Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCote Menéndez, Miguel
dc.contributor.authorArteaga Silva, Elizabeth del Carmen
dc.date.accessioned2020-06-16T20:16:54Z
dc.date.available2020-06-16T20:16:54Z
dc.date.issued2020-05-26
dc.identifier.citationArteaga E. (2019). Espectro cannábico: cannabis de baja potencia, de alta potencia y sintético. Diferenciación de efectos clínicos y revisión literaria estudio realizado en usuarios de 14 a 43 años de la ciudad de Bogotá en el año 2019. Universidad Nacional, Bogotá, Colombia.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77656
dc.description.abstractObjetivo: establecer la presencia de consumo de cannabis de alta potencia, definir sus efectos clínicos para compararlos con los efectos de cannabis de baja potencia en la población estudiada, finalmente complementar el espectro cannábico con revisión literaria de los efectos del cannabis sintético, que, aunque no se encontraron casos en esta investigación hay reportes del Observatorio de Drogas de Colombia que ya se encuentran en nuestro país. Metodología: es un estudio observacional analítico de corte transversal que se realizó en dos grupos de usuarios de cannabis, la población de estudio fue de la ciudad de Bogotá por medio de la realización de entrevista semiestructurada y aplicación de instrumentos de evaluación de consumo de sustancias y su impacto. Resultados: Se estudiaron dos grupos, cada uno de 29 participantes, un grupo con reporte de cannabis de alta potencia y un grupo con reporte de cannabis de baja potencia. Los hallazgos fueron: Las características sociodemográficas no demostraron tener una diferencia estadística significativa entre los dos grupos, la forma de presentación es un factor que define la concentración del cannabis, el de baja potencia se presenta exclusivamente como material vegetal; el patrón de dependencia se encuentra en la mayor parte del grupo de baja potencia, aunque ya hay casos en el grupo de alta potencia. Las alteraciones del afecto predominan en el cannabis regular mientras que los síntomas psicóticos predominan en el wax y los vaporizadores. Los efectos cardiovasculares demostraron diferencia significativa en algunas variables como frecuencia cardiaca y respiratoria además de cefalea, taquicardia y vértigo. Discusión: la concentración de THC define si el cannabis es de alta o de baja potencia, con un punto de corte por literatura de 15%. Los hallazgos clínicos en la población estudiada confirman que entre mayor concentración de THC los efectos son de inicio de acción más rápida, más severos y con tendencia al desarrollo de síntomas psicóticos. Estos hallazgos son además compatibles con el análisis de dos muestras de cannabis de alta potencia, la cera conocida como wax y el aceite para vaporizar, en los que se encontraron concentraciones de THC de 61% y 50% respectivamente. Finalmente, el cannabis sintético reporta en la literatura concentraciones superiores al 70% y de hasta 90% de THC agravando la severidad de los efectos, considerándolo incluso como un factor de riesgo de mortalidad en otros países. Conclusiones: la concentración de THC es directamente proporcional a la severidad de los efectos reportados por los pacientes. La presencia de síntomas psicóticos con alteraciones de la conducta es más frecuente con el cannabis de alta potencia. Estas nuevas modalidades de cannabis pasan por un procesamiento químico por lo que se consideran drogas de diseño que causan cuadros toxicológicos severos en los usuarios. Hay desconocimiento de los efectos de los nuevos tipos de cannabis que deben identificarse inicialmente en lo clínico y además requieren de instrumentos analíticos que sean más específicos con la diferenciación de cannabinoides en una sustancia. Palabras clave: Cannabis, Potencia, Efectos, Toxicología.
dc.description.abstractObjective: Establish the presence of high power cannabis consumption, define its clinical effects to compare with low power cannabis in the targeted population, and finally complement the cannabic spectrum with literary review about the effect of synthetic cannabis, that even though there were no cases found in this research, there is reports by the Colombian Drugs Observatory that it is already in our country. Methodology: It is an observational analytical cross-sectional study that took place among two groups of cannabis consumers, the targeted population was from the city of Bogota through a semi-structured interview and the application of substance use assessment instruments and their impact. Results: Two groups were studied, each with 29 individuals, one group had reports of high power cannabis use and the other had reports of low power cannabis use. The results were: the sociodemographic characteristics did not show to have a relevant statistical difference among both groups, the presentation of the product is a factor that defines the level of concentration of the cannabis, the low power one is presented as a vegetal material, the dependency pattern is found throughout the vast majority of the low power group, and same amount of cases with the same characteristics are reported in the high power group. The effect alterations predominate in the regular cannabis, while the psychotic symptoms prevail in the wax and the vaporizers. The cardiovascular effects demonstrate a relevant difference between some variables, such as heart and respiratory rate besides headaches, tachycardia, and vertigo. Discussion: the concentration of THC defines if the cannabis is high or low power, with a cut-off point for literature of 15%. The clinical findings among the studies population confirm that the highest the THC concentration, the effect have a faster start, are more severe and have a tendency to develop psychotic symptoms. These findings are also compatible with the analysis of two samples of high power cannabis, the wax known as "wax", and the vaporizing oil, in which were found THC concentration levels of 61% and 50% respectively. Finally the synthetic cannabis reports among the literacy higher concentrations of 70%, and even up to 90% of THC, worsening the severity of the effects, which is consider a mortality risk factor in other countries. Conclusions: The THC concentration is directly proportional to the severity of the effects reported among patients. The presence of psychotic symptoms with behavioral disturbances is more common with the high power cannabis. These new cannabis modalities go through a chemical process, therefore they are considered designed drugs that cause severe toxicological symptoms among users. There is no knowledge about the effect of the new types of cannabis that must be clinically identified first, and that also requires analytical instruments that have to be more specific towards the differentiation of cannabinoids in a substance. Key words: Cannabis, Potency, Effects, Toxicology.
dc.format.extent110
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleEspectro cannábico: cannabis de baja potencia, de alta potencia y sintético. Diferenciación de efectos clínicos y revisión literaria estudio realizado en usuarios de 14 a 43 años de la ciudad de Bogotá en el año 2019
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Toxicología
dc.contributor.researchgroupSustancias Psicoactivas
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Medina-Mora ME, Real T, Villatoro J, Natera G. Las drogas y la salud pública: ¿hacia dónde vamos?. Salud Publica Mex 2013; 55(1):67–73.
dc.relation.references2. UNODC, OEA, Bogotá AM de. Estudio de consumo de sustancias psicoactivas en Bogotá, D.C. 2016. 2016.
dc.relation.references3. Telles Mosquera J, Cote Menendez M. Efectos Toxicológicos y Neuropsiquiátricos Producidos por Consumo de Cocaína. Rev.fac.med.unal. 2005; 53(1):10–26.
dc.relation.references4. Escobar E, Berrouet MC GM. Mecanismos moleculares de la adicción a la marihuana. Rev Colomb Psiquiat. 2009; 38(1): 126-142.
dc.relation.references5. Instituto de Salud Pública de Chile. Guía técnica toxicología y análisis de cannabis y sus derivados. 2015; 23.
dc.relation.references6. John M. Stogner, PhD1 and Bryan Lee Miller, PhD2 The Dabbing Dilemma: A Call for Research on Butane Hash Oil and Other Alternate Forms of Cannabis Use
dc.relation.references7. Kalk NJ, Boyd A, Strang J, Finch E. Spice and all things nasty: The challenge of synthetic cannabinoids. BMJ. 2016; 355:2015–6.
dc.relation.references8. Grueza RA. Agrawal A, Krauss MJ HC. Marijuana use disorders and conduct problems declined among teens from 2002–2013. BROWN Univ CHILD Adolesc Psychopharmacol Updat. 2016; 55(6):439–40.
dc.relation.references9. Brents LK, Prather PL. The K2/Spice Phenomenon: Emergence, identification, legislation and metabolic characterization of synthetic cannabinoids in herbal incense products. Drug Metab Rev. 2014; 46(1):72–85.
dc.relation.references10. Karila L, Benyamina A, Blecha L, Cottencin O, Billieux J. The Synthetic Cannabinoids Phenomenon. Curr Pharm Des. 2017; 22(00):1–6.
dc.relation.references11. William E. Fantegrossia, Jeffery H. Morana, c, Anna Radominska-Pandyab and PLP. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9 -THC: Mechanism underlying greater toxicity? Life Sci. 2015; 97(1):45–54.
dc.relation.references12. Hervás ES. Synthetic cannabinoids: characteristics, use and clinical implications. Arch Psychiatry Psychother. 2017; 2:42–8.
dc.relation.references13. Zawilska JB, Wojcieszak J. Spice/K2 drugs-more than innocent substitutes for marijuana. Int J Neuropsychopharmacol. 2014; 17:509–25.
dc.relation.references14. Sheikh CE IA, Lukšič M DE, Ferstenberg ADEF R, Culpepper-Morgan JA, Sheikh I. SPICE/K2 Synthetic Marijuana-Induced Toxic Hepatitis Treated with N-Acetylcysteine. Am J Case Rep 2014; 15:584–8.
dc.relation.references15. Freeman MJ, Rose DZ, Myers MA, Gooch CL, Bozeman AC, Scott Burgin W. Ischemic stroke after use of the synthetic marijuana “spice.” Neurology. 2013; 81(24):2090–3.
dc.relation.references16. Barratt MJ, Cakic V, Lenton S. Patterns of synthetic cannabinoid use in Australia. Drug Alcohol Rev. 2013; 32(2):141–6.
dc.relation.references17. Keyes KM, Rutherford C, Hamilton A, Palamar JJ. Age, period, and cohort effects in synthetic cannabinoid use among US adolescents, 2011–2015 HHS Public Access. Drug Alcohol Depend. 2016; 166:159–67.
dc.relation.references18. Medina C, Viceministro De Política Criminal R, Restaurativa J, Rodríguez R, Director De Política De Drogas P, Relacionadas A, et al. Reporte de drogas de Colombia 2017. 2017.
dc.relation.references19. Informe técnico de la caracterización química, taxonómica y de mercado de la marihuana producida y consumida en el país. Unodoc – MinJustucia – Fiscalía General de la Nación – Policía Nacional. 2015
dc.relation.references20. Comisión Interamericana para el Control del Abuso de Drogas (CICAD), Secretaría de Seguridad Multidimensional (SSM), Organización de los Estados Americanos (OEA). Informe sobre el consumo de drogas en las Américas 2019
dc.relation.references21. Drogas observatorio nacional de. Reporte de drogas de colombia 2016. 2016; 2:1–207.
dc.relation.references22. Marta Di Forti, Diego Quattrone, Tom P Freeman, Giada Tripoli, The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): a multicentre case-control study. 2019
dc.relation.references23. Tom P. Freeman1, 2, Peggy van der Pol3, Wil Kuijpers4, Jeroen Wisselink4, Changes in cannabis potency and first-time admissions to drug treatment: a 16-year study in the Netherlands
dc.relation.references24. European Monitoring Centre for Drugs and Drug Addiction – Synthetic cannabinoids in Europe 2017. http://www.emcdda.europa.eu/topics/pods/synthetic-cannabinoids
dc.relation.references25. Casadiego Mesa AF, Lastra Bello SM. Cannabis sintético: aspectos toxicológicos, usos clínicos y droga de diseño. Rev la Fac Med. 2015; 63(3):501–10.
dc.relation.references26 Ministerio de Justicia de Colombia, UNODC. III Estudio epidemiológico andino sobre consumo de drogas en la población universitaria de Colombia, 2016.
dc.relation.references27. Division DEA, Division C. Lists of : Scheduling Actions Controlled Substances Regulated Chemicals July 2018 Foreword.
dc.relation.references28. Longo DL, Volkow ND, Baler RD, Compton WM, Weiss SRB. Adverse Health Effects of Marijuana Use. N Engl J Med. 2014; 23370(5):2219–27.
dc.relation.references29. Gunderson EW, Haughey HM, Ait-Daoud N, Joshi AS, Hart CL. A survey of synthetic cannabinoid consumption by current cannabis users. Subst Abus. 2014; 35(2):184–9
dc.relation.references30. Ford BM, Tai S, Fantegrossi WE, Prather PL. Synthetic Pot: Not Your Grandfather’s Marijuana. Trends Pharmacol Sci. 2017; 38(3):257–76.
dc.relation.references31. The pharmacological properties of cannabis. Istok Nahtigal, MSc, Alexia Blake, MSc, Andrew Hand, MSc
dc.relation.references32. Youssef F, Irving A. From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits. West Indian Med J 2012; 61(3):264–70.
dc.relation.references33. Sun X, Dey SK. Synthetic cannabinoids and potential reproductive consequences. Life Sci. 2014; 97(1):72–7.
dc.relation.references34. Navarro G, Varani K, Reyes-Resina I, de Medina VS, Rivas-Santisteban R, Callado CSC, et al. Cannabigerol action at cannabinoid CB1and CB2receptors and at CB1-CB2heteroreceptor complexes. Front Pharmacol. 2018; 9(JUN):1–14.
dc.relation.references35. Ramón PCJ, Simón I, Bárbara D, Fernández L, Ii R. Brief review on the pharmacology of cannabinoids. MEDISAN. 2017; 21(3).
dc.relation.references36. Pertwee RG. Cannabinoid pharmacology: The first 66 years. Br J Pharmacol. 2006; 147(SUPPL. 1):163–71.
dc.relation.references37. Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y, et al. Crystal Structure of the Human Cannabinoid Receptor CB1. Cell. 2016; 167:750–62.
dc.relation.references38. Abanades S. Farmacología clínica del cannabis. Dolor. 2005; 20:187–98.
dc.relation.references39. McPartland JM, Duncan M, Di Marzo V, Pertwee RG. Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol. 2015; 172(3):737–53.
dc.relation.references40. Drugs PON. Synthetic cannabinoids in Europe. 2017.
dc.relation.references41. Gurney SMR, Scott KS, Kacinko SL, Presley BC, Logan BK. Pharmacology, toxicology, and adverse effects of synthetic cannabinoid drugs. Forensic Sci Rev. 2014; 26(1):54–76.
dc.relation.references42. Debruyne D, Le Boisselier R. Emerging drugs of abuse: current perspectives on synthetic cannabinoids. Subst Abuse Rehabil 2015; 6:113–29.
dc.relation.references43. Tamosiunas G, Pagano E. An introduction to the pharmacological and therapeutic profile of marijuana Medicina y sociedad. Arch Med Interna. 2013; 35(3):113–6.
dc.relation.references44. Cutando L, Maldonado R, Ozaita A. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J Clin Invest 2013; 123(7):2816–31.
dc.relation.references45. Seely KA, Prather PL, James LP, Moran JH. Marijuana-based Drugs: Innovative Therapeutics or Designer Drugs of Abuse? Mol Interv. 2011; 11(1):36–51.
dc.relation.references46. García LM, Morales JET, Figueredo YN, Montalbán M, Suárez HRC. Potencial terapéutico de los canabinoides como neuroprotectores. Rev Cuba Farm. 2007; 1–11.
dc.relation.references47. Koppel BS, Brust JCM, Fife T, Bronstein J, Youssof S, Gronseth G, et al. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2014; 82:1556–63.
dc.relation.references48. (Marianne Hädenera, Sina Vietenb,c , Wolfgang Weinmanna, *, Hellmut Mahlerc) A preliminary investigation of lung availability of cannabinoids by smoking marijuana or dabbing BHO and decarboxylation rate of THC- and CBD-acids
dc.relation.references49. Stefan W. Toennes1,*, Johannes G. Ramaekers2, Eef L. Theunissen2. Comparison of Cannabinoid Pharmacokinetic Properties in Occasional and Heavy Users Smoking a Marijuana or Placebo Joint
dc.relation.references50. Robin M. Murray, Harriet Quigley, Diego Quattrone, Amir Englund, Marta Di Forti. Traditional marijuana, high-potency cannabis and synthetic cannabinoids: increasing risk for psychosis
dc.relation.references51. Dolengevich-Segal H, Rodríguez-Salgado B, Gómez-Arnau J, Sánchez-Mateos D. An approach to the new psychoactive drugs phenomenon. Salud Ment. 2017; 71(2):71–82.
dc.relation.references52. Cottencin O, Rolland B, Karila L. New Designer Drugs (Synthetic Cannabinoids and Synthetic Cathinones): Review of Literature. Curr Pharm Des. 2014; 20(25):4106–11.
dc.relation.references53. Adams AJ, Banister SD, Irizarry L, Trecki J, Schwartz M, Gerona R. “Zombie” Outbreak Caused by the Synthetic Cannabinoid AMB-FUBINACA in New York. N Engl J Med 2017; 376(3):235–42.
dc.relation.references54. Shevyrin V, Melkozerov V, Endres GW, Shafran Y, Morzherin Y. On a New Cannabinoid Classification System: A Sight on the Illegal Market of Novel Psychoactive Substances. Cannabis Cannabinoid Res. 2016;
dc.relation.references55. University of Washington. Spice and K2 (Synthetic Marijuana). Alcohol Drug Abus Inst 2013; 7:1–2.
dc.relation.references56. Davies BB, Bayard C, Larson SJ, Zarwell LW, Mitchell RA. Retrospective analysis of synthetic cannabinoid metabolites in urine of individuals suspected of driving impaired. J Anal Toxicol. 2016; 40(2):89–96.
dc.relation.references57. Samano KL, Poklis JL, Lichtman AH, Poklis A. Development of a high-performance liquid chromatography-tandem mass spectrometry method for the identification and quantification of CP-47,497, CP-47,497-C8 and JWH-250 in mouse brain. J Anal Toxicol. 2014; 38:307–14.
dc.relation.references58. Diao X, Huestis MA. Approaches, Challenges, and Advances in Metabolism of New Synthetic Cannabinoids and Identification of Optimal Urinary Marker Metabolites. Clin Pharmacol Ther. 2017; 101(2):239–53.
dc.relation.references59. Sachdev S, Vemuri K, Banister SD, Longworth M, Santiago M, Makriyannis A, et al. In vitro determination of the CB1 efficacy of illicit synthetic cannabinoids. Prepr Serv Biol. 2018; 6544:1–27.
dc.relation.references60. Seely KA, Lapoint J, Moran JH, Fattore L. Spice drugs are more than harmless herbal blends: A review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuro-Psychopharmacology Biol Psychiatry 2012; 39(2):234–43.
dc.relation.references61. Evren C, Bozkurt M. Synthetic cannabinoids: Crisis of the decade. Dusunen Adam. 2013; 26(1):1–11.
dc.relation.references62. Gamage TF, Farquhar CE, Lefever TW, Marusich JA, Kevin RC, Mcgregor IS, et al. Molecular and behavioral pharmacological characterization of abused synthetic cannabinoids MMB- and MDMB-FUBINACA, MN-18, NNEI, CUMYL-PICA, and 5-fluoro-CUMYL-PICA Vol. 365, Jpet. 2018. 1-39
dc.relation.references63. Hohmann N, Mikus G, Czock D. Wirkungen und risiken neuartiger psychoaktiver substanzen: Fehldeklaration und verkauf als “badesalze”, “spice” und “forschungschemikalien.” Dtsch Arztebl Int. 2014; 111(9):139–47.
dc.relation.references64. Atik SU, Dedeoğlu R, Varol F, Çam H, Eroğlu AG, Saltık L. Bonzai kullanımına bağlı kalp ve damar sistemi yan etkileri: İki olgu sunumu. Turk Pediatr Ars. 2015; 50(1):61–4.
dc.relation.references65. Darmani NA, Zhong W. Endo- Phyto- and Synthetic-Cannabinoids and the Cannabinoid-Induced Hyperemesis Syndrome. Gastro Open J. 2017; 1:S1–8.
dc.relation.references66. Dawson DA. Synthetic Cannabinoids, Organic Cannabinoids, the Endocannabinoid System, and their Relationship to Obesity, Diabetes, and Depression. Mol Biol 2018; 07(04):10–3. A
dc.relation.references67. Pierre JM. Cannabis, synthetic cannabinoids, and psychosis risk: What the evidence says. Curr Psychiatr. 2011; 10(9):49–58.
dc.relation.references68. Murray RM, Quigley H, Quattrone D, Englund A, Di Forti M. Traditional marijuana, high-potency cannabis and synthetic cannabinoids: increasing risk for psychosis. World Psychiatry. 2016; 15(3):195–204.
dc.relation.references69. Riederer A, Campleman S, Carlson R, Boyer E, Manini A, Wax P BJ. Acute Poisonings from Synthetic Cannabinoids — 50 U.S. Toxicology Investigators Consortium Registry Sites, 2010–2015. Morb Mortal Wkly Rep. 2016; 65(27):692–5.
dc.relation.references70. Ministerio de Salud. Resolución Número 8430 de 1993 (Octubre 4).
dc.relation.references71. Declaración de Helsinki de la Asociación Médica Mundial Recomendaciones para guiar a los médicos en la investigación biomédica en personas.
dc.relation.references72. Organización Panamericana de la Salud. BUENAS PRÁCTICAS CLÍNICAS: Documento de las Américas.
dc.relation.references73. OMS. La prueba de detección de consumo de alcohol, tabaco y sustancias (ASSIST). Oms. 2011. 73 p.
dc.relation.references74. CBCL/6-18 -Competence Scale Scores for Girls 6-11.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCannabis
dc.subject.proposalCannabis
dc.subject.proposalPotency
dc.subject.proposalPotencia
dc.subject.proposalEffects
dc.subject.proposalEfectos
dc.subject.proposalToxicología
dc.subject.proposalToxicology
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito