Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorGonzález, Fabio A.
dc.contributor.authorPerdomo Charry, Oscar Julián
dc.date.accessioned2020-07-02T17:50:13Z
dc.date.available2020-07-02T17:50:13Z
dc.date.issued2020-06-30
dc.identifier.citationPerdomo Charry, O. J. Deep learning analysis of eye fundus images to support medical diagnosis (Doctoral dissertation, Universidad Nacional de Colombia-Sede Bogotá), 2020.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77729
dc.description.abstractMachine learning techniques have been successfully applied to support medical decision making of cancer, heart diseases and degenerative diseases of the brain. In particular, deep learning methods have been used for early detection of abnormalities in the eye that could improve the diagnosis of different ocular diseases, especially in developing countries, where there are major limitations to access to specialized medical treatment. However, the early detection of clinical signs such as blood vessel, optic disc alterations, exudates, hemorrhages, drusen, and microaneurysms presents three main challenges: the ocular images can be affected by noise artifact, the features of the clinical signs depend specifically on the acquisition source, and the combination of local signs and grading disease label is not an easy task. This research approaches the problem of combining local signs and global labels of different acquisition sources of medical information as a valuable tool to support medical decision making in ocular diseases. Different models for different eye diseases were developed. Four models were developed using eye fundus images: for DME, it was designed a two-stages model that uses a shallow model to predict an exudate binary mask. Then, the binary mask is stacked with the raw fundus image into a 4-channel array as an input of a deep convolutional neural network for diabetic macular edema diagnosis; for glaucoma, it was developed three deep learning models. First, it was defined a deep learning model based on three-stages that contains an initial stage for automatically segment two binary masks containing optic disc and physiological cup segmentation, followed by an automatic morphometric features extraction stage from previous segmentations, and a final classification stage that supports the glaucoma diagnosis with intermediate medical information. Two late-data-fusion methods that fused morphometric features from cartesian and polar segmentation of the optic disc and physiological cup with features extracted from raw eye fundus images. On the other hand, two models were defined using optical coherence tomography. First, a customized convolutional neural network termed as OCT-NET to extract features from OCT volumes to classify DME, DR-DME and AMD conditions. In addition, this model generates images with highlighted local information about the clinical signs, and it estimates the number of slides inside a volume with local abnormalities. Finally, a 3D-Deep learning model that uses OCT volumes as an input to estimate the retinal thickness map useful to grade AMD. The methods were systematically evaluated using ten free public datasets. The methods were compared and validated against other state-of-the-art algorithms and the results were also qualitatively evaluated by ophthalmology experts from Fundación Oftalmológica Nacional. In addition, the proposed methods were tested as a diagnosis support tool of diabetic macular edema, glaucoma, diabetic retinopathy and age-related macular degeneration using two different ocular imaging representations. Thus, we consider that this research could be potentially a big step in building telemedicine tools that could support medical personnel for detecting ocular diseases using eye fundus images and optical coherence tomography.
dc.description.abstractLas técnicas de aprendizaje automático se han aplicado con éxito para apoyar la toma de decisiones médicas sobre el cáncer, las enfermedades cardíacas y las enfermedades degenerativas del cerebro. En particular, se han utilizado métodos de aprendizaje profundo para la detección temprana de anormalidades en el ojo que podrían mejorar el diagnóstico de diferentes enfermedades oculares, especialmente en países en desarrollo, donde existen grandes limitaciones para acceder a tratamiento médico especializado. Sin embargo, la detección temprana de signos clínicos como vasos sanguíneos, alteraciones del disco óptico, exudados, hemorragias, drusas y microaneurismas presenta tres desafíos principales: las imágenes oculares pueden verse afectadas por artefactos de ruido, las características de los signos clínicos dependen específicamente de fuente de adquisición, y la combinación de signos locales y clasificación de la enfermedad no es una tarea fácil. Esta investigación aborda el problema de combinar signos locales y etiquetas globales de diferentes fuentes de adquisición de información médica como una herramienta valiosa para apoyar la toma de decisiones médicas en enfermedades oculares. Se desarrollaron diferentes modelos para diferentes enfermedades oculares. Se desarrollaron cuatro modelos utilizando imágenes de fondo de ojo: para DME, se diseñó un modelo de dos etapas que utiliza un modelo superficial para predecir una máscara binaria de exudados. Luego, la máscara binaria se apila con la imagen de fondo de ojo original en una matriz de 4 canales como entrada de una red neuronal convolucional profunda para el diagnóstico de edema macular diabético; para el glaucoma, se desarrollaron tres modelos de aprendizaje profundo. Primero, se definió un modelo de aprendizaje profundo basado en tres etapas que contiene una etapa inicial para segmentar automáticamente dos máscaras binarias que contienen disco óptico y segmentación fisiológica de la copa, seguido de una etapa de extracción de características morfométricas automáticas de segmentaciones anteriores y una etapa de clasificación final que respalda el diagnóstico de glaucoma con información médica intermedia. Dos métodos de fusión de datos tardíos que fusionaron características morfométricas de la segmentación cartesiana y polar del disco óptico y la copa fisiológica con características extraídas de imágenes de fondo de ojo crudo. Por otro lado, se definieron dos modelos mediante tomografía de coherencia óptica. Primero, una red neuronal convolucional personalizada denominada OCT-NET para extraer características de los volúmenes OCT para clasificar las condiciones DME, DR-DME y AMD. Además, este modelo genera imágenes con información local resaltada sobre los signos clínicos, y estima el número de diapositivas dentro de un volumen con anomalías locales. Finalmente, un modelo de aprendizaje 3D-Deep que utiliza volúmenes OCT como entrada para estimar el mapa de espesor retiniano útil para calificar AMD. Los métodos se evaluaron sistemáticamente utilizando diez conjuntos de datos públicos gratuitos. Los métodos se compararon y validaron con otros algoritmos de vanguardia y los resultados también fueron evaluados cualitativamente por expertos en oftalmología de la Fundación Oftalmológica Nacional. Además, los métodos propuestos se probaron como una herramienta de diagnóstico de edema macular diabético, glaucoma, retinopatía diabética y degeneración macular relacionada con la edad utilizando dos representaciones de imágenes oculares diferentes. Por lo tanto, consideramos que esta investigación podría ser potencialmente un gran paso en la construcción de herramientas de telemedicina que podrían ayudar al personal médico a detectar enfermedades oculares utilizando imágenes de fondo de ojo y tomografía de coherencia óptica.
dc.format.extent95
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología
dc.titleDeep learning analysis of eye fundus images to support medical diagnosis
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computación
dc.contributor.researchgroupMindLab
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[20] Hernán Andrés Ríos et al. "Automatic prediction of capillarity patterns on Optical Coherence Tomography Angiography images". In: Investigative Ophthalmology & Visual Science 59.9 (2018), pp. 1741-1741.
dc.relation.references[21] Hernán Ríos et al. "Deep Learning Method to Identify Diabetic Retinopathy and Diabetic Macular Edema Characteristics". In: Investigative Ophthalmology & Visual Science 60.9 (2019).
dc.relation.references[22] Sandra Belalcazar et al. "Concordance between color photo interpretation of the optic nerve and an Unsupervised Learning Algorithm to determine optic nerve damage". In: Investigative Ophthalmology & Visual Science 60.9 (2019).
dc.relation.references[23] Carlos M. Pinilla et al. "Exactitud de una red neuronal arti cial para el diagnóstico del edema macular diabético con imágenes de tomografía de coherencia óptica". In: Revista Científica de la Sociedad Colombia de Oftalmología 1.1 (2018), pp. 8-9.
dc.relation.references[24] Sandra Belalcazar et al. "Convolutional Neural Networks for identification and classi cation of optic nerve damage features". In: Investigative Ophthalmology & Visual Science 59.9 (2018), pp. 1719.
dc.relation.references[25] Francisco J. Rodríguez et al. "Neural network for detection of diabetic macular edema in fundus color images". In: Investigative Ophthalmology & Visual Science 58.8 (2017), pp. 688.
dc.relation.references[26] Victor H Contreras et al. "Supervised online matrix factorization for histopathological multimodal retrieval". In: 14th International Symposium on Medical Information Processing and Analysis. Vol. 10975. International Society for Optics and Photonics. 2018, 109750Y.
dc.relation.references[27] Sebastian Otálora et al. "Determining the scale of image patches using a deep learning approach". In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE. 2018, pp. 843-846.
dc.relation.references[28] Nikita Gurudath, Mehmet Celenk, and H Bryan Riley. "Machine learning identi cation of diabetic retinopathy from fundus images". In: 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE. 2014, pp. 1-7.
dc.relation.references[29] Rojalina Priyadarshini, Nilamadhab Dash, and Rachita Mishra. "A Novel approach to predict diabetes mellitus using modified Extreme learning machine". In: 2014 International Conference on Electronics and Communication Systems (ICECS). IEEE. 2014, pp. 1-5.
dc.relation.references[30] Gwénolé Quellec et al. "Automated assessment of diabetic retinopathy severity using content-based image retrieval in multimodal fundus photographs". In: Investigative ophthalmology & visual science 52.11 (2011), pp. 8342-8348.
dc.relation.references[31] RA Welikala et al. "Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification". In: Computer methods and programs in biomedicine 114.3 (2014), pp. 247-261.
dc.relation.references[32] Sohini Roychowdhury, Dara D Koozekanani, and Keshab K Parhi. "DREAM: diabetic retinopathy analysis using machine learning". In: IEEE journal of biomedical and health informatics 18.5 (2013), pp. 1717-1728.
dc.relation.references[33] Dumskyj Usher et al. "Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening". In: Diabetic Medicine 21.1 (2004), pp. 84-90.
dc.relation.references[34] Sam Philip et al. "The efficacy of automated "disease/no disease" grading for diabetic retinopathy in a systematic screening programme". In: British Journal of Ophthalmology 91.11 (2007), pp. 1512-1517.
dc.relation.references[35] Shu-Chen Cheng and Yueh-Min Huang. "A novel approach to diagnose diabetes based on the fractal characteristics of retinal images". In: IEEE Transactions on Information Technology in Biomedicine 7.3 (2003), pp. 163-170.
dc.relation.references[36] María García et al. "Neural network based detection of hard exudates in retinal images". In: Computer Methods and programs in biomedicine 93.1 (2009), pp. 9-19.
dc.relation.references[37] Wei Lu et al. "Applications of arti cial intelligence in ophthalmology: general overview". In: Journal of ophthalmology 2018 (2018).
dc.relation.references[38] DCS Vandarkuzhali and T Ravichandran. "Elm based detection of abnormality in retinal image of eye due to diabetic retinopathy". In: Journal of theoretical and applied information technology 6 (2005), pp. 423-428.
dc.relation.references[39] Bálint Antal and András Hajdu. "An ensemble-based system for automatic screening of diabetic retinopathy". In: Knowledge-based systems 60 (2014), pp. 20-27.
dc.relation.references[40] Tae Keun Yoo and Eun-Cheol Park. "Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study". In: BMC medical informatics and decision making 13.1 (2013), p. 106.
dc.relation.references[41] Leonor Guariguata et al. "An updated systematic review and meta-analysis on the social determinants of diabetes and related risk factors in the Caribbean". In: Revista Panamericana de Salud Pública 42 (2018).
dc.relation.references[42] Zhuo Zhang et al. "A survey on computer aided diagnosis for ocular diseases". In: BMC medical informatics and decision making 14.1 (2014), p. 80.
dc.relation.references[43] Alan D Fleming et al. "Automated microaneurysm detection using local contrast normalization and local vessel detection". In: IEEE transactions on medical imaging 25.9 (2006), pp. 1223-1232.
dc.relation.references[44] Prasanna Porwal et al. "Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research". In: Data 3.3 (2018), p. 25.
dc.relation.references[45] Rui Bernardes and José Cunha-Vaz. Optical coherence tomography: a clinical and technical update. Springer Science & Business Media, 2012.
dc.relation.references[46] Meindert Niemeijer et al. "Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs". In: IEEE transactions on medical imaging 29.1 (2009), pp. 185-195.
dc.relation.references[47] Pratul P Srinivasan et al. "Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images". In: Biomedical optics express 5.10 (2014), pp. 3568-3577.
dc.relation.references[48] Di Zhao et al. "Improving follow-up and reducing barriers for eye screenings in communities: the stop glaucoma study". In: American journal of ophthalmology 188 (2018), pp. 19-28.
dc.relation.references[49] Muthu Rama Krishnan Mookiah et al. "Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features". In: Knowledge-Based Systems 33 (2012), pp. 73-82.
dc.relation.references[50] Rüdiger Bock et al. "Glaucoma risk index: automated glaucoma detection from color fundus images". In: Medical image analysis 14.3 (2010), pp. 471-481.
dc.relation.references[51] Francisco Fumero et al. "RIM-ONE: An open retinal image database for optic nerve evaluation". In: Computer-Based Medical Systems (CBMS), 24th International Symposium on. IEEE. 2011, pp. 1-6.
dc.relation.references[52] Stefan Maetschke et al. "A feature agnostic approach for glaucoma detection in OCT volumes". In: PloS one 14.7 (2019), e0219126.
dc.relation.references[53] Eiko K de Jong, Maartje J Geerlings, and Anneke I den Hollander. "Age-related macular degeneration". In: Genetics and Genomics of Eye Disease. Elsevier, 2020, pp. 155-180.
dc.relation.references[54] Baidu. iChallenge-AMD. 2019. url: http://ai.baidu.com (visited on 11/04/2019).
dc.relation.references[55] Sina Farsiu et al. "Quantitative classification of eyes with and without intermediate agerelated macular degeneration using optical coherence tomography". In: Ophthalmology 121.1 (2014), pp. 162-172.
dc.relation.references[56] Helen Mactier, Michael S Bradnam, and Ruth Hamilton. "Dark-adapted oscillatory potentials in preterm infants with and without retinopathy of prematurity". In: Documenta Ophthalmologica 127.1 (2013), pp. 33-40.
dc.relation.references[57] Kavita P Dhamdhere et al. "Associations between local retinal thickness and function in early diabetes". In: Investigative ophthalmology & visual science 53.10 (2012), pp. 6122-6128.
dc.relation.references[58] Dobrila Karlica et al. "Visual evoked potential can be used to detect a prediabetic form of diabetic retinopathy in patients with diabetes mellitus type I". In: Collegium antropologicum 34.2 (2010), pp. 525-529.
dc.relation.references[59] Monica Lövestam-Adrian et al. "Multifocal visual evoked potentials (MFVEP) in diabetic patients with and without polyneuropathy". In: The open ophthalmology journal 6 (2012), p. 98.
dc.relation.references[60] Sangeeta Gupta et al. "Electrophysiological evaluation in patients with type 2 diabetes mellitus by pattern reversal visual evoked potentials". In: National Journal of Physiology, Pharmacy and Pharmacology 7.5 (2017), p. 527.
dc.relation.references[61] Javad Heravian et al. "Pattern visual evoked potentials in patients with type II diabetes mellitus". In: Journal of ophthalmic & vision research 7.3 (2012), p. 225.
dc.relation.references[62] Randy Kardon et al. "Chromatic pupillometry in patients with retinitis pigmentosa". In: Ophthalmology 118.2 (2011), pp. 376-381.
dc.relation.references[63] Maria Carolina Ortube et al. "Comparative regional pupillography as a noninvasive biosensor screening method for diabetic retinopathy". In: Investigative ophthalmology & visual science 54.1 (2013), pp. 9-18.
dc.relation.references[64] Jennifer Threatt et al. "Ocular disease, knowledge and technology applications in patients with diabetes". In: The American journal of the medical sciences 345.4 (2013), pp. 266-270.
dc.relation.references[65] Danny Mitry et al. "Crowdsourcing as a novel technique for retinal fundus photography classification: Analysis of Images in the EPIC Norfolk Cohort on behalf of the UKBiobank Eye and Vision Consortium". In: PloS one 8.8 (2013), e71154.
dc.relation.references[66] Joes Staal et al. "Ridge-based vessel segmentation in color images of the retina". In: IEEE transactions on medical imaging 23.4 (2004), pp. 501-509.
dc.relation.references[67] Tomi Kauppi et al. "DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms". In: Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland 73 (2006), pp. 1-17.
dc.relation.references[68] Tomi Kauppi et al. "The diaretdb1 diabetic retinopathy database and evaluation protocol." In: BMVC. Vol. 1. 2007, pp. 1-10.
dc.relation.references[69] Luca Giancardo et al. "Microaneurysm detection with radon transform-based classification on retina images". In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. 2011, pp. 5939-5942.
dc.relation.references[70] Muhammad Moazam Fraz et al. "An ensemble classification-based approach applied to retinal blood vessel segmentation". In: IEEE Transactions on Biomedical Engineering 59.9 (2012), pp. 2538-2548.
dc.relation.references[71] Etienne Decenciére et al. "TeleOphta: Machine learning and image processing methods for teleophthalmology". In: Irbm 34.2 (2013), pp. 196-203.
dc.relation.references[72] EyePACS. Diabetic retinopathy detection of Kaggle. 2015. url: https://www.kaggle.com/c/diabetic-retinopathy-detection/data (visited on 11/04/2019).
dc.relation.references[73] APTOS. Aptos blindness detection. 2019. url: https://www.kaggle.com/c/aptos2019-blindness-detection/data (visited on 11/04/2019).
dc.relation.references[74] James Lowell et al. "Optic nerve head segmentation". In: IEEE Transactions on medical Imaging 23.2 (2004), pp. 256-264.
dc.relation.references[75] Attila Budai et al. "Robust vessel segmentation in fundus images". In: International journal of biomedical imaging 2013 (2013).
dc.relation.references[76] AD Hoover, Valentina Kouznetsova, and Michael Goldbaum. "Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response". In: IEEE Transactions on Medical imaging 19.3 (2000), pp. 203-210.
dc.relation.references[77] Adam Hoover and Michael Goldbaum. "Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels". In: IEEE transactions on medical imaging 22.8 (2003), pp. 951-958.
dc.relation.references[78] Damian JJ Farnell et al. "Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators". In: Journal of the Franklin institute 345.7 (2008), pp. 748-765.
dc.relation.references[79] Yalin Zheng, Mohd Hanafi Ahmad Hijazi, and Frans Coenen. "Automated "disease/no disease" grading of age-related macular degeneration by an image mining approach". In: Investigative ophthalmology & visual science 53.13 (2012), pp. 8310-8318.
dc.relation.references[80] Peyman Gholami et al. "OCTID: Optical Coherence Tomography Image Database". In: arXiv preprint arXiv:1812.07056 (2018).
dc.relation.references[81] Enrique J Carmona et al. "Identification of the optic nerve head with genetic algorithms". In: Artificial Intelligence in Medicine 43.3 (2008), pp. 243-259.
dc.relation.references[82] Zhuo Zhang et al. "Origa-light: An online retinal fundus image database for glaucoma analysis and research". In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE. 2010, pp. 3065-3068.
dc.relation.references[83] Meindert Niemeijer et al. "Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs". In: IEEE Transactions on medical imaging 30.11 (2011), pp. 1941-1950.
dc.relation.references[84] Zhuo Zhang et al. "ACHIKO-K: Database of fundus images from glaucoma patients". In: 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA). IEEE. 2013, pp. 228-231.
dc.relation.references[85] Jayanthi Sivaswamy et al. "A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis". In: JSM Biomedical Imaging Data Papers 2.1 (2015), p. 1004.
dc.relation.references[86] Jayanthi Sivaswamy et al. "Drishti-gs: Retinal image dataset for optic nerve head (onh) segmentation". In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE. 2014, pp. 53-56.
dc.relation.references[87] Ahmed Almazroa et al. "Retinal fundus images for glaucoma analysis: the RIGA dataset". In: Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications. Vol. 10579. International Society for Optics and Photonics. 2018, 105790B.
dc.relation.references[88] IEEE Dataport. REFUGE: Retinal Fundus Glaucoma Challenge. 2019. url: https://ieee-dataport.org/documents/refuge- retinal- fundus- glaucoma- challenge (visited on 11/04/2019).
dc.relation.references[89] Traci E Clemons et al. "National Eye Institute visual function questionnaire in the age-related eye disease study (AREDS): AREDS report no. 10". In: Archives of Ophthalmology 121.2 (2003), pp. 211-217.
dc.relation.references[90] Mahdi Kazemian Jahromi et al. "An automatic algorithm for segmentation of the boundaries of corneal layers in optical coherence tomography images using gaussian mixture model". In: Journal of medical signals and sensors 4.3 (2014), p. 171.
dc.relation.references[91] Luca Giancardo et al. "Exudate-based diabetic macular edema detection in fundus images using publicly available datasets". In: Medical image analysis 16.1 (2012), pp. 216-226.
dc.relation.references[92] Reza Rasti et al. "Macular OCT classification using a multi-scale convolutional neural network ensemble". In: IEEE transactions on medical imaging 37.4 (2017), pp. 1024-1034.
dc.relation.references[93] Daniel S Kermany et al. "Identifying medical diagnoses and treatable diseases by image-based deep learning". In: Cell 172.5 (2018), pp. 1122-1131.
dc.relation.references[94] Sandeep Paul, Lotika Singh, et al. "A review on advances in deep learning". In: 2015 IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions (WCI). IEEE. 2015, pp. 1-6.
dc.relation.references[95] Alex Krizhevsky, Ilya Sutskever, and Geofrrey E Hinton. "Imagenet classification with deep convolutional neural networks". In: Advances in neural information processing systems. 2012, pp. 1097-1105.
dc.relation.references[96] Matthew D Zeiler and Rob Fergus. "Visualizing and understanding convolutional networks". In: European conference on computer vision. Springer. 2014, pp. 818-833.
dc.relation.references[97] Karen Simonyan and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition". In: arXiv preprint arXiv:1409.1556 (2014).
dc.relation.references[98] Christian Szegedy et al. "Going deeper with convolutions". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 1-9.
dc.relation.references[99] Geofrey Hinton et al. "Deep neural networks for acoustic modeling in speech recognition". In: IEEE Signal processing magazine 29 (2012).
dc.relation.references[100] Ossama Abdel-Hamid et al. "Convolutional neural networks for speech recognition". In: IEEE/ACM Transactions on audio, speech, and language processing 22.10 (2014), pp. 1533-1545.
dc.relation.references[101] Tara N Sainath et al. "Deep convolutional neural networks for large-scale speech tasks". In: Neural Networks 64 (2015), pp. 39-48.
dc.relation.references[102] Kaggle. Kaggle: Higgs boson machine learning challenge. 2014. url: http://www.kaggle.com/c/higgs-boson (visited on 11/04/2019).
dc.relation.references[103] Alexander de Brebisson and Giovanni Montana. "Deep neural networks for anatomical brain segmentation". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2015, pp. 20-28.
dc.relation.references[104] Hoo-Chang Shin et al. "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data". In: IEEE transactions on pattern analysis and machine intelligence 35.8 (2012), pp. 1930-1943.
dc.relation.references[105] Kaggle. Kaggle: 1000 Fundus images with 39 categories. 2019. url: https://www.kaggle.com/linchundan/fundusimage1000 (visited on 11/04/2019).
dc.relation.references[106] TCIA Collections. The cancer genome atlas. 2019. url: http://www.cancerimagingarchive.net/ (visited on 11/04/2019).
dc.relation.references[107] Spineweb. Spineweb: Collaborative platform for research on spine imaging and image analysis. 2019. url: http://spineweb.digitalimaginggroup.ca/ (visited on 11/04/2019).
dc.relation.references[108] M Usman Akram et al. "Detection and classification of retinal lesions for grading of diabetic retinopathy". In: Computers in biology and medicine 45 (2014), pp. 161-171.
dc.relation.references[109] AB Aujih et al. "Analysis of retinal vessel segmentation with deep learning and its effect on diabetic retinopathy classification". In: 2018 International conference on intelligent and advanced system (ICIAS). IEEE. 2018, pp. 1-6.
dc.relation.references[110] Yehui Yang et al. "Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks". In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer. 2017, pp. 533-540.
dc.relation.references[111] Zhentao Gao et al. "Diagnosis of Diabetic Retinopathy Using Deep Neural Networks". In: IEEE Access 7 (2018), pp. 3360-3370.
dc.relation.references[112] Gwenolé Quellec et al. "Deep image mining for diabetic retinopathy screening". In: Medical image analysis 39 (2017), pp. 178-193.
dc.relation.references[113] Varun Gulshan et al. "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs". In: Jama 316.22 (2016), pp. 2402-2410.
dc.relation.references[114] Shujun Wang et al. "Patch-based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation". In: arXiv preprint arXiv:1902.07519 (2019).
dc.relation.references[115] JR Harish Kumar, Aditya Kumar Pediredla, and Chandra Sekhar Seelamantula. "Active discs for automated optic disc segmentation". In: 2015 IEEE global conference on signal and information processing (GlobalSIP). IEEE. 2015, pp. 225-229.
dc.relation.references[116] Philippe M Burlina et al. "Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration". In: JAMA ophthalmology 136.12 (2018), pp. 1359-1366.
dc.relation.references[117] Peyman Gholami. "Developing algorithms for the analysis of retinal Optical Coherence Tomography images". MA thesis. University of Waterloo, 2018.
dc.relation.references[118] Weiwei Sun, Xiaoming Liu, and Zhou Yang. "Automated detection of age-related macular degeneration in OCT images using multiple instance learning". In: Ninth International Conference on Digital Image Processing (ICDIP 2017). Vol. 10420. International Society for Optics and Photonics. 2017, p. 104203V.
dc.relation.references[119] Christian Szegedy et al. "Rethinking the inception architecture for computer vision". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 2818-2826.
dc.relation.references[120] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation". In: International Conference on Medical image computing and computer-assisted intervention. Springer. 2015, pp. 234-241.
dc.relation.references[121] Cecilia S Lee, Doug M Baughman, and Aaron Y Lee. "Deep learning is effective for classifying normal versus age-related macular degeneration OCT images". In: Ophthalmology Retina 1.4 (2017), pp. 322-327.
dc.relation.references[122] Jeffrey De Fauw et al. "Clinically applicable deep learning for diagnosis and referral in retinal disease". In: Nature medicine 24.9 (2018), p. 1342.
dc.relation.references[123] Kaiming He et al. "Deep residual learning for image recognition". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770-778.
dc.relation.references[124] Mike Voets, Kajsa Mollersen, and Lars Ailo Bongo. "Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs". In: arXiv preprint arXiv:1803.04337 (2018).
dc.relation.references[125] Frank B Hu, Ambika Satija, and JoAnn E Manson. "Curbing the diabetes pandemic: the need for global policy solutions". In: Jama 313.23 (2015), pp. 2319-2320.
dc.relation.references[126] Thomas C Gräsbeck et al. "Fundus photography as a screening method for diabetic retinopathy in children with type 1 diabetes: Outcome of the initial photography". In: American journal of ophthalmology 169 (2016), pp. 227-234.
dc.relation.references[127] Lihteh Wu et al. "Classification of diabetic retinopathy and diabetic macular edema". In: World journal of diabetes 4.6 (2013), p. 290.
dc.relation.references[128] Jie Ding and Tien Yin Wong. "Current epidemiology of diabetic retinopathy and diabetic macular edema". In: Current diabetes reports 12.4 (2012), pp. 346-354.
dc.relation.references[129] Kenneth W Tobin et al. "Detection of anatomic structures in human retinal imagery". In: IEEE transactions on medical imaging 26.12 (2007), pp. 1729-1739.
dc.relation.references[130] AP Shingade and AR Kasetwar. "A review on implementation of algorithms for detection of diabetic retinopathy". In: International Journal of Research in Engineering and Technology 3.3 (2014), pp. 87-94.
dc.relation.references[131] Thitiporn Chanwimaluang, Guoliang Fan, and Stephen R Fransen. "Hybrid retinal image registration". In: IEEE transactions on information technology in biomedicine 10.1 (2006), pp. 129-142.
dc.relation.references[132] Harihar Narasimha-Iyer et al. "Integrated analysis of vascular and nonvascular changes from color retinal fundus image sequences". In: IEEE Transactions on Biomedical Engineering 54.8 (2007), pp. 1436-1445.
dc.relation.references[133] S Vasanthi and RSD Wahida Banu. "Automatic segmentation and classification of hard exudates to detect macular edema in fundus images." In: Journal of Theoretical & Applied Information Technology 66.3 (2014).
dc.relation.references[134] M Usman Akram et al. "Automated detection of exudates and macula for grading of diabetic macular edema". In: Computer methods and programs in biomedicine 114.2 (2014), pp. 141-152.
dc.relation.references[135] Aditya Kunwar, Shrey Magotra, and M Partha Sarathi. "Detection of high-risk macular edema using texture features and classification using SVM classifier". In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE. 2015, pp. 2285-2289.
dc.relation.references[136] Yann LeCun et al. "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.
dc.relation.references[137] Yann LeCun. "Learning invariant feature hierarchies". In: Computer Vision-ECCV 2012. Workshops and Demonstrations. Springer. 2012, pp. 496-505.
dc.relation.references[138] Pengcheng Wu et al. "Online multimodal deep similarity learning with application to image retrieval". In: Proceedings of the 21st ACM international conference on Multimedia - MM '13. MM '13. ACM Press, 2013, pp. 153-162. isbn: 9781450324045. doi: 10.1145/2502081. 2502112.
dc.relation.references[139] N Ranjith, C Saravanan, and MR Bibin. "Glaucoma Diagnosis by Optic Cup to Disc Ratio Estimation". In: International Journal of Inventive Engineering and Sciences (IJIES) 3.5 (2015), pp. 1-5.
dc.relation.references[140] Sourav Samanta et al. "Haralick features based automated glaucoma classification using back propagation neural network". In: Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Springer. 2015, pp. 351-358.
dc.relation.references[141] Artem Sevastopolsky. "Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network". In: Pattern Recognition and Image Analysis 27.3 (2017), pp. 618-624.
dc.relation.references[142] Xiangyu Chen et al. "Glaucoma detection based on deep convolutional neural network". In: EMBC, 37th Annual International Conference of the IEEE. IEEE. 2015, pp. 715-718.
dc.relation.references[143] José Ignacio Orlando et al. "Convolutional neural network transfer for automated glaucoma identification". In: 12th International Symposium on Medical Information Processing and Analysis. Vol. 10160. International Society for Optics and Photonics. 2017, 101600U.
dc.relation.references[144] Huazhu Fu et al. "Joint optic disc and cup segmentation based on multi-label deep network and polar transformation". In: IEEE transactions on medical imaging 37.7 (2018), pp. 1597-1605.
dc.relation.references[145] Qing Liu et al. "DDNet: Cartesian-polar Dual-domain Network for the Joint Optic Disc and Cup Segmentation". In: arXiv preprint arXiv:1904.08773 (2019).
dc.relation.references[146] Qing Liu et al. "A spatial-aware joint optic disc and cup segmentation method". In: Neurocomputing 359 (2019), pp. 285-297.
dc.relation.references[147] Huazhu Fu et al. "Disc-aware ensemble network for glaucoma screening from fundus image". In: IEEE transactions on medical imaging 37.11 (2018), pp. 2493-2501.
dc.relation.references[148] Douglas G Altman. Practical statistics for medical research. CRC press, 1990.
dc.relation.references[149] George L Spaeth et al. "The disc damage likelihood scale: reproducibility of a new method of estimating the amount of optic nerve damage caused by glaucoma." In: Transactions of the American Ophthalmological Society 100 (2002), p. 181.
dc.relation.references[150] Ian JC MacCormick et al. "Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile". In: PloS one 14.1 (2019).
dc.relation.references[151] Kevis-Kokitsi Maninis et al. "Deep retinal image understanding". In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer. 2016, pp. 140-148.
dc.relation.references[152] José Ignacio Orlando et al. "REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs". In: Medical image analysis 59 (2020), p. 101570.
dc.relation.references[153] Shujun Wang, Lequan Yu, and Pheng-Ann Heng. "Optic Disc and Cup Segmentation with Output Space Domain Adaptation". In: Refuge reports ().
dc.relation.references[154] Pengshuai Yin et al. "Optic Disc and Cup Segmentation using Ensemble Deep Neural Networks". In: Refuge reports ().
dc.relation.references[155] Hong Kang et al. "Pixel quantification for robust segmentation of optic cup". In: Refuge reports ().
dc.relation.references[156] Zifeng Wu et al. "Optic Disc/Cup Segmentation and Glaucoma Classification from Fundus Images with Fully Convolutional Networks". In: Refuge reports ().
dc.relation.references[157] Xuesheng Bian et al. "Automatic Optic Disc/Cup Segmentation and Glaucoma Classification and Fovea Localization?" In: Refuge reports ().
dc.relation.references[158] Peng Liu and Ruogu Fang. "Regression and Learning with Pixel-wise Attention for Retinal Fundus Glaucoma Segmentation and Detection". In: arXiv preprint arXiv:2001.01815 (2020).
dc.relation.references[159] Apoorva Sikka, Sai Samarth R Phaye, and Deepti R Bathula. "REFUGE Challenge Submission: Using Dense U-Nets to Detect Glaucoma and Segment Optic Disc and Cup". In: Refuge reports ().
dc.relation.references[160] Joonseok Lee et al. "Development of an End-to-End Deep Learning System for Glaucoma Screening Using Color Fundus Images". In: Refuge reports ().
dc.relation.references[161] Sharath M Shankaranarayana et al. "Deep Learning based Retinal Image Analysis for evaluation of Glaucoma". In: Refuge reports ().
dc.relation.references[162] Yih-Chung Tham et al. "Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis". In: Ophthalmology 121.11 (2014), pp. 2081-2090.
dc.relation.references[163] Robert N Weinreb, Tin Aung, and Felipe A Medeiros. "The pathophysiology and treatment of glaucoma: a review". In: Jama 311.18 (2014), pp. 1901-1911.
dc.relation.references[164] Daniel M Stein, Gadi Wollstein, and Joel S Schuman. "Imaging in glaucoma". In: Ophthalmology clinics of North America 17.1 (2004), p. 33.
dc.relation.references[165] Pardha Saradhi Mittapalli and Giri Babu Kande. "Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma". In: Biomedical Signal Processing and Control 24 (2016), pp. 34-46.
dc.relation.references[166] Anindita Septiarini et al. "Automatic Glaucoma Detection Method Applying a Statistical Approach to Fundus Images". In: Healthcare informatics research 24.1 (2018), pp. 53-60.
dc.relation.references[167] Baidaa Al-Bander et al. "Automated glaucoma diagnosis using deep learning approach". In: SSD, 14th International Multi-Conference on. IEEE. 2017, pp. 207-210.
dc.relation.references[168] Qaisar Abbas. "Glaucoma-Deep: Detection of Glaucoma Eye Disease on Retinal Fundus Images using Deep Learning". In: International Journal of Advanced Computer Science and Applications 8.6 (2017), pp. 41-45.
dc.relation.references[169] Yoshua Bengio et al. "Curriculum learning". In: Proceedings of the 26th annual international conference on machine learning. ACM. 2009, pp. 41-48.
dc.relation.references[170] Jayanthi Sivaswamy et al. "A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis". In: JSM Biomedical Imaging Data Papers 2.1 (2015), p. 1004.
dc.relation.references[171] Undurti N Das. "Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions". In: Archives of medical science: AMS 12.5 (2016), p. 1142.
dc.relation.references[172] Mads Fonager N rgaard and Jakob Grauslund. "Automated Screening for Diabetic Retinopathy-A Systematic Review". In: Ophthalmic research (2018).
dc.relation.references[173] Ryan Lee, Tien YWong, and Charumathi Sabanayagam. "Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss". In: Eye and vision 2.1 (2015), p. 17.
dc.relation.references[174] Yali Jia et al. "Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration". In: Ophthalmology 121.7 (2014), pp. 1435- 1444.
dc.relation.references[175] Ryan L Shelton et al. "Optical coherence tomography for advanced screening in the primary care office". In: Journal of biophotonics 7.7 (2014), pp. 525-533.
dc.relation.references[176] Martin M Nentwich and Michael W Ulbig. "Diabetic retinopathy-ocular complications of diabetes mellitus". In: World journal of diabetes 6.3 (2015), p. 489.
dc.relation.references[177] Desire Sidibe et al. "An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images". In: Computer methods and programs in biomedicine 139 (2017), pp. 109-117.
dc.relation.references[178] Gabriela Samagaio et al. "Automatic Macular Edema Identification and Characterization Using OCT Images". In: Computer Methods and Programs in Biomedicine (2018).
dc.relation.references[179] E Talisa et al. "Spectral-domain optical coherence tomography angiography of choroidal neovascularization". In: Ophthalmology 122.6 (2015), pp. 1228-1238.
dc.relation.references[180] Adeel M Syed et al. "Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces". In: Computer methods and programs in biomedicine 137 (2016), pp. 1-10.
dc.relation.references[181] Oliver Faust et al. "Deep learning for healthcare applications based on physiological signals: a review". In: Computer methods and programs in biomedicine (2018).
dc.relation.references[182] Eli Gibson et al. "NiftyNet: a deep-learning platform for medical imaging". In: Computer methods and programs in biomedicine 158 (2018), pp. 113-122.
dc.relation.references[183] Jose Ignacio Orlando et al. "An ensemble deep learning based approach for red lesion detection in fundus images". In: Computer methods and programs in biomedicine 153 (2018), pp. 115-127.
dc.relation.references[184] Yawen Xiao et al. "A deep learning-based multi-model ensemble method for cancer prediction". In: Computer methods and programs in biomedicine 153 (2018), pp. 1-9.
dc.relation.references[185] Xiaohong W Gao, Rui Hui, and Zengmin Tian. "Classification of CT brain images based on deep learning networks". In: Computer methods and programs in biomedicine 138 (2017), pp. 49-56.
dc.relation.references[186] Zhong Yin et al. "Recognition of emotions using multimodal physiological signals and an ensemble deep learning model". In: Computer methods and programs in biomedicine 140 (2017), pp. 93-110.
dc.relation.references[187] Hyungwoo Lee et al. "Automated Segmentation of Lesions Including Subretinal Hyperreflective Material in Neovascular Age-related Macular Degeneration". In: American journal of ophthalmology 191 (2018), pp. 64-75.
dc.relation.references[188] Sripad Krishna Devalla et al. "DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images". In: Biomedical optics express 9.7 (2018), pp. 3244-3265.
dc.relation.references[189] Freerk G Venhuizen et al. "Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks". In: Biomedical optics express 8.7 (2017), pp. 3292-3316.
dc.relation.references[190] Avi Ben-Cohen et al. "Retinal layers segmentation using Fully Convolutional Network in OCT images". In: RSIP Vision (2017).
dc.relation.references[191] Mike Pekala et al. "Deep Learning based Retinal OCT Segmentation". In: arXiv preprint arXiv:1801.09749 (2018).
dc.relation.references[192] Yufan He et al. "Topology guaranteed segmentation of the human retina from OCT using convolutional neural networks". In: arXiv preprint arXiv:1803.05120 (2018).
dc.relation.references[193] Muhammad Awais et al. "Classification of SD-OCT images using a Deep learning approach". In: Signal and Image Processing Applications (ICSIPA), 2017 IEEE International Conference on. IEEE. 2017, pp. 489-492.
dc.relation.references[194] Genevieve CY Chan et al. "Fusing Results of Several Deep Learning Architectures for Automatic Classification of Normal and Diabetic Macular Edema in Optical Coherence Tomography". In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2018, pp. 670-673.
dc.relation.references[195] Freerk G Venhuizen et al. "Automated age-related macular degeneration classification in OCT using unsupervised feature learning". In: Medical Imaging 2015: Computer-Aided Diagnosis. Vol. 9414. International Society for Optics and Photonics. 2015, p. 94141I.
dc.relation.references[196] Arunava Chakravarty, Divya Jyothi Gaddipati, and Jayanthi Sivaswamy. "Construction of a Retinal Atlas for Macular OCT Volumes". In: International Conference Image Analysis and Recognition. Springer. 2018, pp. 650-658.
dc.relation.references[197] R Natarajan et al. "Comparative analysis of optical coherence tomography retinal images using multidimensional and cluster methods." In: Biomedical Research 26.2 (2015).
dc.relation.references[198] Bolei Zhou et al. "Learning deep features for discriminative localization". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 2921-2929.
dc.relation.references[199] Ramprasaath R Selvaraju et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization." In: ICCV. 2017, pp. 618-626.
dc.relation.references[200] Carmelina Trimboli-Heidler, Kelly Vogt, and Avery Robert A. "Volume averaging of spectral-domain optical coherence tomography impacts retinal segmentation in children". In: Translational vision science & technology 5.4 (2016), pp. 1-9.
dc.relation.references[201] Muna Bhende et al. "Optical coherence tomography: A guide to interpretation of common macular diseases". In: Indian journal of ophthalmology 66.1 (2017), pp. 20-35.
dc.relation.references[202] SB Velaga et al. "Impact of optical coherence tomography scanning density on quantitative analyses in neovascular age-related macular degeneration". In: Eye 31.1 (2017), pp. 53-61.
dc.relation.references[203] Sijie Niu et al. "Automated detection of foveal center in SD-OCT images using the saliency of retinal thickness maps". In: Medical physics 44.12 (2017), pp. 6390-6403.
dc.relation.references[204] Punal M Arabi et al. "Identification of Age-Related Macular Degeneration Using OCT Images". In: IOP Conference Series: Materials Science and Engineering. Vol. 310. 1. IOP Publishing. 2018, p. 012096.
dc.relation.references[205] Leyuan Fang et al. "Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search". In: Biomedical optics express 8.5 (2017), pp. 2732-2744.
dc.relation.references[206] Abhijit Guha Roy et al. "ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks". In: Biomedical optics express 8.8 (2017), pp. 3627-3642.
dc.relation.references[1] NH1 Cho et al. "IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045". In: Diabetes research and clinical practice 138 (2018), pp. 271-281.
dc.relation.references[2] International Diabetes Federation. Diabetes Atlas 8th Edition. 2017. url: https://www.idf . org / e - library / epidemiology - research / diabetes - atlas . html (visited on 11/04/2019).
dc.relation.references[3] American Diabetes Association et al. "2. Classification and diagnosis of diabetes: standards of medical care in diabetes|2018". In: Diabetes care 41.Supplement 1 (2018), S13-S27.
dc.relation.references[4] Carl W Baker, Yi Jiang, and Thomas Stone. "Recent advancements in diabetic retinopathy treatment from the Diabetic Retinopathy Clinical Research Network". In: Current opinion in ophthalmology 27.3 (2016), p. 210.
dc.relation.references[5] Joanne WY Yau et al. "Global prevalence and major risk factors of diabetic retinopathy". In: Diabetes care 35.3 (2012), pp. 556-564.
dc.relation.references[6] Alan W Stitt et al. "Advances in our understanding of diabetic retinopathy". In: Clinical science 125.1 (2013), pp. 1-17.
dc.relation.references[7] Yuh-Fang Chen et al. "Macular Thickness and Aging in Retinitis Pigmentosa". In: Optometry and Vision Science 89.4 (2012), pp. 471-482.
dc.relation.references[8] Gojka Roglic et al. "WHO Global report on diabetes: A summary". In: International Journal of Noncommunicable Diseases 1.1 (2016), p. 3.
dc.relation.references[9] Oscar Perdomo and Fabio A. González. "A Systematic Review of Deep Learning Methods Applied to Ocular Images". In: Ciencia e Ingeniería Neogranadina 30.1 (2020).
dc.relation.references[10] Oscar Perdomo et al. "Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography". In: Computer Methods and Programs in Biomedicine (2019).
dc.relation.references[11] Andrés Pérez, Oscar J Perdomo, and Fabio A González. "A lightweight deep learning model for mobile eye fundus image quality assessment"". In: 15th International Symposium on Medical Information Processing and Analysis. Vol. 10975. International Society for Optics and Photonics. 2019, p. 109750I.
dc.relation.references[12] Oscar Perdomo et al. "3D deep convolutional neural network for predicting neurosensory retinal thickness map from spectral domain optical coherence tomography volumes". In: 14th International Symposium on Medical Information Processing and Analysis. Vol. 10975. International Society for Optics and Photonics. 2018, p. 109750I.
dc.relation.references[13] Oscar Perdomo et al. "Glaucoma diagnosis from eye fundus images based on deep morphometric feature estimation". In: Computational pathology and ophthalmic medical image analysis. Springer, 2018, pp. 319-327.
dc.relation.references[14] Oscar Perdomo et al. "OCT-NET: A convolutional network for automatic classification of normal and diabetic macular edema using sd-oct volumes". In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE. 2018, pp. 1423-1426.
dc.relation.references[15] Oscar Perdomo, John Arevalo, and Fabio A González. "Combining morphometric features and convolutional networks fusion for glaucoma diagnosis". In: 13th International Conference on Medical Information Processing and Analysis. Vol. 10572. International Society for Optics and Photonics. 2017, 105721G.
dc.relation.references[16] Oscar Perdomo, John Arevalo, and Fabio A González. "Convolutional network to detect exudates in eye fundus images of diabetic subjects". In: 12th International Symposium on Medical Information Processing and Analysis. Vol. 10160. International Society for Optics and Photonics. 2017, 101600T.
dc.relation.references[17] Oscar Perdomo et al. "A novel machine learning model based on exudate localization to detect diabetic macular edema". In: (2016), pp. 137-144.
dc.relation.references[18] Ravi M Kamble et al. "Automated diabetic macular edema (DME) analysis using ne tuning with Inception-Resnet-v2 on OCT images". In: 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE. 2018, pp. 442-446.
dc.relation.references[19] Sebastián Otálora et al. "Training deep convolutional neural networks with active learning for exudate classi cation in eye fundus images". In: Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Springer, 2017, pp. 146-154.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalOcular diseases
dc.subject.proposalEnfermedades oculares
dc.subject.proposalFuentes de información médica
dc.subject.proposaldeep learning models
dc.subject.proposalmodelos de aprendizaje profundo
dc.subject.proposalSources of medical information
dc.subject.proposalAprendizaje automático
dc.subject.proposalMachine learning
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito