Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCárdenas Herrera, Pedro Fabián
dc.contributor.advisorOspina Latorre, Diego
dc.contributor.authorGallo Piñeros, Juan Carlos
dc.date.accessioned2020-07-06T14:29:45Z
dc.date.available2020-07-06T14:29:45Z
dc.date.issued2020-05-20
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77738
dc.description.abstractLos métodos tradicionales de programación de robots industriales, muestran diferentes desventajas como el uso de personal altamente calificado y altos tiempos de programación para la generación de trayectorias del robot. Por lo cual es de gran importancia el desarrollo de interfaces de usuario, amigables e intuitivas que mejoren la interacción hombre-máquina y que permitan generar trayectorias de forma natural. Para lograr este objetivo se requiere de herramientas como la Realidad Aumentada, que amplían los sentidos y mejoran la conciencia de la situación, incorporando objetos virtuales que coexisten perfectamente con objetos reales. El presente trabajo de investigación, desarrolla un sistema de programación de robots utilizando realidad aumentada. Este sistema busca incorporar los beneficios de la realidad aumentada, a la tarea de programación de trayectorias en robots industriales. Por consiguiente, se realiza la revisión del estado del arte, en cuanto a la utilización de la realidad aumentada en el área de la robótica, de igual forma se presenta la arquitectura general del sistema, el diseño de la interfaz de usuario y su respectiva comunicación con el robot. Para la realización de pruebas y validación del sistema propuesto, se realizan ensayos con el robot ABB IRB 140, mostrando como resultado un bajo porcentaje de error, entre las posiciones programadas y las ejecutadas, al igual que un menor esfuerzo de programación.
dc.description.abstractThe traditional methods of programming industrial robots, show different disadvantages such as the use of highly qualified personnel and high programming times for the generation of robot trajectories. Therefore, the development of friendly and intuitive user interface, that improve human-machine interaction and that allow to generate trajectories in a natural way is of great importance. To achieve this objective, tools such as Augmented Reality are required, which broaden the senses and improve the awareness of the situation, incorporating virtual objects that coexist perfectly with real objects. This research work develops a robot programming system using augmented reality. This system seeks to incorporate the benefits of augmented reality to the task of programming trajectories in industrial robots. Therefore, the review of the state of the art is carried out, regarding the use of augmented reality in the area of robotics, in the same way the general architecture of the system, the design of the user interface and its respective communication are presented with the robot For testing and validation of the proposed system, tests are performed with the ABB IRB 140 robot, showing as a result a low percentage of error, between the programmed and executed positions, as well as a lower programming effort.
dc.format.extent83
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleDesarrollo de un ambiente de realidad aumentada para la operación y programación de robots industriales
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.contributor.researchgroupUNROBOT-Grupo de Plataformas Robóticas
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesSDK Download | Vuforia Developer Portal
dc.relation.referencesAkan, Batu ; Ameri, Afshin ; Cürüklü, Baran ; Asplund, Lars: Intuitive industrial robot programming through incremental multimodal language and augmented reality. En: Proceedings - IEEE International Conference on Robotics and Automation (2011), p. 3934–3939. – ISBN 9781612843865
dc.relation.referencesAmeri, Afshin ; Akan, Batu ; Çürüklü, B: Augmented Reality Meets Industry : Interactive Robot Programming. En: Sigrad 61 (2010), Nr. 2, p. 234–46. – ISBN 1650–3740
dc.relation.referencesAndersen, R S. ; B⊘gh, S ; Moeslund, T B. ; Madsen, O. Intuitive task programming of stud welding robots for ship construction. 2015
dc.relation.referencesAndersen, Rasmus S. ; Bogh, Simon ; Moeslund, Thomas B. ; Madsen, Ole: Task space HRI for cooperative mobile robots in fit-out operations inside ship superstructures. En: 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2016 (2016), p. 880–887. ISBN 9781509039296
dc.relation.referencesAndersson, Nils ; Argyrou, Angelos ; Nägele, Frank ; Ubis, Fernando ; Campos, Urko E. ; Zarate, Maite Ortiz D. ; Wilterdink, Robert: AR-Enhanced Human- Robot-Interaction - Methodologies, Algorithms, Tools. En: Procedia CIRP 44 (2016), p. 193–198. – ISSN 22128271
dc.relation.referencesAzuma, Ronald ; Behringer, Reinhold ; Feiner, Steven ; Julier, Simon ; Macintyre, Blair: Recent Advances in Augmented Reality. En: IEEE Computer Graphics and Applications 2011 (2001), Nr. December, p. 1–27. – ISBN 8192642658
dc.relation.referencesAzuma, Ronald T.: A Survey of Augmented Reality. 4 (1997), Nr. August, p. 355–385. – ISBN 1551–3955
dc.relation.referencesDinh, Huy ; Yuan, Quilong ; Vietcheslav, Iastrebov ; Seet, Gerald: Augmented reality interface for taping robot. En: 2017 18th International Conference on Advanced Robotics, ICAR 2017 (2017), Nr. July, p. 275–280. ISBN 9781538631577
dc.relation.referencesFang, H C. ; Ong, S K. ; Nee, A. Y.: Interactive robot trajectory planning and simulation using augmented reality. En: Robotics and Computer-Integrated Manufacturing 28 (2012), Nr. 2, p. 227–237. – ISSN 07365845
dc.relation.referencesFang, H. C. ; Ong, S. K. ; Nee, A. Y.: Robot path and end-effector orientation planning using augmented reality. En: Procedia CIRP 3 (2012), Nr. 1, p. 191–196. – ISSN 22128271
dc.relation.referencesFang, H. C. ; Ong, S. K. ; Nee, A. Y.: A novel augmented reality-based interface for robot path planning. En: International Journal on Interactive Design and Manufacturing 8 (2014), Nr. 1, p. 33–42. – ISSN 19552513
dc.relation.referencesFang, H. C. ; Ong, S. K. ; Nee, A. Y.: Novel AR-based interface for human-robot interaction and visualization. En: Advances in Manufacturing 2 (2014), Nr. 4, p. 275– 288. – ISSN 21953597
dc.relation.referencesFang, Hongchao ; Ong, Soh K. ; Nee, Andrew Yeh-Ching: Robot Programming Using Augmented Reality. En: 2009 International Conference on CyberWorlds (2009), p. 13–20. – ISBN 978–1–4244–4864–7
dc.relation.referencesFite-Georgel, Pierre: Is there a reality in Industrial Augmented Reality? En: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011 (2011), p. 201–210. ISBN 9781457721830
dc.relation.referencesGallo, Juan C. ; Cárdenas, Pedro F.: Designing an Interface for Trajectory Programming in Industrial Robots Using Augmented Reality. En: Lecture Notes in Networks and Systems Vol. 112. Springer, 10 2020. – ISSN 23673389, p. 142–148
dc.relation.referencesGîrbacia, Florin ; Mogan, Gheorghe L. ; Paunescu, Tudor: AR-Based Off-Line Programming of the RV-M1 Robot. En: Applied Mechanics and Materials 162 (2012), p. 344–351. – ISSN 1662–7482
dc.relation.referencesGolparvar-Fard, Mani ; Pena-Mora, Feniosky ; Savarese, Silvio: D 4 Ar – a 4-Dimensional Augmented Reality Model for Automating Construction Progress Monitoring Data Collection , Processing and Communication. En: Journal of Information Technology in Construction 14 (2009), Nr. June, p. 129–153. – ISBN 14036835 (ISSN)
dc.relation.referencesGreen, SA ; Billinghurst, Mark ; Chen, XQ: Human-robot collaboration: A literature review and augmented reality approach in design. En: International Journal of Advanced Robotic Systems x (2008), Nr. 1, p. 1–18
dc.relation.referencesGuhl, Jan ; Hügle, Johannes ; Krüger, Jörg: Enabling Human-Robot-Interaction via Virtual and Augmented Reality in Distributed Control Systems. En: Procedia CIRP 76 (2018), p. 167–170. – ISSN 22128271
dc.relation.referencesGuhl, Jan ; Nguyen, Son T. ; Krüger, Jörg: Concept and architecture for programming industrial robots using augmented reality with mobile devices like microsoft holoLens. En: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA (2018), p. 1–4. – ISBN 9781509065059
dc.relation.referencesHTC Corporation: VIVE User guide. (2020)
dc.relation.referencesIbari, B ; Bouzgou, K ; Ahmed-foitih, Z ; Benchikh, L. An application of augmented reality (AR) in the manipulation of fanuc 200iC robot. 2015
dc.relation.referencesIOANES, Cosmin ; CHIOREANU, Adrian: CURRENT TRENDS REGARDING THE INTUITIVE PROGRAMMING OF INDUSTRIAL ROBOTS. En: Acta Technica Napocensis 55 (2012), Nr. I, p. 207–210
dc.relation.referencesJetter, Jérme ; Eimecke, Jörgen ; Rese, Alexandra: Augmented reality tools for industrial applications: What are potential key performance indicators and who benefits? En: Computers in Human Behavior 87 (2018), Nr. February, p. 18–33. – ISSN 07475632
dc.relation.referencesLambrecht, Jens ; Kleinsorge, Martin ; Rosenstrauch, Martin ; Krüger, Jörg: Spatial programming for industrial robots through task demonstration. En: International Journal of Advanced Robotic Systems 10 (2013). – ISBN 1729–8806
dc.relation.referencesLambrecht, Jens ; Kruger, Jorg: Spatial programming for industrial robots based on gestures and Augmented Reality. En: IEEE International Conference on Intelligent Robots and Systems (2012), p. 466–472. – ISBN 9781467317375
dc.relation.referencesLee, Dinh Quang H. ; Vietcheslav, I. ; Gim, G. S.: See-Through and Spatial Augmented Reality - A Novel Framework for Human? Robot Interaction. En: 2017 3rd International Conference on Control, Automation and Robotics (ICCAR) (2017), p. 719–726. ISBN 9781509060887
dc.relation.referencesLeutert, Florian ; Schilling, Klaus: Support of power plant telemaintenance with robots by augmented reality methods. En: 2012 2nd International Conference on Applied Robotics for the Power Industry, CARPI 2012 2012-Janua (2012), p. 45–49. ISBN 9781467345873
dc.relation.referencesLing, Haibin: Augmented Reality in Reality. En: IEEE Multimedia 24 (2017), Nr. 3, p. 10–15. – ISBN 1070–986X VO – 24
dc.relation.referencesMakris, Sotiris ; Karagiannis, Panagiotis ; Koukas, Spyridon ; Matthaiakis, Aleksandros S.: Augmented reality system for operator support in human–robot collaborative assembly. En: CIRP Annals - Manufacturing Technology 65 (2016), Nr. 1, p. 61–64. – ISBN 0007–8506
dc.relation.referencesMichalos, George ; Karagiannis, Panagiotis ; Makris, Sotiris ; Tokçalar, Önder ; Chryssolouris, George: Augmented Reality (AR) Applications for Supporting Human-robot Interactive Cooperation. En: Procedia CIRP Vol. 41, Elsevier, 1 2016. – ISBN 2212–8271, p. 370–375
dc.relation.referencesMilgram, P ; Kishino, F: A Taxonomy of Mixed Reality Visual-Displays. En: Ieice Transactions on Information and Systems E77d (1994), Nr. 12, p. 1321–1329. – ISBN 0916–8532
dc.relation.referencesNee, A Y C. ; Ong, S K. ; Chryssolouris, G ; Mourtzis, D: Augmented reality applications in design and manufacturing. En: CIRP Annals - Manufacturing Technology 61 (2012), Nr. 2, p. 657–679. – ISSN 00078506 (ISSN)
dc.relation.referencesNee, A. Y. ; Ong, S. K.: Virtual and augmented reality applications in manufacturing. En: IFAC Proceedings Volumes (IFAC-PapersOnline) Vol. 46, IFAC, 2013. – ISBN 9783902823359, p. 15–26
dc.relation.referencesNovak-Marcincin, Jozef ; Barna, Jozef ; Janak, Miroslav ; Novakova- Marcincinova, Ludmila: Augmented reality aided manufacturing. En: Procedia Computer Science 25 (2013), p. 23–31. – ISBN 1877–0509
dc.relation.referencesNovak-marcincin, Jozef ; Janak, Miroslav ; Barna, Jozef ; Novakova, Ludmila: Simulation of robot workcell operation by augmented reality technology application. , p. 13–18. ISBN 9789604743179
dc.relation.referencesNovak-Marcincin, Jozef ; Janak, Miroslav ; Barna, Jozef ; Torok, Jozef ; Novakova-Marcincinova, Ludmila ; Fecova, Veronika: Verification of a program for the control of a robotic workcell with the use of AR. En: International Journal of Advanced Robotic Systems 9 (2012), p. 1–7. – ISSN 17298806
dc.relation.referencesNovak-Marcincin, Jozef ; Janak, Miroslav ; Novakova-Marcincinova, Ludmila: Augmented Reality Aided Control of Industrial Robots. En: Advanced Materials Research 1025-1026 (2014), p. 1145–1149. – ISSN 1662–8985
dc.relation.referencesPace, Francesco D. ; Manuri, Federico ; Sanna, Andrea: Augmented Reality in Industry 4 . 0. En: American Journal of Computer Science and Information Technology 6 (2018), Nr. 1, p. 1–7. – ISSN 23493917
dc.relation.referencesPai, Yun S. ; Yap, Hwa J. ; Md Dawal, Siti Z. ; Ramesh, S. ; Phoon, Sin Y.: Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment. En: Scientific Reports 6 (2016), Nr. February, p. 1–19. – ISSN 20452322
dc.relation.referencesPai, Yun S. ; Yap, Hwa J. ; Singh, Ramesh: Augmented reality-based programming, planning and simulation of a robotic work cell. En: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 229 (2015), Nr. 6, p. 1029–1045. – ISBN 0954–4054
dc.relation.referencesPan, Zengxi ; Polden, Joseph ; Larkin, Nathan ; Van Duin, Stephen ; Norrish, John: Recent progress on programming methods for industrial robots. En: Joint 41st International Symposium on Robotics and 6th German Conference on Robotics 2010, ISR/ROBOTIK 2010 1 (2010), p. 619–626. – ISBN 9781617387197
dc.relation.referencesPan, Zengxi ; Polden, Joseph ; Larkin, Nathan ; Van Duin, Stephen ; Norrish, John: Recent progress on programming methods for industrial robots. En: Robotics and Computer-Integrated Manufacturing 28 (2012), Nr. 2, p. 87–94. – ISBN 9783800732739
dc.relation.referencesPeng, Yong ; Yu, Guoqin ; Ni, Wei ; Lv, Zhengquan ; Jiang, Yuliang ; Chen, Jing: Design and development of intelligent operation and maintenance training system for substation based on augmented reality. En: 2017 Chinese Automation Congress (CAC) (2017), p. 4765–4769. ISBN 978–1–5386–3524–7
dc.relation.referencesPerla, Ramakrishna ; Gupta, Gaurav ; Hebbalaguppe, Ramya ; Hassan, Ehtesham: InspectAR: An Augmented Reality Inspection Framework for Industry. En: Adjunct Proceedings of the 2016 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2016 (2017), p. 355–356. ISBN 9781509037407
dc.relation.referencesSanna, A ; Manuri, F ; Lamberti, F ; Member, Senior ; Paravati, G ; Pezzolla, P: Using Handheld Devices to Support Augmented Reality-based Maintenance and Assembly Tasks. En: IEEE International Conference on Consumer Electronics (ICCE) Using (2015), p. 178–179. ISBN 9781479975433
dc.relation.referencesSarai, Yasumitsu ; Maeda, Yusuke: Robot programming for manipulators through volume sweeping and augmented reality. En: IEEE International Conference on Automation Science and Engineering 2017-Augus (2018), p. 302–307. – ISBN 9781509067800
dc.relation.referencesSharma, Monika ; Sharma, Monika: An AR Inspection Framework : Feasibility Study with Multiple AR Devices. (2016), Nr. August. ISBN 9781509037407
dc.relation.referencesStadler, Susanne ; Kain, Kevin ; Giuliani, Manuel ; Mirnig, Nicole ; Stollnberger, Gerald ; Tscheligi, Manfred: Augmented reality for industrial robot programmers: Workload analysis for task-based, augmented reality-supported robot control. En: 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2016 (2016), p. 179–184. ISBN 9781509039296
dc.relation.referencesVillani, Valeria ; Pini, Fabio ; Leali, Francesco ; Secchi, Cristian: Survey on humanrobot collaboration in industrial settings: Safety, intuitive interfaces and applications. En: Mechatronics (2018), Nr. June 2017, p. 1–19. – ISBN 0957–4158
dc.relation.referencesWassermann, Jonas ; Vick, Axel ; Krüger, Jörg: Intuitive robot programming through environment perception, augmented reality simulation and automated program verification. En: Procedia CIRP 76 (2018), p. 161–166. – ISSN 2212–8271
dc.relation.referencesZhang, J. ; Ong, S. K. ; Nee, A. Y.: Design and development of an in situ machining simulation system using augmented reality technology. En: Procedia CIRP 3 (2012), Nr. 1, p. 185–190. – ISSN 22128271
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalRealidad aumentada
dc.subject.proposalAugmented reality
dc.subject.proposalprogramación de robots
dc.subject.proposalRobot programming
dc.subject.proposalHuman-robot interface
dc.subject.proposalInterfaz hombre-máquina
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito