic Technologies.
dc.relation.referencesRashidaee, S. A., Amraee, T., and Fotuhi-Firuzabad, M. (2018). A linear model for dynamic generation expansion planning considering loss of load probability. IEEE Transactions on Power Systems, 33(6):6924-6934.
dc.relation.referencesSchiffer, J., Zonetti, D., Ortega, R., Stankovic, A. M., Sezi, T., and Raisch, J. (2016). A survey on modeling of microgrids - From fundamental physics to phasors and voltage sources. Automatica, 74:135-150.
dc.relation.referencesShalukho, A. V., Lipuzhin, I. A., and Voroshilov, A. A. (2019). Power quality in microgrids with distributed generation. Proceedings - 2019 International Ural Conference on Electrical Power Engineering, UralCon 2019, pages 54-58.
dc.relation.referencesSidrach-de Cardona, M. and López, L. M. (1998). A simple model for sizing stand alone photovoltaic systems. Solar Energy Materials and Solar Cells, 55(3):199-214.
dc.relation.referencesSingh, S. S. and Fernández, E. (2014). Method for evaluating battery size based on loss of load probability concept for a remote PV system. Proceedings of 6th IEEE Power India International Conference, PIICON 2014.
dc.relation.referencesSánchez Rosas, Y. S. (2018). Predicción probabilística de corto plazo en generación eólica. Tesis de maestría, Universidad Nacional de Colombia.
dc.relation.referencesTamrakar, V., Gupta, S. C., and Sawle, Y. (2016). Study of characteristics of single and double diode electrical equivalent circuit models of solar PV module. International Conference on Energy Systems and Applications, ICESA 2015, pages 312-317.
dc.relation.referencesUPME (2019). Upme. Recuperado de: https://www1.upme.gov.co/Paginas/default.aspx.
dc.relation.referencesUrquhart, B., Chow, C. W., Lave, M., and Kleissl, J. (2011). Intra-hour forecasting with a total sky imager at the UC san Diego solar energy testbed. 40th ASES National Solar Conference 2011, SOLAR 2011, 1:248-256.
dc.relation.referencesZhu, Y. and Tomsovic, K. (2002). Development of models for analyzing the load-following performance of microturbines and fuel cells. Electric Power Systems Research, 62(1):1-11.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPredicción
dc.subject.proposalPrediction
dc.subject.proposalFotovoltaico
dc.subject.proposalPhotovoltaic
dc.subject.proposalGeneración distribuida
dc.subject.proposalDistributed Generation
dc.subject.proposalDynamic Model
dc.subject.proposalModelo dinámico
dc.subject.proposalReliability
dc.subject.proposalConfiabilidad
dc.subject.proposalMicrorred
dc.subject.proposalMicrogrid
dc.subject.proposalRegulación en voltaje y frecuencia
dc.subject.proposalVoltage and Frequency Regulation
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito