Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCapote Rodriguez, Gil
dc.contributor.authorHincapie Campos, Williams Steve
dc.date.accessioned2020-07-13T20:55:15Z
dc.date.available2020-07-13T20:55:15Z
dc.date.issued2020-04-23
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77765
dc.description.abstractIn this research, it was possible to sinter by the rf plasma erosion technique, individual films of TiSi, TiAl and TiW on AISI H13, AISI 316l and Ti6Al4V alloy substrates, with thicknesses of 100 nm, 200 nm and 300 nm, with in order to determine its influence on adhesion on diamond like carbon coatings “DLC” (a-C:H). The DLC coatings were sintered by the chemical vapor phase “CVD” deposition technique with pulsed D.C source using a novel configuration which is to use the active screen, using three precursor gases: methane, acetylene and hexane. In order to determine if any of these had greater adherence. The TiSi, TiAl and TiW films, their morphology was characterized by scanning electron microscopy and their chemical composition by X-ray energy dispersion spectrometry, as its crystalline structure by X-ray diffraction in grazing mode, the energies were determined of bond between substrates and different coatings by X-ray photoelectron spectroscopy “XPS”. The morphology of DLC were characterized by Raman spectroscopy and their hardness was determined by the nanohardness test. Adhesion was measured by the scratch test increasing the load until reaching the critical load Lc and by the indentation test under the VDI 3198 standard. The diffractograms showed that the TiSi and TiAl films did not show any characteristic peak, therefore, cannot be determined if the interlayer grew amorphous or crystalline. The adhesion results showed that the methane-grown hydrogenated amorphous carbon films presented a critical load of 10 N, therefore, the growth of the hydrogenated amorphous carbon films was modified using another interlayer of (a-Si:H) on the TiSi, TiAl and TiW coatings to have the substrate/TiSi/a-Si:H/DLC and substrate/TiAl/a-Si:H/DLC configuration, increasing its critical load to 25 N, the hardness of the DLC film was of 25.3 GPa and a modulus of elasticity of 199 GPa. Finally, the corrosion resistance was increased in the substrate /TiAl/a-Si:H/DLC coatings.
dc.description.abstractEn esta investigación se consiguió sinterizar por la técnica de erosión por plasma r.f, películas individuales de TiSi, TiAl y TiW sobre sustratos de acero AISI H13, AISI 316l y aleaciones de Ti6Al4V, con espesores de 100 nm, 200 nm y 300 nm, con el fin de determinar su influencia en la adherencia en los recubrimientos de carbono amorfo hidrogenado (a-C:H). Los recubrimientos de carbono amorfo hidrogenado se sinterizaron por la técnica deposición química en fase vapor con fuente D.C pulsada utilizando una novedosa configuración la cual es usar la pantalla activa, usando tres gases precursores: metano, acetileno y hexano, con el fin de determinar con cuales condiciones los recubrimientos presentaba mayor adherencia. En las películas de TiSi, TiAl y TiW, se caracterizó su morfología por microscopía electrónica de barrido y su composición química por espectrometría de dispersión de energía de rayos X, así como su estructura cristalina por difracción de rayos X en modo haz rasante. Además, se determinó las energías de enlace entre los sustratos y los diferentes recubrimientos por espectroscopía de fotoelectrones de rayos X (XPS). La morfología de las películas de carbono amorfo hidrogenado se caracterizó por espectroscopía Raman y se determinó su dureza por el ensayo de nanoindentación. La adherencia se midió por el ensayo de rayado aumentando la carga hasta llegar a la carga crítica Lc y por el ensayo de indentación bajo la norma VDI 3198. Los difractogramas mostraron que las películas de TiSi y TiAl no presentan ningún pico característico, por lo tanto, no se pudo determinar si las películas crecieron amorfas o cristalinas. Los resultados de adherencia mostraron que las películas de carbono amorfo hidrogenado crecidos sobre las intercapas con el gas metano presentaron una carga crítica de aproximadamente 10 N. Por tal motivo, se procedió a modificar el crecimiento de los recubrimientos de carbono amorfo hidrogenado, usando una intercapa adicional de a-Si:H sobre las intercapas de TiSi, TiAl y TiW para tener la configuración sustrato/TiSi/a-Si:H/DLC y sustrato/TiAl/a-Si:H/DLC. Estas nuevas intercapas permitieron aumentar considerablemente la adherencia de los recubrimientos, obteniendo valores de carga crítica de hasta 25 N, mientras que la dureza del recubrimiento de DLC alcanzó 25,3 GPa y un módulo de elasticidad de 199 GPa. Por último, se aumentó la resistencia a la corrosión en los recubrimientos de sustrato/TiAl/a-Si:H/DLC.
dc.format.extent181
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titlePelículas de DLC producidas por pecvd utilizando intercapas de Tix-Siy, AlxTiy y WX-Tiy, sobre sustratos de aceros AISI 316-L, AISI H13 y aleaciones de Ti6Al4V, depositadas por sputtering con magnetrón
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Ciencia de Materiales y Superficies
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupGrupo de Ciencia de Materiales y Superficies
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1]J. Robertson, “Diamond-Like Carbon Films, Properties and Applications,” in Comprehensive Hard Materials, Elsevier., Elsevier Ltd, 2014, pp. 101–139.
dc.relation.references[2] N. Nelson, R. T. Rakowski, J. Franks, P. Woolliams, P. Weaver, and B. J. Jones, “The effect of substrate geometry and surface orientation on the film structure of DLC deposited using PECVD,” Surf. Coat. Technol., vol. 254, pp. 73–78, 2014.
dc.relation.references[3] V.G. Ralchenko, A.A. Smolin, V.G. Pereverzev, E.D. Obraztsova, K.G. Korotoushenko, V.I. Konov, Yu.V. Lakhotkin, E.N. Loubnin, “Diamond deposition on steel with CVD tungsten intermediate layer,” Diam. Relat. Mater., vol. 4, no. 5–6, pp. 754–758, 1995.
dc.relation.references[4] R. Polini and M. Barletta, “On the use of CrN / Cr and CrN interlayers in hot filament chemical vapour deposition ( HF-CVD ) of diamond films onto WC-Co substrates,” Diam. Relat. Mater., vol. 17, pp. 325–335, 2008.
dc.relation.references[5] G. Capote, L. F. Bonetti, and V. J. Trava-Airoldi, “Deposición de películas protectoras de DLC sobre superficies metálicas tratadas térmicamente,” Rev. Colomb. Física, vol. 42, no. 1, pp. 1–6, 2010.
dc.relation.references[6] W. J. Yang, Y.-H. Choa, T. Sekino, K. B. Shim, K. Niihara, and K. H. Auh, “Thermal stability evaluation of diamond-like nanocomposite coatings,” Thin Solid Films, vol. 434, no. 1–2, pp. 49–54, 2003.
dc.relation.references[7] W. Zhang, A. Tanaka, B. S. Xu, and Y. Koga, “Study on the diamond-like carbon multilayer films for tribological application,” Diam. Relat. Mater., vol. 14, no. 8, pp. 1361–1367, 2005.
dc.relation.references[8] G. Capote, L. F. Bonetti, L. V. Santos, V. J. Trava-Airoldi, E. J. Corat, “Adherent amorphous hydrogenated carbon films on metals deposited by plasma enhanced chemical vapor deposition,” Thin Solid Films, vol. 516, no. 12, pp. 4011–4017, Apr. 2008.
dc.relation.references[9] Liu L., Z. Wu, X. An, S. Xiao, S. Cui, H. Lin, R.K.Y. Fu, X. Tian, R. Wei, P.K. Chu, F. Pan, “Excellent adhered thick diamond-like carbon coatings by optimizing hetero-interfaces with sequential highly energetic Cr and C ion treatment,” J. Alloys Compd., vol. 735, pp. 155–162, 2017.
dc.relation.references[10] I. plasmaterials, “Plasmaterials Materials Listing page | Plasmaterials,” 2018. [Online]. Available: https://www.plasmaterials.com/materials-listing/. [Accessed: 11-Jun-2019].
dc.relation.references[11] F. J. G. Silva, A. J. S. Fernandes, F. M. Costa, A. P. M. Baptista, E. Pereira, “A new interlayer approach for CVD diamond coating of steel substrates,” Diam. Relat. Mater., vol. 13, no. 4–8, pp. 828–833, 2004.
dc.relation.references[12] V. J Trava-Airoldi, L. F Bonetti, G Capote, L. V Santos , E. J Corat, “A comparison of DLC film properties obtained by r.f. PACVD, IBAD, and enhanced pulsed-DC PACVD,” Surf. Coat. Technol., vol. 202, no. 3, pp. 549–554, Dec. 2007.
dc.relation.references[13] Y. Fu, B. Yan, and N. L. Loh, “Effects of pre-treatments and interlayers on the nucleation and growth of diamond coatings on titanium substrates,” Surf. Coat. Technol., vol. 130, no. 2–3, pp. 173–185, 2000.
dc.relation.references[14] X. Xiao, B. W. Sheldon, E Konca, L. C. Lev, M. J. Lukitsch, “The failure mechanism of chromium as the interlayer to enhance the adhesion of nanocrystalline diamond coatings on cemented carbide,” Diam. Relat. Mater., vol. 18, no. 9, pp. 1114–1117, 2009.
dc.relation.references[15] W. M. Silva, V. J. Trava-airoldi, and Y. W. Chung, “Surface modification of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings,” Surf. Coat. Technol., vol. 205, no. 12, pp. 3703–3707, 2011.
dc.relation.references[16] J G. Buijnsters, P. Shankar, P Gopalakrishnan, W. J. P. Van Enckevort, J. J. Schermer, S.S. Ramakrishnan, J.J. ter Meulen, “Diffusion-modified boride interlayers for chemical vapour deposition of low-residual-stress diamond films on steel substrates,” Thin Solid Films, vol. 426, no. 03, pp. 85–93, 2003.
dc.relation.references[17] Helmersson U, Lattemann Martina, Bohlmark Johan Ehiasarian Arutiun P, Gudmundsson Jon Tomas, “Ionized physical vapor deposition (IPVD): A review of technology and applications,” Thin Solid Films, vol. 513, no. 1–2, pp. 1–24, 2006.
dc.relation.references[18] Helmersson U, B. O. Johansson, J.E. Sundgren, H. T. G. Hentzell, P. Billgren, “Adhesion of titanium nitride coatings on high-speed steels,” J. Vac. Sci. Technol. A3, vol. 3, no. 2, pp. 308–315, 1985.
dc.relation.references[19] M. Y. Al-Jaroudi, H. T. G. Hentzell, S. E. Hörnström, A. Bengtson, “Deposition of titanium nitride on surface-hardened structural steel by reactive magnetron sputtering,” Thin Solid Films, vol. 182, pp. 153–166, 1989.
dc.relation.references[20] Chi-Lung Chang,Shu-Man Li, Wei-Yu Ho,Da-Yung Wang, “Characteristics of Stripping TiN Coating by Chemical Solution Method,” J. Chinese Corros. Eng., vol. 9, no. 3, pp. 273–278, 2006.
dc.relation.references[21] N. R. Glavin, “Ultra-thin boron nitride films by pulsed laser deposition: Plasma diagnostics, synthesis, and device transport,” Purdue University Purdue e-Pubs, 2016.
dc.relation.references[22] J. Sundgren, Formation and characterization of titanium nitride and titanium carbide films prepared by reactive sputtering, 1st ed., no. 79. Linkoping, Sweden, 1982.
dc.relation.references[23] C. C. Cheng, A. Erdemir, and G. R. Fenske, “Correlation of interface structure with adhesive strength of ion-plated TiN hard coatings,” Surf. Coat. Technol., vol. 40, pp. 365–376, 1989.
dc.relation.references[24] Pecnik Christina Martina, Courty Diana, Muff Daniel, Spolenak Ralph, “Fracture toughness of esthetic dental coating systems by nanoindentation and FIB sectional analysis,” J. Mech. Behav. Biomed. Mater., vol. 47, pp. 1–11, 2015.
dc.relation.references[25] S. J. Bull, P. R. Chalker, C. F. Ayres, and D. S. Rickerby, “The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition,” Mater. Sci. Eng. A, vol. 139, pp. 71–78, 1991.
dc.relation.references[26] S. J. Bull, “Correlation of microstructure and properties of hard coatings,” Vacuum, vol. 43, no. 5–7, pp. 387–391, 1992.
dc.relation.references[27] H. O. Pierson, “Carbides of Group IV: Titanium, Zirconium, and Hafnium Carbides,” Handb. Refract. Carbides Nitrides, vol. 0, pp. 55–80, 1996.
dc.relation.references[28] R. C. Sushant Rawal K, Amit Kumar Chawla, Jayaganthan R, “Structural, Wettability and Optical Investigation of Titanium Oxynitride Coatings: Effect of Various Sputtering Parameters,” J. Mater. Sci. Technol., vol. 28, no. 6, pp. 512–523, 2012.
dc.relation.references[29] A. A. Voevodin, J. M. Schneider, C. Rebholz, A. Matthews, “Multilayer composite ceramic-metal-DLC coatings for sliding wear applications,” Tribol. Int., vol. 29, no. 7, pp. 559–570, 1996.
dc.relation.references[30] A. A. Voevodin, C. Rebholz, J. M. Schneider, P. Stevenson, A. Matthews, “Wear resistant composite coatings deposited by electron enhanced closed field unbalanced magnetron sputtering,” Surf. Coat. Technol., vol. 73, pp. 185–197, 1995.
dc.relation.references[31] S. Zhang and X. Zhang, “Toughness evaluation of hard coatings and thin films,” Thin Solid Films, vol. 520, pp. 2375–2389, 2012.
dc.relation.references[32] S. Zhang, D. Sun, Y. Fu, and H. Du, “Toughness measurement of thin films: a critical review,” Surf. Coatings Technol. 198, vol. 198, pp. 74–84, 2004.
dc.relation.references[33] A. A. Voevodin and J. S. Zabinski, “Nanocomposite and nanostructured tribological materials for space applications,” Compos. Sci. Technol., vol. 65, pp. 741–748, 2005.
dc.relation.references[34] J. Deng and Manuel Braun, “DLC multilayer coatings for wear protection,” Diam. Relat. Mater., vol. 4, pp. 936–943, 1995.
dc.relation.references[35] K. L. Choy and E. Felix, “Functionally graded diamond-like carbon coatings on metallic substrates,” Mater. Sci. Eng. A, vol. 278, no. 1–2, pp. 162–169, 2000.
dc.relation.references[36] C. A. Charitidis, “Nanomechanical and nanotribological properties of carbon-based thin films: A review,” Int. J. Refract. Met. Hard Mater., vol. 28, pp. 51–70, 2010.
dc.relation.references[37] Fan Hua Qi, Fernandes, Grácio J, “Diamond coating on steel with a titanium interlayer,” Diam. Relat. Mater., vol. 7, no. 2–5, pp. 603–606, 1998.
dc.relation.references[38] J. Spinnewyn, M. Nesládek, and C. Asinari, “Diamond nucleation on steel substrates,” Diam. Relat. Mater., vol. 2, no. 2–4, pp. 361–364, 1993.
dc.relation.references[39] Q. Hua Fan, A Fernandes, E. Pereira, J. Grácio, “Adhesion of diamond coatings on steel and copper with a titanium interlayer,” Diam. Relat. Mater., vol. 8, pp. 1549–1554, 1999.
dc.relation.references[40] E. P. Q. Hua Fan, J. Grácio, “Comparison of the adhesion of diamond coatings using indentation tests and micro-Raman spectr-oscopy,” J. Appl. Phys., vol. 86, no. 10, p. 5509, 1999.
dc.relation.references[41] Marek Poręba, Paulina Zawadzka, Maria Richert, Jan Sieniawski , Tomasz Strączek, Czesław Kapusta, “The Possibility of Deposition of Diamond and DLC Coatings by PACVD Method,” Key Eng. Mater., vol. 641, pp. 111–115, 2015.
dc.relation.references[42] D.-Y. Wang and M.-C. Chiu, “Characterization of Cr2O3/CrN duplex coatings for injection molding applications,” J. Magn. Magn. Mater., vol. 137, pp. 164–169, 2001.
dc.relation.references[43] S. Zhang, Y. Fu, H. Du, X. T. Zeng, and Y. C. Liu, “Magnetron sputtering of nanocomposite (Ti,Cr)CNyDLC coatings,” Surf. Coat. Technol., vol. 162, no. 1, pp. 42–48, 2002.
dc.relation.references[44] F. J. G. Silva, A. P. M.Baptista, E. Pereira,V. Teixeira, Q. H. Fan, A. J. S. Fernandes, F.M. Costa, “Microwave plasma chemical vapour deposition diamond nucleation on ferrous substrates with Ti and Cr interlayers,” Diam. Relat. Mater., vol. 11, no. 9, pp. 1617–1622, 2002.
dc.relation.references[45] Ye Xu, Liuhe Li, Xun Cai, Paul K. Chu, “Hard nanocomposite Ti-Si-N films prepared by DC reactive magnetron sputtering using Ti-Si mosaic target,” Surf. Coat. Technol., vol. 201, no. 15, pp. 6824–6827, 2007.
dc.relation.references[46] F. J. G Silva, R. P Martinho, A. P. M Baptista, “Characterization of laboratory and industrial CrN/CrCN/diamond-like carbon coatings,” Thin Solid Films, vol. 550, pp. 278–284, 2014.
dc.relation.references[47] L. Hongxi, J. Yehua, Z. Rong, and T. Baoyin, “Wear behaviour and rolling contact fatigue life of Ti/TiN/DLC multilayer films fabricated on bearing steel by PIIID,” Vacuum, vol. 86, no. 7, pp. 848–853, 2012.
dc.relation.references[48] Ma Feng, Li Gang, Li Heqing, Ma Hongtao, Cai Xun, “Diamond-like carbon gradient film prepared by unbalanced magnetron sputtering and plasma immersion ion implantation hybrid technique,” Mater. Lett., vol. 57, pp. 82–86, 2002.
dc.relation.references[49] X. H. Zheng, J. P. Tu, B. Gu, and S. B. Hu, “Preparation and tribological behavior of TiN/a-C composite films deposited by DC magnetron sputtering,” Wear, vol. 265, no. 1–2, pp. 261–265, 2008.
dc.relation.references[50] M. Madej, “The effect of TiN and CrN interlayers on the tribological behavior of DLC coatings,” Wear, vol. 317, no. 1–2, pp. 179–187, 2014.
dc.relation.references[51] C. Chang and D. Wang, “Microstructure and adhesion characteristics of diamond-like carbon films deposited on steel substrates,” Diam. Relat. Mater., vol. 10, pp. 1528–1534, 2001.
dc.relation.references[52] J. G. Buijnsters, P. Shankar, W. Fleischer, W. J. P. Van Enckevort, J. J. Schermer, and J. J. Ter Meulen, “CVD diamond deposition on steel using arc-plated chromium nitride interlayers,” Diam. Relat. Mater., vol. 11, no. 3–6, pp. 536–544, 2002.
dc.relation.references[53] H. X. Zhang, Y. B. Jiang, S. Z. Yang, Lin Zhangda, and K. A. Feng, “Diamond growth on steel substrates with Al-N interlayer produced by high power plasma streams,” Thin Solid Films, vol. 349, no. 1, pp. 162–164, 1999.
dc.relation.references[54]O. Glozman, G. Halperin, I. Etsion, A. Berner, D. Shectman, G.H. Lee, A. Hoffma, “Study of the wear behavior and adhesion of diamond films deposited on steel substrates by use of a Cr-N interlayer,” Diam. Relat. Mater., vol. 8, no. 2–5, pp. 859–864, 1999.
dc.relation.references[55] J. Gerth and U. Wiklund, “The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel,” Wear, vol. 264, no. 9–10, pp. 885–892, 2008.
dc.relation.references[56] B. Warcholinski, A. Gilewicz, Z. Kuklinski, and P. Myslinski, “Hard CrCN/CrN multilayer coatings for tribological applications,” Surf. Coat. Technol., vol. 204, no. 14, pp. 2289–2293, 2010.
dc.relation.references[57] J. Musil and H. Hrubý, “Superhard nanocomposite Ti1-xAlxN films prepared by magnetron sputtering,” Thin Solid Films, vol. 365, no. 1, pp. 104–109, 2000.
dc.relation.references[58] B.K. Tay, Y.H. Cheng, X.Z. Ding, S.P. Lau, X. Shi, G.F. You, D. Sheeja, “Hard carbon nanocomposite films with low stress,” Diam. Relat. Mater., vol. 10, no. 3–7, pp. 1082–1087, 2001.
dc.relation.references[59] S. Zhang, X. L. Bui, and Y. Fu, “Magnetron-sputtered nc-TiC/a-C(Al) tough nanocomposite coatings,” Thin Solid Films, vol. 467, no. 1–2, pp. 261–266, 2004.
dc.relation.references[60] J. Soldán, J. Musil, and P. Zeman, “Effect of Al addition on structure and properties of sputtered TiC films,” Plasma Process. Polym., vol. 4, pp. 6–10, 2007.
dc.relation.references[61] Ola Wilhelmsson, Mikael Råsander, Mattias Carlsson, Erik Lewin, Biplap Sanyal, Urban Wiklund, Olle Eriksson, Ulf Jansson, “Design of nanocomposite low-friction coatings,” Adv. Funct. Mater., vol. 17, no. 10, pp. 1611–1616, 2007.
dc.relation.references[62] X. Pang, L. Shi, P. Wang, G. Zhang, and W. Liu, “Influences of bias voltage on mechanical and tribological properties of Ti-Al-C films synthesized by magnetron sputtering,” Surf. Coatings Technol., vol. 203, no. 10–11, pp. 1537–1543, 2009.
dc.relation.references[63] V. J. Trava-Airoldi, L.F. Bonetti, G. Capote, J.A. Fernandes, E. Blando, R. Hübler, P.A. Radi, L.V. Santos, E.J. Corat, “DLC film properties obtained by a low cost and modified pulsed-DC discharge,” Thin Solid Films, vol. 516, pp. 272–276, Dec. 2007.
dc.relation.references[64] Trava-Airoldi Vladimir Jesus, Santos Lucia Viera, Bonetti Luis Francisco, Capote Gil, Radi Polyana Alves, Corat Evaldo Jose, “Tribological and mechanical properties of DLC film obtained on metal surface by an enhanced and low-cost pulsed-DC discharge,” Int. J. Surf. Sci. Eng., vol. 1, no. 4, pp. 417–428, 2007.
dc.relation.references[65] G. Capote, E. J. Corat, and V. J. Trava-Airoldi, “Deposition of amorphous hydrogenated carbon films on steel surfaces through the enhanced asymmetrical modified bipolar pulsed-DC PECVD method,” Surf. Coat. Technol., vol. 260, pp. 133–138, 2014.
dc.relation.references[66] G. Capote, J. J. Olaya, and V. J. Trava-airoldi, “Adherent amorphous hydrogenated carbon coatings on steel surfaces deposited by enhanced asymmetrical bipolar pulsed-DC PECVD method and hexane as precursor,” Surf. Coat. Technol., vol. 251, pp. 276–282, 2014.
dc.relation.references[67] Marco A. Ramírez, Patrícia C. Silva, Evaldo J Corat, Vladimir J. Trava-Airoldi, “An evaluation of the tribological characteristics of DLC films grown on Inconel Alloy 718 using the Active Screen Plasma technique in a Pulsed-DC PECVD system,” Surf. Coatings Technol., vol. 284, pp. 235–239, 2015.
dc.relation.references[68] P. C. Santana, M. A. Ramirez, E. J. Corat, V. J. Trava-Airoldi, “DLC films grown on steel using an innovator active screen system for PECVD technique,” Mater. Res., vol. 19, no. 4, pp. 882–888, 2016.
dc.relation.references[69] Trava-Airoldi Vladimir Jesus, Gil Capote, Luís Francisco Bonetti, Jesum Fernandes, R. P. A. Eduardo Blando, Roberto Hübler, and E. J. C. Santos Vieira Lúcia, “Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge.,” J. Nanosci. Nanotechnol., vol. 9, no. 6, pp. 3891–7, 2009.
dc.relation.references[70] W. M. Silva, J. R. Carneiro, and V. J. Trava-Airoldi, “Effect of carbonitriding temperature process on the adhesion properties of diamond like-carbon coatings deposited by PECVD on austenitic stainless steel,” Diam. Relat. Mater., vol. 42, pp. 58–63, Feb. 2014.
dc.relation.references[71] M. J. Winter, “http://www.webelements.com/,” The University of Sheffield andWebElements Ltd, UK. .
dc.relation.references[72] Capote G, D.C. Lugo, J.M. Gutiérrez, G.C. Mastrapa, V.J. Trava-Airoldib, “Effect of amorphous silicon interlayer on the adherence of amorphous hydrogenated carbon coatings deposited on several metallic surfaces,” Surf. Coatings Technol., vol. 344, no. February, pp. 644–655, 2018.
dc.relation.references[73] G. Capote, G. C. Mastrapa, and V. J. Trava-Airoldi, “Influence of acetylene precursor diluted with argon on the microstructure and the mechanical and tribological properties of a-C:H films deposited via the modified pulsed-DC PECVD method,” Surf. Coat. Technol., vol. 284, pp. 145–152, 2015.
dc.relation.references[74] G. Capote, L. F. Bonetti, L. V Santos, E. J. Corat, and V. J. Trava-Airoldi, “Influência da intercamada de silício amorfo na tensão total e na aderência de filmes de DLC em substratos de Ti6Al4V,” Rev. Bras. Apl. Vácuo, vol. 25, no. 1, pp. 5–10, 2008.
dc.relation.references[75] G. Capote and F. L. Freire Jr, “Production and characterization of hydrogenated amorphous carbon thin films deposited in methane plasmas diluted by noble gases,” Mater. Sci. Eng. B, vol. 112, pp. 101–105, 2004.
dc.relation.references[76] G. Capote, L. F. Bonetti, L. V Santos, and E. J. Corat, “Deposition of Adherent DLC Films Using a Low-Cost Enhanced Pulsed-DC PECVD Method,” Rev. Bras. Apl. Vacuo, vol. 25, no. 4, pp. 209–213, 2006.
dc.relation.references[77] L. F. Bonetti, G. Capote, L. V. Santos, E. J. Corat, “Adhesion studies of diamond-like carbon films deposited on Ti6Al4V substrate with a silicon interlayer,” Thin Solid Films, vol. 515, pp. 375–379, 2006.
dc.relation.references[78] J. M. Albella, Láminas delgadas y recubrimientos preparación, propiedades y aplicaciones. Madrid: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS, 2003.
dc.relation.references[79] P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum, vol. 56, no. 3, pp. 159–172, 2000.
dc.relation.references[80] I. V. Svadkovski, D. A. Golosov, and S. M. Zavatskiy, “Characterisation parameters for unbalanced magnetron sputtering systems,” Vacuum, vol. 68, no. 4, pp. 283–290, 2002.
dc.relation.references[81] D. Depla and R. De Gryse, “Target poisoning during reactive magnetron sputtering: Part I: The influence of ion implantation,” Surf. Coatings Technol., vol. 183, no. 2–3, pp. 184–189, 2004.
dc.relation.references[82] W. Gissler and H. a Jehn, Advanced Techniques for Surface Engineering, vol. 1. The Netherlands, 1992.
dc.relation.references[83] D. M. Mattox, “Atomistic Film Growth and Some Growth-Related Film Properties,” in Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed., Elsevier, Ed. Oxford, 2010, pp. 333–398.
dc.relation.references[84] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol., vol. 11, no. 4, p. 666, 1974.
dc.relation.references[85] J. a Thornton, “High Rate Thick Film Growth,” Annu. Rev. Mater. Sci., vol. 7, pp. 239–260, 1977.
dc.relation.references[86] J. Choi, M. Kawaguchi, T. Kato, and M. Ikeyama, “Deposition of Si-DLC film and its microstructural, tribological and corrosion properties,” Microsyst. Technol., vol. 13, no. 8–10, pp. 1353–1358, 2007.
dc.relation.references[87] N. Sharma et al., “Tribology International Scratch resistance and tribological properties of DLC coatings under dry and lubrication conditions,” Tribiology Int., vol. 56, pp. 129–140, 2012.
dc.relation.references[88] G. Capote, F. L. Freire, L. G. Jacobsohn, G. Mariotto, “Amorphous hydrogenated carbon films deposited by PECVD in methane atmospheres highly diluted in argon: Effect of the substrate temperature,” Diam. Relat. Mater., vol. 13, no. 4–8, pp. 1454–1458, Apr. 2004.
dc.relation.references[89] T. Michler, M. Grischke, I. Traus, K. Bewilogua, and H. Dimigen, “DLC Films deposited by bipolar pulsed DC PACVD,” Diam. Relat. Mater., vol. 7, no. bip DC, pp. 459–462, 1998.
dc.relation.references[90] G. Capote Rodríguez, D. M. Marulanda Cardona, and J. J. Olaya Flórez, Producción, caracterización y aplicaciones de recubrimientos producidos por plasma. Bogotá, 2015.
dc.relation.references[91] Y. Lifshitz, S. R. Kasi, J. W. Rabalais, and W. Eckstein, “Subplantation model for film growth from hyperthermal species: Application to Diamond,” Phys. Rev. B, vol. 62, no. 15, pp. 1290–1293, 1989.
dc.relation.references[92] W. Möller, “Modeling of the sp3/sp2 ratio in ion beam and plasma deposited carbon films,” Appl. Phys. Lett., vol. 59, no. 19, pp. 2391–2393, 1991.
dc.relation.references[93] B.D. Cullity and S. R. Stock, Elements of X Ray diffraction, 3rd ed. EE.UU: Prentice Hall, 2001.
dc.relation.references[94] Joseph, Goldstein, E. Lyman Charles, E. Newbury Dale, Lifshin Eric, Echlin Patrick, C. Joy David, R. Michael Joseph, Scanning Electron Microscopy and X-Ray Microanalysis, Third edit. New York U.S, 2003.
dc.relation.references[95] I. G. SAS, “análisis micro elemental SEM-EDS por microscopía SEM,” 2019. [Online]. Available: http://intekgroup.com.co/servicio-de-analisis-micro-elemental-sem-eds/. [Accessed: 09-Jul-2019].
dc.relation.references[96] C. H. Zhang, Z. J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, “Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition,” J. Appl. Phys., vol. 95, no. 3, pp. 1460–1467, 2004.
dc.relation.references[97] P. S. Bagus, E. S. Ilton, and C. J. Nelin, “The interpretation of XPS spectra: Insights into materials properties,” Surf. Sci. Rep., vol. 68, no. 2, pp. 273–304, 2013.
dc.relation.references[98] John F. Moulder, William F.Stickle, Peter E. Sobol, Kenneth D. Bomben, Handbook of X-ray Photoelectron Spectroscopy. Minnesota, 1995.
dc.relation.references[99] A.S. Kamenetskih , A.I. Kukharenko, E.Z. Kurmaev, N.a. Skorikov, N.V. Gavrilov, S.O. Cholakh, A.V. Chukin, V.M. ainullina, M.a. Korotin, “Characterization of TiAlSiON coatings deposited by plasma enhanced magnetron sputtering: XRD, XPS, and DFT studies,” Surf. Coatings Technol., vol. 278, pp. 87–91, 2015.
dc.relation.references[100] M.-H. Chan and F.-H. Lu, “Preparation of titanium oxynitride thin films by reactive sputtering using air/Ar mixtures,” Surf. Coatings Technol., vol. 203, no. 5–7, pp. 614–618, 2008.
dc.relation.references[101] M. V. Kuznetsov, J. F. Zhuravlev, V. a. Zhilyaev, and V. a. Gubanov, “XPS study of the nitrides, oxides and oxynitrides of titanium,” J. Electron Spectros. Relat. Phenomena, vol. 58, no. 1–2, pp. 1–9, 1992.
dc.relation.references[102] K. S. Robinson and P. M. A. Sherwood, “X-Ray Photoelectron Spectroscopic Studies of the Surface of Sputter Ion Plated Films,” Surf. INTERFACE Anal., vol. 6, no. 6, pp. 261–266, 1984.
dc.relation.references[103] N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study,” J. Appl. Phys., vol. 72, no. 7, p. 3072, 1992.
dc.relation.references[104] J. F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES. England, 2003.
dc.relation.references[105] P. Steiner and S. Hufner, “Thermochemical data of alloys from photoelectron spectroscopy,” Acta Metall., vol. 29, pp. 1885–1898, 1981.
dc.relation.references[106] P. Osiceanu, “An XPS study on ion beam induced oxidation of titanium silicide,” Appl. Surf. Sci., vol. 253, pp. 381–384, 2006.
dc.relation.references[107] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B, vol. 61, no. 20, pp. 95–107, 2000.
dc.relation.references[108] C. Casiraghi, F. Piazza, A. C. Ferrari, D. Grambole, and J. Robertson, “Bonding in hydrogenated diamond-like carbon by Raman spectroscopy,” Diam. Relat. Mater., vol. 14, pp. 1098–1102, 2005.
dc.relation.references[109] S. J. Bull and E. G. Berasetegui, “An overview of the potential of quantitative coating adhesion measurement by scratch testing,” Tribol. Interface Eng. Ser., vol. 39, pp. 99–114, 2006.
dc.relation.references[110] DIN, “EN 1071-3 Methods of test for Ceramic Coatings Par 3 determination of adhesion and other mechanical failure modes by scratch test.” 2005.
dc.relation.references[111] ASTM, “C1624−05 Standard Test Method for Adhesion Strength and Mechanical Failure Modes of.” 2010.
dc.relation.references[112] N. Vidakis, A. Antoniadis, and N. Bilalis, “The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds,” J. Mater. Process. Technol., vol. 144, pp. 481–485, 2003.
dc.relation.references[113] Galindo Ramón Escobar, Gago Raul, Duday David, Carlos Palacio, “Towards nanometric resolution in multilayer depth profiling : a comparative study of RBS , SIMS , XPS and GDOES,” Anal Bioanal Chem, vol. 396, pp. 2725–2740, 2010.
dc.relation.references[114] N. H. Bings, A. Bogaerts, and A. C. Broekaert, “Atomic Spectroscopy : A Review,” Anal. Chem, vol. 82, no. 12, pp. 4653–4681, 2010.
dc.relation.references[115] M. R. Winchester and R. Payling, “Radio-frequency glow discharge spectrometry : A critical review,” Spectrochim. Acta Part B, vol. 59, pp. 607–666, 2004.
dc.relation.references[116] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, vol. 7, no. 06. pp. 1564–1583, 2011.
dc.relation.references[117] W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation : Advances in understanding and refinements to methodology,” J. Mater. Res, vol. 19, pp. 1–18, 2004.
dc.relation.references[118] F. Yang and J. C. M. Li, Micro and Nano Mechanical Testing of Materials and Devices, 1ra ed. Nex York, 2008.
dc.relation.references[119] E. Mccafferty, Introduction to Corrosion, Springer. New York, 2009.
dc.relation.references[120] C. Liu, Q. Bi, and a. Matthews, “EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution,” Corros. Sci., vol. 43, no. 10, pp. 1953–1961, 2001.
dc.relation.references[121] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer. New York, 2014.
dc.relation.references[122] C. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I,” Corros. Sci., vol. 45, no. 6, pp. 1257–1273, 2003.
dc.relation.references[123] C. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II,” Corros. Sci., vol. 45, no. 6, pp. 1243–1256, 2003.
dc.relation.references[124] P. Papakonstantinou, J. F. Zhao, P. Lemoine, E. T. McAdams, J. A. McLaughlin, “The effects of Si incorporation on the electrochemical and nanomechanical properties of DLC thin films,” Diam. Relat. Mater., vol. 11, no. 3–6, pp. 1074–1080, 2002.
dc.relation.references[125] Ho-Gun Kim, Seung Ho Ahn, Jung Gu Kim, Se Jun Park, Kwang Ryeol Lee, “Corrosion performance of diamond-like carbon (DLC)-coated Ti alloy in the simulated body fluid environment,” Diam. Relat. Mater., vol. 14, no. 1, pp. 35–41, 2005.
dc.relation.references[126] D. Loveday, P. Peterson, and B. Rodgers, “Evaluation of organic oatings with electrochemical impedance spectroscopy. Part 2: Application of EIS to coatings,” JCT CoatingsTech, vol. 1, no. 10, pp. 88–93, 2004.
dc.relation.references[127] M. Azzi, P. Amirault, M. Paquette J. E. Klemberg-Sapieha, L. Martinu, “Corrosion performance and mechanical stability of 316L/DLC coating system: Role of interlayers,” Surf. Coatings Technol., vol. 204, pp. 3986–3994, 2010.
dc.relation.references[128] J. M. Oparowski, R. D. Sisson, and R. R. Biederman, “The effects of processing parameters on the microstructure and properties of sputter-deposited TiW thin film diffusion barriers,” Thin Solid Film, vol. 153, pp. 313–328, 1987.
dc.relation.references[129] P. Papakonstantinou, J. F. Zhao, A. Richardot, E. T. McAdams, J. A. McLaughlin, “Evaluation of corrosion performance of ultra-thin Si-DLC overcoats with electrochemical impedance spectroscopy,” Diam. Relat. Mater., vol. 11, no. 3–6, pp. 1124–1129, 2002.
dc.relation.references[130] V. Ezhil Selvi, V. K. William Grips, and H. C. Barshilia, “Electrochemical behavior of superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive DC unbalanced magnetron sputtering,” Surf. Coatings Technol., vol. 224, pp. 42–48, 2013.
dc.relation.references[131] D. Li, S. Guruvenket, S. Hassani, E. Bousser, M. Azzi, J. a. Szpunar, J. E. Klemberg-Sapieha, “Effect of Cr interlayer on the adhesion and corrosion enhancement of nanocomposite TiN-based coatings deposited on stainless steel 410,” Thin Solid Films, vol. 519, no. 10, pp. 3128–3134, 2011.
dc.relation.references[132] ASTM, “G3 -89 Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing,” Annu. B. ASTM Stand., vol. 89, no. Reapproved 2010, pp. 1–9, 2010.
dc.relation.references[133] G. Capote, G. C. Mastrapa, and J. J. Olaya, “Resistencia al desgaste y a la corrosión de recubrimientos de DLC depositados sobre aceros AISI 304 y AISI 1020,” Rev. Lat. Met. Mat., vol. 35, no. 1, pp. 134–141, 2015.
dc.relation.references[134] H. S. Wang, R. C. Wei, C. Y. Huang, and J. R. Yang, “Cross-sectional transmission electron microscopy of ultra-fine wires of AISI 316L stainless steel,” Philos. Mag., vol. 86, no. 11, pp. 237–251, 2006.
dc.relation.references[135] T. Shyr, J. Shie, S. Huang, S. Yang, and W. Hwang, “Phase transformation of 316L stainless steel from wire to fiber,” Mater. Chem. Phys., vol. 122, no. 1, pp. 273–277, 2010.
dc.relation.references[136] T. Shyr, S. Huang, and C. Wur, “Magnetic anisotropy of ultrafine 316L stainless steel fibers,” J. Magn. Magn. Mater., vol. 419, pp. 400–406, 2016.
dc.relation.references[137] S. D. Jacobsen, R. Hinrichs, I. J. R. Baumvol, G. Castellano, and M. A. Z. Vasconcellos, “Depth distribution of martensite in plasma nitrided AISI H13 steel and its correlation to hardness,” Surf. Coat. Technol., vol. 270, pp. 266–271, 2015.
dc.relation.references[138] M Ron, A Kidron, H Schechter, S. Niedzwiedz, “Structure of martensite,” J. Appl. Phys., vol. 38, no. 2, pp. 590–594, 1967.
dc.relation.references[139] Jacobsen, S D. Hinrichs, R. Aguzzoli, C. Figueroa, C A. Baumvol, I J R. Vasconcellos, M A Z., “In fluence of current density on phase formation and tribological behavior of plasma nitrided AISI H13 steel,” Surf. Coat. Technol., vol. 286, pp. 129–139, 2016.
dc.relation.references[140] S. Chang, K. Huang, and Y. Wang, “Effects of Thermal Erosion and Wear Resistance on AISI H13 Tool Steel by Various Surface Treatments,” Mater. Trans., vol. 53, no. 4, pp. 745–751, 2012.
dc.relation.references[141] J. B. Park and J. D. Bronzino, Biomaterials : principles and applications, 1st ed. Boca Raton, FL., 2000.
dc.relation.references[142] M. Lieblich, S. Barriuso, and M. Multigner, “Thermal oxidation of medical Ti6Al4V blasted with ceramic particles : Effects on the microstructure , residual stresses and mechanical properties,” J. Mech. Behav. Biomed. Mater., vol. 54, pp. 173–184, 2016.
dc.relation.references[143] A. Denoirjean, P. Lefort, and P. Fauchais, “Nitridation process and mechanism of Ti–6Al–4V particles by dc plasma spraying,” Phys. Chem. Chem. Phys., pp. 5133–5138, 2003.
dc.relation.references[144] I. Halevy, G. Zamir, M. Winterrose, G. Sanjit, R. C. Grandini, and A. Moreno-Gobbi, “Crystallographic structure of Ti-6Al-4V , Ti-HP and Ti-CP under,” J. Phys., vol. 215, pp. 2–11, 2010.
dc.relation.references[145] M. Jacobs, G. Terwagne, P. Roquiny, and F. Bodart, “Unbalanced magnetron sputtered Si–Al coatings: plasma conditions and film properties versus sample bias voltage,” Surf. Coatings Technol., vol. 116–119, pp. 735–741, 1999.
dc.relation.references[146] Donald M. Mattox, Handbook ASM 5 Surface Engineering, 10th ed., vol. 5. United States of America, 1998.
dc.relation.references[147] S. Rossnagel, “Sputtering and Sputter Deposition,” in Handbook of Thin Film Deposition Processes and Techniques Principles and teohnlogies, 2nd ed., Krisnha Seshan, Ed. California US, 2001, pp. 319–348.
dc.relation.references[148] D. M. Mattox, “Physical Sputtering and Sputter Deposition (Sputtering),” in Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed., Elsevier, Ed. Oxford, 2010, pp. 237–286.
dc.relation.references[149] J. Bhattarai, E. Akiyama, A. Kawashima, K. Asami, and K. Hashimoto, “The corrosion behavior of sputter-deposited amorphous W-Ti alloys in 6m HCl solution,” Corros. Sci., vol. 37, no. 12, pp. 2071–2086, 1995.
dc.relation.references[150] R. Beyers, R. Sinclair, and M. E. Thomas, “The Effect of Oxygen in Cosputtered (Titanium+ Silicon) Films,” Mater. Res. Soc. Symp., vol. 14, pp. 423–427, 1983.
dc.relation.references[151] B. R. Braeckman and D. Depla, “On the amorphous nature of sputtered thin film alloys,” Acta Mater., vol. 109, pp. 323–329, 2016.
dc.relation.references[152] Delin Zhao, Chunlin Chen, Kefu Yao, Xuetao Shi, Zhongchang Wang, Horst Hahn, Herbert Gleiter, Na Chen, “Designing biocompatible Ti-based amorphous thin films with no toxic element,” J. Alloys Compd., vol. 707, pp. 142–147, 2017.
dc.relation.references[153] M. ÖStling, C. S. Petersson, C. Chatfield, H. Norström, F. Runovc, R. Buchta, P. Wiklund, “Arsenic distribution in bilayers of TiSi2 on polycrystalline silicon during heat treatment,” Thin Solid Film, vol. 110, pp. 281–289, 1983.
dc.relation.references[154] L. Chen, M. Moser, Y. Du, and P. H. Mayrhofer, “Compositional and structural evolution of sputtered Ti-Al-N,” Thin Solid Films, vol. 517, no. 24, pp. 6635–6641, 2009.
dc.relation.references[155] W. Zhang, Y.Q. Yang, G.M. Zhao, B. Huang, M.H. Li, X. Luo, S. Ouyang, “Microstructure evolution of TiAl matrix in the process of magnetron sputtering and hot isostatic pressing for fabricating TiAl/SiCf composites,” Intermetallics, vol. 39, pp. 5–10, 2013.
dc.relation.references[156] C. Padmaprabu, P. Kuppusami, A.L.E. Terrance, E. Mohandas, V.S. Raghunathan, Sangam Banerjee, Milan K. Sanyal, “Microstructural characterization of TiAl thin films grown by DC magnetron co-sputtering technique,” Mater. Lett., vol. 43, no. 3, pp. 106–113, 2000.
dc.relation.references[157] S. Z. Wang, G. Shao, P. Tsakiropoulos, F. Wang, “Phase selection in magnetron sputter-deposited TiAl alloy,” Mater. Sci. Eng., vol. A329-331, pp. 141–146, 2002.
dc.relation.references[158] C.-F. Lo, H. Wang, and P. Gilman, “Influence of target structure on film stress in WTi sputtering,” Thin Film. Stress. Mech. Prop. VII. Symp., vol. 505, pp. 427–432, 1998.
dc.relation.references[159] L. J. Kecskes and I. W. Hall, “Microstructural effects in hot-explosively-consolidated W ± Ti alloys,” Mater. Process. Technol., vol. 94, pp. 247–260, 1999.
dc.relation.references[160] Q. X. Wang and S. H. Liang, “Investigation on preparation and diffusion barrier properties of W-Ti thin films,” Vaccum, vol. 85, no. 11, pp. 979–985, 2011.
dc.relation.references[161] S. Bhagat, H. Han, and T. L. Alford, “Tungsten – titanium diffusion barriers for silver metallization,” Thin Solid Films, vol. 515, pp. 1998–2002, 2006.
dc.relation.references[162] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy. Eden Praire, Minnesota: Perkin-Elmer Corporation, 1992.
dc.relation.references[163] Debashis Mondal, Soma Banik, C. Kamal, Mangla Nand, S.N. Jha, D.M. Phase, A.K. Sinha, Aparna Chakrabarti, A. Banerjee, Tapas Ganguli, “Electronic structure of FeAl alloy studied by resonant photoemission spectroscopy and Ab initio calculations,” J. Alloys Compd., vol. 688, pp. 187–194, 2016.
dc.relation.references[164] G. K. Alqurashi, A. Al-Shehri, and K. Narasimharao, “Effect of TiO2 morphology on the benzyl alcohol oxidation activity of Fe 2O3 –TiO2 nanomaterials,” RSC Adv., vol. 6, pp. 71076–71091, 2016.
dc.relation.references[165] J. P. Espinós, A. Fernández, and A. R. González-Elipe, “Oxidation and diffusion processes in nickel-titanium oxide systems,” Surf. Sci., vol. 295, no. 3, pp. 402–410, 1993.
dc.relation.references[166] T.-O. Do Pham Minh-Hao., Cao-Thang. Dinh, Gia-Thanh. Vuong, Ngoc-Don. Tab, “Visible light induced hydrogen generation using a hollow photocatalyst with two cocatalysts separated on two surface sides,” Phys. Chem. Chem. Phys., vol. 16, pp. 5937–5941, 2014.
dc.relation.references[167] L. Pan, J. J. Zou, X. Zhang, and L. Wang, “Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2,” Ind. Eng. Chem. Res., vol. 49, no. 18, pp. 8526–8531, 2010.
dc.relation.references[168] Thermo Fisher Scientific Inc., “thermo scientific XPS,” https://xpssimplified.com/elements/silicon.php#appnotes, 2018. .
dc.relation.references[169] P. L. Tam, Y. Cao, and L. Nyborg, “XRD and XPS characterisation of transition metal silicide thin films,” Surf. Sci., vol. 606, no. 3–4, pp. 329–336, 2012.
dc.relation.references[170] G. Petö, E. Zsoldos, L. Guczi, and Z. Schay, “Investigation of density of states in TiSi and Tisi2 compounds,” Solid State Commun., vol. 57, no. 10, pp. 817–819, 1986.
dc.relation.references[171] F. Sirotti, D. M. Santis, and G. Rossi, “Synchrotron-radiation photoemission and x-ray absorption of Fe silicides,” Phys. Rev. B, vol. 48, no. 11, pp. 8299–8306, 1993.
dc.relation.references[172] F. Esaka, H. Yamamoto, N. Matsubayashi, Y. Yamada, M. Sasase, K. Yamaguchi, S. Shamoto, M. Magara, T. Kimura, “X-ray photoelectron and X-ray absorption spectroscopic study on β-FeSi2 thin films fabricated by ion beam sputter deposition,” Appl. Surf. Sci., vol. 256, no. 10, pp. 3155–3159, 2010.
dc.relation.references[173] F. Esaka, H. Yamamotoa, H. Udono, N. Matsubayashi, K. Yamaguchi, S. Shamoto, M. Magara, T. Kimura, “Spectroscopic characterization of β-FeSi2single crystals and homoepitaxial β-FeSi2 films by XPS and XAS,” Appl. Surf. Sci., vol. 257, no. 7, pp. 2950–2954, 2011.
dc.relation.references[174] H. Yamamoto, Y. Baba, and T. A. Sasaki, “Electronic structures of N2+ and O2+ Ion-implanted Si(100),” Surf. Interface Anal., vol. 23, no. 6, pp. 381–385, 1995.
dc.relation.references[175] Buzaneva E., T. Vdovenkova, S. Litvinenko, V. Makhnjuk, V. Strikha, V. Skryshevsky, P. Shevchuk, V. Nemoshkalenko, A. Senkevich, A. Shpak, “XPS and AES study of reactive Ti-Si interface,” J. Electron Spectros. Relat. Phenomena, vol. 68, pp. 707–711, 1994.
dc.relation.references[176] J. A. Taylor, G. M. Lancaster, A. Ignatiev, and J. W. Rabalais, “Interactions of ion beams with surfaces. Reactions of nitrogen with silicon and its oxides,” J. Chem. Phys., vol. 68, no. 4, pp. 1776–1784, 1978.
dc.relation.references[177] T. Fabio Germán Borgogno, “Compendio de Propiedades Tabla de Entalpía de Formación, Energía Libre de Gibbs y Entropía de Formación de Compuestos Inorgánicos,” 2010.
dc.relation.references[178] T. Yamashita and P. Hayes, “Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials,” Appl. Surf. Sci., vol. 254, no. 8, pp. 2441–2449, 2008.
dc.relation.references[179] D. J. Ding Jie, Qin Zhong, Shule Zhang, “Simultaneous removal of NOX and SO2 with H2O2 over Fe based catalysts at low temperature,” RSC Adv., vol. 4, pp. 5394–5398, 2014.
dc.relation.references[180] I. N. Shabanova and V. A. Trapeznikov, “A study of the electronic structure of Fe3C, Fe3Al and Fe3Si by x-ray photoelectron spectroscopy,” J. Electron Spectros. Relat. Phenomena, vol. 6, pp. 297–307, 1975.
dc.relation.references[181] Anil B. Gambhire, Machhindra K. Lande, Sandip B. Rathod, Balasaheb R. Arbad, Kaluram N. Vidhate, Ramakrishna S. Gholap, Kashinath R. Patil, “Synthesis and characterization of FeTiO3 ceramics,” Arab. J. Chem., vol. 9, pp. S429–S432, 2016.
dc.relation.references[182] Qu Jianying, Shiping Kang , Du Xueping, Lou Tongfang, Qu Jianhang, “Synthesis, Characterization and Applications of a New Prussian Blue Type Material,” Electroanalysis, vol. 25, no. 7, pp. 1722–1726, 2013.
dc.relation.references[183] D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier, and R. Dormoy, “XPS study of thin films of titanium oxysulfides,” Surf. Sci., vol. 254, pp. 81–89, 1991.
dc.relation.references[184] D. L. COCKE, T. R. HESS, T. MEBRAHTU, D. E. J. MENCER, and D. G. NAUGLE, “The surface reactivity of Ti-Cu and Ti-Al alloys and the ion chemistry of their oxide overlayers,” Solid State lonics, vol. 43, pp. 119–131, 1990.
dc.relation.references[185] M. Hashinokuchi, M. Tode, A. Yoshigoe, Y. Teraoka, and M. Okada, “Oxidation of TiAl surface with hyperthermal oxygen molecular beams,” Appl. Surf. Sci., vol. 276, pp. 276–283, 2013.
dc.relation.references[186] F. Arezzo, E. Severini, and N. Zacchetti, “An XPS study of diamond films grown on differently pretreated silicon substrates,” Surf. Interface Anal., vol. 22, no. 1–12, pp. 218–223, 1994.
dc.relation.references[187] A. E. Hughes, M. M. Hedges, and B. A. Sexton, “Reactions at the Al/SiO2/SiC layered interface,” J. Mater. Sci. 25, vol. 25, pp. 4856–4865, 1990.
dc.relation.references[188] M. Hannula, K. Lahtonen, H. Ali-löytty, A. A. Zakharov, T. Isotalo, J. Saari, M. Valden, “Fabrication of topographically microstructured titanium silicide interface for advanced photonic applications,” SMM, vol. 119, pp. 76–81, 2016.
dc.relation.references[189] Schmiedgen, M. Graat, P. C J. Baretzky, B. Mittemeijer, E. J., “The initial stages of oxidation of γ-TiAl: an X-ray photoelectron study,” Thin Solid Films, vol. 415, no. March, pp. 114–122, 2002.
dc.relation.references[190] Kovács, K. Perczel, I. V. Josepovits, V. K. Kiss, G. Réti, F. Deák, P., “In situ surface analytical investigation of the thermal oxidation of Ti-Al intermetallics up to 1000 °C,” Appl. Surf. Sci., vol. 200, no. 1–4, pp. 185–195, 2002.
dc.relation.references[191] D. E. Mencer Jr, T R Hess, T Mebrahtu, D L Cocke, D G Naugle., “Surface reactivity of titanium-aluminum alloys : Ti3Al, TiAl, and TiAl3,” J. Vac. Sci. Technol., vol. A9, pp. 1610–1615, 1991.
dc.relation.references[192] D. Leinen, G. Lassaletta, A. Fernández, A. Caballero, A. R. González-Elipe, J. M. Martín, B. Vacher, “Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films. II. Preparation and characterization of AlxTiyOz thin films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 14, no. 5, pp. 2842–2848, 1996.
dc.relation.references[193] B. R. Strohmeier, “Surface characterization of aluminum foil annealed in the presence of ammonium fluoborate,” Appl. Surf. Sci., vol. 40, pp. 249–263, 1989.
dc.relation.references[194] V. Maurice, G. Despert, S. Zanna, P. Josso, M. P. Bacos, P. Marcus, “XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys,” Acta Mater., vol. 55, no. 10, pp. 3315–3325, 2007.
dc.relation.references[195] E. PAPARAZZO, “XPS and auger spectroscopy studies on mixtures on of the oxides SiO2, Al203, Fe2O3, and Cr2O3,” J. Electron Spectros. Relat. Phenomena, vol. 36, pp. 269–279, 1985.
dc.relation.references[196] B. R. Strohmeier, “Surface characterization of ammonium fluoborate,” Appl. Surf. Sci. 40, vol. 40, pp. 249–263, 1989.
dc.relation.references[197] B. R. Strohmeier, “The effects of O2 plasma treatments on the surface composition and wettability of coldrolled aluminum foil,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 7, no. 6, pp. 3238–3245, 1989.
dc.relation.references[198] D. L. Cocke, E. D. Johnson, and P. Robert, “Planar Models for Alumina- Based Catalysts,” Catal. Rev. Sci. Eng., vol. 26, pp. 163–231, 1984.
dc.relation.references[199] Oku Masaoki, Masahashi Naoya, Hanada Shuji, Kazuaki Wagatsuma, “X-ray photoelectron spectroscopic study of ordered stoichiometric FeAl fractured in situ,” J. Alloys Compd., vol. 413, no. 1–2, pp. 239–243, 2006.
dc.relation.references[200] B. R. Strohmeier, “The effects of O2 plasma treatments on the surface composition and wettability of coldrolled aluminum foil,” J. Vac. Sci. Technol., vol. 7, no. 6, pp. 3238–3245, 1989.
dc.relation.references[201] D. L. Cocke, E. D. Johnson, and P. Robert, “Planar Models for Alumina- Based Catalysts,” Catal. Rev. Sci. Eng., vol. 26, no. 2, pp. 163–231, 1984.
dc.relation.references[202] L. Z. M. L Trudeau,, L. Dignard-Bailey R. Schulz, P. Tessier and D. H. Ryan, J. O. Strom-Olsen, “The oxidation of nanocrystalline FeTi hydrogen storage compounds,” Nanostructured Mater., vol. 1, no. 6, pp. 457–464, 1992.
dc.relation.references[203] Georgiadou, I. Spanos, N. Papadopoulou, Ch. Matralis, H. Kordulis, Ch. Lycourghiotis, A., “Preparation and characterization of various titanias (anatase) used as supports for vanadia-supported catalysts,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 98, no. 1–2, pp. 155–155, 1995.
dc.relation.references[204] J. Zeng, Y. Zhao, and Z. Liang, “Synthesis and electrochemical properties of Li9V3−xTix (P2O7)3(PO4)2/C compounds via wet method for lithium-ion batteries,” J. Solid State Electrochem., vol. 14, no. 2, pp. 561–567, 2014.
dc.relation.references[205] J L Ong, L C Lucas, G N Raikar, J C Gregory, “Electrochemical corrosion analyses and characterization of surface-modified titanium,” Appl. Surf. Sci., vol. 72, pp. 7–13, 1993.
dc.relation.references[206] Y. Q. Xie, K. Peng, and X. B. Liu, “Influences of xTi/xAl on atomic states, lattice constants and potential-energy planes of ordered FCC TiAl-type alloys,” Phys. B Condens. Matter, vol. 344, no. 1–4, pp. 5–20, 2004.
dc.relation.references[207] Y. L. Liu, L. M. Liu, S. Q. Wang, and H. Q. Ye, “First-principles study of shear deformation in TiAl alloys,” J. Alloys Compd., vol. 440, no. 1–2, pp. 287–294, 2007.
dc.relation.references[208] Jinn P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, J. W. Lee, F. X. Liu, P. K. Liaw, Y. C. Chen, C. M. Lee, C. L. Li, Cut Rullyani, “Thin film metallic glasses: Unique properties and potential applications,” Thin Solid Films, vol. 520, pp. 5097–5122, 2012.
dc.relation.references[209] G. G. Stoney, “The Tension of Metallic Films Deposited by Electrolysis,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 82, no. 553, pp. 172–175, 1909.
dc.relation.references[210] J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng., vol. 37, pp. 129–281, May 2002.
dc.relation.references[211] C. O. Varga, G. Capote, and J. M. Gutiérrez, “Deposición de películas de carbono amorfo hidrogenado usando la técnica DC-pulsada PACVD,” Sci. Tech., vol. 23, no. 02, pp. 293–299, 2018.
dc.relation.references[212] A. Prof and M. S. Farhan, “A review on adhesion strength of sin gle and multilayer coatings and the evaluation method,” Wasit J. Eng. Sci., vol. 4, pp. 1–27, 2016.
dc.relation.references[213] G. S. Barshilia C, Harish, A Ananth, Khan Jakeer, “Ar + H2 plasma etching for improved adhesion of PVD coatings on steel substrates,” Vacuum, vol. 86, pp. 1165–1173, 2012.
dc.relation.references[214] V. P. Gupta, Principles and Applications of Quantum Chemistry, 1st ed. Oxford, 2016.
dc.relation.references[215] A. B. Martín-Rojo, M. González, and F. L.Tabarés, “Informes Técnicos Ciemat Glow Discharge Emission Spectrometry (GDOES): Introducción Teórica, Aspectos Generales y Aplicabilidad en el Marco del Programa Technofusion,” España, 2013.
dc.relation.references[216] A. Leyland and A. Matthews, “On the significance of the H / E ratio in wear control : a nanocomposite coating approach to optimised tribological behaviour,” WEAR, vol. 246, pp. 1–11, 2000.
dc.relation.references[217] Anyerson Cuervo, John Emerson Muñoz, John Sebastián Pantoja, Fabio Fernando Vallejo Bastidas, Jhon Jairo Olaya FlóreZ, “Recubrimientos de carburos de Nb-V-Cr depositados mediante el proceso de difusión termo-reactiva (TRD)”, Cienc. e Ing. Neogranadina, vol. 25–2, pp. 5–20, 2015.
dc.relation.references[218] E. Arslan, Y. Totik, and I. Efeoglu, “Progress in Organic Coatings The investigation of the tribocorrosion properties of DLC coatings deposited on Ti6Al4V alloys by CFUBMS,” Prog. Org. Coatings, vol. 74, no. 4, pp. 768–771, 2012
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalDLC
dc.subject.proposalDLC
dc.subject.proposaladherencia
dc.subject.proposalInterlayers
dc.subject.proposalsputtering
dc.subject.proposalAdherence
dc.subject.proposalIntercapas
dc.subject.proposalSputtering
dc.subject.proposalSteel
dc.subject.proposalAcero
dc.subject.proposalMagnetrón
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito