Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorReguero Reza, Ma. Teresa Jesús
dc.contributor.advisorBarreto-Hernández, Emiliano
dc.contributor.authorRojas Suárez, Laura Viviana
dc.date.accessioned2020-07-15T19:45:55Z
dc.date.available2020-07-15T19:45:55Z
dc.date.issued2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77779
dc.description.abstractProvidencia rettgeri is a generally ubiquitous Gram negative bacillus recognized for primarily causing infections at the urinary tract level and other affected infections at the respiratory tract level and gastrointestinal diseases. However, it has gained relevance in the last decade due to several reports of low antimicrobial sensitivity due to the acquisition of determining genes such as blaNDM_1. The acquisition of highly divergent extrachromosomal genetic elements have provided him with a genetic arsenal present in other Gram-negative bacteria through horizontal gene transfer. Thus, P. rettgeri has become an emerging nosocomial pathogen that has spread throughout the planet. Therefore, the present study set out to characterize profiles of resistance plasmid genetic elements present in 28 P. rettgeri isolates that present a multidrug-resistant phenotype, through a biocomputer workflow based on five different methodologies that allowed the transmission of sequences possibly associated with plasmids. These Sequences were obtained from short readings acquired from a previous complete genome (WGS) sequence of each of the isolates. This study determined the presence of plasmids in all the isolates, and 568 possibly plasmid sequences were obtained, where 41 genes associated with antimicrobial resistance were identified (35% of genes associated with complete genome resistance), where the majority of the devices a mechanism of degradation and modification of antibiotics. Likewise, the resistance profiles associated with possible plasmid sequences were defined for each of the isolates and the divergence presented by them was noted.
dc.description.abstractProvidencia rettgeri es un bacilo Gram negativo generalmente ubicuo reconocido por causar principalmente infecciones a nivel de tracto urinario y otras infecciones aisladas a nivel de tracto respiratorio y enfermedades gastrointestinales. No obstante ha cobrado relevancia en la última década debido a varios reportes de baja sensibilidad a antimicrobianos por la adquisición de genes determinantes como blaNDM_1. La adquisición de elementos genéticos extracromosomales altamente divergentes le han proporcionado un arsenal genético presente en otras bacterias Gram negativas a través de la transferencia horizontal de genes. Así, P. rettgeri se ha convertido en un patógeno nosocomial emergente que se ha extendido por todo el planeta. Por lo anterior, el presente estudio se propuso caracterizar perfiles de elementos genéticos plasmídicos de resistencia presentes en 28 aislamientos de P. rettgeri que presentan un fenotipo multirresistente, a través de un flujo de trabajo bionformático basado en cinco metodólogas distintas que permitieron la obtención de secuencias posiblemente asociadas a plásmidos. Estas Secuencias fueron obtenidas a partir lecturas cortas adquiridas de una previa secuenciación del genoma completo (WGS) de cada uno de los aislamientos. Este estudio logró determinar la presencia de plásmidos en todos los aislamientos, así mismo se obtuvieron 568 secuencias posiblemente plasmídicas en donde se identificaron 41 genes asociados a la resistencia a antimicrobianos (el 35% de genes asociados a la resistencia del genoma completo), donde la mayoría tenían un mecanismo de degradación y modificación de antibióticos. Igualmente se definieron los perfiles de resistencia asociados a posibles secuencias plasmídicas para cada uno de los aislamientos y se advirtió la divergencia presentada por ellas.
dc.format.extent144
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relationAnálisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 – 2016
dc.relationComparación de perfiles de Elementos genéticos Plasmídicos de aislamientos clínicos de Acinetobacter baumannii provenientes en el periodo 2012-2015 del Instituto Nacional de Salud, mediante secuenciación de genoma completo
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales
dc.subject.ddc570 - Biología
dc.titleCaracterización de perfiles de elementos genéticos plasmídicos de aislamientos colombianos de Providencia rettgeri, causantes de IAAS. Obtenidos del Instituto Nacional de Salud, durante el periodo 2015-2016
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ciencias - Microbiología. Linea de Investigación: Epidemiología Molecular de Agentes Infecciosos
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.contributor.corporatenameInstituto Nacional de Salud
dc.contributor.researchgroupBioinformática
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdallah, M. and Balshi, A. (2018). First literature review of carbapenemresistant providencia. New microbes and new infections, 25 :16-23.
dc.relation.referencesAbeles, A. L., Snyder, K. M., and Chattoraj, D. K. (1984). P1 plasmid replication: replicon structure. Journal of molecular biology, 173 (3):307-324.
dc.relation.referencesAchtman, M., Kennedy, N., and Skurray, R. (1977). Cell-cell interactions in conjugating Escherichia coli : role of traT protein in surface exclusion. Proceedings of the National Academy of Sciences, 74 (11):5104-5108.
dc.relation.referencesAchtman, M., Morelli, G., and Schwuchow, S. (1978). Cell-cell interactions in conjugating Escherichia coli : role of F pili and fate of mating aggregates. Journal of bacteriology, 135 (3):1053-1061.
dc.relation.referencesAh-Seng, Y., Lopez, F., Pasta, F., Lane, D., and Bouet, J.-Y. (2009). Dual role of DNA in regulating ATP hydrolysis by the SopA partition protein. Journal of Biological Chemistry, 284 (44):30067-30075.
dc.relation.referencesAibinu, I. E., Pfeifer, Y., Ogunsola, F., Odugbemi, T., Koenig, W., and Ghebremedhin, B. (2011). Emergence of -lactamases OXA-10, VEB-1 and CMY in providencia spp. from nigeria. Journal of antimicrobial chemot- herapy, 66 (8):1931-1932.
dc.relation.referencesAlcock, B. P., Raphenya, A. R., Lau, T. T., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.-L. V., Cheng, A. A., Liu, S., et al. (2019). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic acids research, 48 (D1):D517- D525.
dc.relation.referencesAnderson, C., Johnson, T., Case, C., Cappuccino, J., and Sherman, N. (2013). Great adventures in the microbiology laboratory.
dc.relation.referencesAntipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., and Pevzner, P. (2016). plasmidSPAdes: assembling plasmids from whole genome sequencing data. bioRxiv, page 048942.
dc.relation.referencesAntunes, N. and Fisher, J. (2014). Acquired class D beta-lactamases. antibiotics (basel) 3: 398-434.
dc.relation.referencesArredondo-Alonso, S., Willems, R. J., van Schaik, W., and Sch urch, A. C. (2017). On the (im) possibility of reconstructing plasmids from wholegenome short-read sequencing data. Microbial genomics, 3 (10).
dc.relation.referencesAschbacher, R., Doumith, M., Livermore, D. M., Larcher, C., and Woodford, N. (2008). Linkage of acquired quinolone resistance (qnrS1 ) and metallo- betalactamase (blaVIM-1 ) genes in multiple species of Enterobacteriaceae from bolzano, italy. Journal of antimicrobial chemotherapy, 61 (3):515-523.
dc.relation.referencesAubert, D., Poirel, L., Ben Ali, A., Goldstein, F. W., and Nordmann, P. (2001). OXA-35 is an OXA-10-related -lactamase from Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 48 (5):717-721.
dc.relation.referencesBae, I. K., Lee, Y.-N., Hwang, H. Y., Jeong, S. H., Lee, S. J., Kwak, H.- S., Song, W., Kim, H. J., and Youn, H. (2006). Emergence of CTX-M-12 extended-spectrum -lactamase-producing Escherichia coli in korea. Journal of Antimicrobial Chemotherapy, 58 (6):1257-1259.
dc.relation.referencesBahar, G., Era c, B., Mert, A., and G ulay, Z. (2004). PER-1 production in a urinary isolate of Providencia rettgeri. Journal of chemotherapy, 16 (4):343-346.
dc.relation.referencesBankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology, 19 (5):455-477.
dc.relation.referencesBarl, P., Bedeni c, B., Sardeli c, S., Uzunovi c, S., Vrane s, J., and Ple cko, V. (2012). Spread of CTX-M-15 positive Providencia spp causing urinary tract infections in university hospital split in croatia. Medicinski Glasnik, 9 (2):317.
dc.relation.referencesBarrios, H., Garza-Ramos, U., Reyna-Flores, F., Sanchez-Perez, A., Rojas-Moreno, T., Garza-Gonzalez, E., Llaca-Diaz, J. M., Camacho-Ortiz, A., Guzm an-L opez, S., and Silva-Sanchez, J. (2013). Isolation of carbapenemresistant NDM-1-positive Providencia rettgeri in mexico. Journal of Antimicrobial Chemotherapy, 68 (8):1934-1936.
dc.relation.referencesBimboim, H. and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic acids research, 7 (6):1513-1523.
dc.relation.referencesBocanegra-Ibarias, P., Garza-Gonz alez, E., Morf n-Otero, R., Barrios, H., Villarreal-Trevi~no, L., Rodr guez-Noriega, E., Garza-Ramos, U., Petersen-Mor n, S., and Silva-Sanchez, J. (2017). Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in mexico. PloS one, 12 (6):e0179651.
dc.relation.referencesBossart, J. and Prowell, D. P. (1998). Genetic estimates of population structure and gene low: limitations, lessons and new directions. Trends in Ecology & Evolution, 13 (5):202-206.
dc.relation.referencesBramhill, D. and Kornberg, A. (1988). Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell, 52 (5):743-755.
dc.relation.referencesBriñas, L., Zarazaga, M., S aenz, Y., Ruiz-Larrea, F., and Torres, C. (2002). beta -lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrobial agents and chemotherapy, 46 (10):3156-3163.
dc.relation.referencesBukhari, A. I., Shapiro, J. A., Adhya, S. L., et al. (1977). DNA insertion elements, plasmids, and episomes. In DNA Insertions Meeting (1976: Cold Spring Harbor Laboratory). Cold Spring Harbor Laboratory.
dc.relation.referencesBush, K. (2013). The ABCD's of -lactamase nomenclature. Journal of Infection and Chemotherapy, 19 (4):549-559.
dc.relation.referencesCarmo Junior, N. V. d., Ferreira Filho, H., Calvalcante, A. J. W., Garcia, D. d. O., Furtado, J. J. D., et al. (2015). First report of a NDM-producing Providencia rettgeri strain in the state of s~ao paulo. Brazilian Journal of Infectious Diseases, 19 (6):675-676.
dc.relation.referencesCarver, T. J., Rutherford, K. M., Berriman, M., Rajandream, M.-A., Barrell, B. G., and Parkhill, J. (2005). Act: the artemis comparison tool. Bioinformatics, 21 (16):3422-3423.
dc.relation.referencesCastañeda, J., G omez, K., Corrales, L., and Cort es, S. (2016). Per lfil de resistencia a antibioticos en bacterias que presentan la enzima ndm-1 y sus mecanismos asociados: una revisi on sistem atica. Nova, 14(25):95-111.
dc.relation.referencesCavaco, L. M., Hasman, H., Xia, S., and Aarestrup, F. M. (2009). qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar kentucky and bovismorbi cans strains of human origin. Antimicrobial agents and chemotherapy, 53 (2):603-608.
dc.relation.referencesChander, Y., Goyal, S. M., and Gupta, S. C. (2006). Antimicrobial resistance of Providencia spp. isolated from animal manure. The Veterinary Journal, 172 (1):188-191.
dc.relation.referencesChikhi, R. and Medvedev, P. (2013). Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30 (1):31-37.
dc.relation.referencesChoi, H. K., Kim, Y. K., Kim, H. Y., Park, J. E., and Uh, Y. (2015). Clinical and microbiological features of providencia bacteremia: experience at a tertiary care hospital. The Korean journal of internal medicine, 30 (2):219.
dc.relation.referencesChun, J. and Rainey, F. A. (2014). Integrating genomics into the taxonomy and systematics of the bacteria and archaea. International journal of systematic and evolutionary microbiology, 64 (2):316-324.
dc.relation.referencesCloud, J. L., Harmsen, D., Iwen, P. C., Dunn, J. J., Hall, G., LaSala, P. R., Hoggan, K., Wilson, D., Woods, G. L., and Mellmann, A. (2010). Comparison of traditional phenotypic identi cation methods with partial 5' 16s rRNA gene sequencing for species-level identi cation of nonfermenting gram-negative bacilli. Journal of clinical microbiology, 48 (4):1442-1444.
dc.relation.referencesConlan, S., Thomas, P. J., Deming, C., Park, M., Lau, A. F., Dekker, J. P., Snitkin, E. S., Clark, T. A., Luong, K., Song, Y., et al. (2014). Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Science translational medicine, 6 (254):254ra126-254ra126.
dc.relation.referencesCurtis, H. and Schnek, A. (2008). Curtis. Biolog a. Ed. M edica Panamericana.
dc.relation.referencesCurtiss III, R. (1969). Bacterial conjugation. Annual review of microbiology, 23 (1):69-136.
dc.relation.referencesDe Toro, M., Garcill an-Barcia, M. P., and De La Cruz, F. (2015). Plasmid diversity and adaptation analyzed by massive sequencing of Escherichia coli plasmids. In Plasmids: Biology and Impact in Biotechnology and Discovery, pages 219-235. American Society of Microbiology.
dc.relation.referencesDery, K. J., Chavideh, R., Waters, V., Chamorro, R., Tolmasky, L. S., and Tolmasky, M. E. (1997). Characterization of the replication and mobilization regions of the multiresistance Klebsiella pneumoniae plasmid pJHCMW1. Plasmid, 38 (2):97-105.
dc.relation.referencesDib, J. R.,Wagenknecht, M., Farias, M. E., and Meinhardt, F. (2015). Strategies and approaches in plasmidome studies- uncovering plasmid diversity disregarding of linear elements? Frontiers in microbiology, 6 :463.
dc.relation.referencesFrancia, M. V., Varsaki, A., Garcillan-Barcia, M. P., Latorre, A., Drainas, C., and de la Cruz, F. (2004). A classi cation scheme for mobilization regions of bacterial plasmids. FEMS microbiology reviews, 28 (1):79-100.
dc.relation.referencesGalac, M. R. and Lazzaro, B. P. (2012). Comparative genomics of bacteria in the genus providencia isolated from wild drosophila melanogaster. BMC genomics, 13 (1):612.
dc.relation.referencesGao, H., Liu, Y., Wang, R., Wang, Q., Jin, L., and Wang, H. (2020). The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine, 51 :102599.
dc.relation.referencesGerdes, K., Moller-Jensen, J., and Jensen, R. B. (2000). Plasmid and chromosome partitioning: surprises from phylogeny. Molecular microbiology, 37 (3):455-466.
dc.relation.referencesGibson, M. K., Forsberg, K. J., and Dantas, G. (2015). Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. The ISME journal, 9 (1):207.
dc.relation.referencesGordon, E., Mouz, N., Duee, E., and Dideberg, O. (2000). The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. Journal of molecular biology, 299 (2):477-485
dc.relation.referencesGuglielmini, J., de La Cruz, F., and Rocha, E. P. (2012). Evolution of conjugation and type IV secretion systems. Molecular biology and evolution, 30 (2):315-331.
dc.relation.referencesGuillard, T., Cambau, E., Neuwirth, C., Nenninger, T., Mbadi, A., Brasme, L., Vernet-Garnier, V., Bajolet, O., and de Champs, C. (2012). Description of a 2,683-base-pair plasmid containing qnrD in two Providencia rettgeri isolates. Antimicrobial agents and chemotherapy, 56 (1):565-568.
dc.relation.referencesGupta, R. S. (2016). Impact of genomics on the understanding of microbial evolution and classi cation: the importance of darwin's views on classi cation. FEMS microbiology reviews, 40 (4):520-553.
dc.relation.referencesGurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29 (8):1072-1075.
dc.relation.referencesHad eld, J., Croucher, N. J., Goater, R. J., Abudahab, K., Aanensen, D. M., and Harris, S. R. (2018). Phandango: an interactive viewer for bacterial population genomics. Bioinformatics, 34 (2):292-293.
dc.relation.referencesHayes, W. (1952). Recombination in bact. coil K 12: Unidirectional transfer of genetic material. Nature, 169 (4290):118.
dc.relation.referencesHayes, W. (1953). Observations on a transmissible agent determining sexual di erentiation in Bacterium coli. Microbiology, 8 (1):72-88.
dc.relation.referencesHenz, S. R., Huson, D. H., Auch, A. F., Nieselt-Struwe, K., and Schuster, S. C. (2005). Whole-genome prokaryotic phylogeny. Bioinformatics, 21 (10):2329-2335.
dc.relation.referencesHong, J. S., Yoon, E.-J., Song, W., Seo, Y. B., Shin, S., Park, M.-J., Jeong, S. H., and Lee, K. (2018). Molecular characterization of Pseudomonas putida group isolates carrying blaVIM-2 disseminated in a university hospital in korea. Microbial Drug Resistance, 24 (5):627-634.
dc.relation.referencesHu, H., Hu, Y., Pan, Y., Liang, H., Wang, H., Wang, X., Hao, Q., Yang, X., Yang, X., Xiao, X., et al. (2012). Novel plasmid and its variant harboring both a blaNDM-1 gene and type IV secretion system in clinical isolates of Acinetobacter lwo i. Antimicrobial agents and chemotherapy, 56 (4):1698-1702.
dc.relation.referencesHyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identi cation. BMC bioinformatics, 11 (1):119.
dc.relation.referencesJaffe, A., Ogura, T., and Hiraga, S. (1985). E ects of the ccd function of the F plasmid on bacterial growth. Journal of bacteriology, 163 (3):841-849.
dc.relation.referencesJohnson, A. P. and Woodford, N. (2013). Global spread of antibiotic resistance: the example of new delhi metallo- -lactamase (NDM)-mediated carbapenem resistance. Journal of medical microbiology, 62 (4):499-513.
dc.relation.referencesJolley, K. A., Bray, J. E., and Maiden, M. C. (2018). Open-access bacterial population genomics: BIGSdb software, the pubMLST. org website and their applications. Wellcome open research, 3.
dc.relation.referencesKariuki, S., Corkill, J., Revathi, G., Musoke, R., and Hart, C. (2001). Molecular characterization of a novel plasmid-encoded cefotaximase (CTX-M-12) found in clinical Klebsiella pneumoniae isolates from kenya. Antimicrobial agents and chemotherapy, 45 (7):2141-2143.
dc.relation.referencesKim, D., Song, L., Breitwieser, F. P., and Salzberg, S. L. (2016). Centrifuge: rapid and sensitive classi cation of metagenomic sequences. Genome research, 26 (12):1721-1729.
dc.relation.referencesKing, D. and Strynadka, N. (2011). Crystal structure of new delhi metallo- betalactamase reveals molecular basis for antibiotic resistance. Protein Science, 20 (9):1484-1491.
dc.relation.referencesKolbe, D. L. and Eddy, S. R. (2011). Fast ltering for RNA homology search. Bioinformatics, 27 (22):3102-3109.
dc.relation.referencesKoneman, E., Meero , N. G., Roel, B. E., et al. (1997). Diagnostico microbiologico: texto y atlas color.
dc.relation.referencesKrawczyk, P. S., Lipinski, L., and Dziembowski, A. (2018). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic acids research, 46 (6):e35-e35.
dc.relation.referencesKumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C. G., Irfan, S., et al. (2010). Emergence of a new antibiotic resistance mechanism in india, pakistan, and the uk: a molecular, biological, and epidemiological study. The Lancet infectious diseases, 10 (9):597-602.
dc.relation.referencesLachish, T., Elimelech, M., Arieli, N., Adler, A., Rolain, J.-M., and Assous, M. V. (2012). Emergence of new delhi metallo- beta-lactamase in jerusalem, israel. International journal of antimicrobial agents, 40 (6):566-567.
dc.relation.referencesLachmayr, K. L., Kerkhof, L. J., DiRienzo, A. G., Cavanaugh, C. M., and Ford, T. E. (2009). Quantifying nonspeci c TEM -lactamase (blaTEM ) genes in a wastewater stream. Appl. Environ. Microbiol., 75 (1):203-211.
dc.relation.referencesLagesen, K., Hallin, P., R dland, E. A., St rfeldt, H.-H., Rognes, T., and Ussery, D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal rna genes. Nucleic acids research, 35 (9):3100-3108.
dc.relation.referencesLaslett, D. and Canback, B. (2004). ARAGORN, a program to detect trna genes and tmrna genes in nucleotide sequences. Nucleic acids research, 32 (1):11-16.
dc.relation.referencesLederberg, J., Cavalli, L. L., and Lederberg, E. M. (1952). Sex compatibility in Escherichia coli. Genetics, 37 (6):720.
dc.relation.referencesLederberg, J. and Tatum, E. L. (1946a). Gene recombination in Escherichia coli. Nature, 158 (4016):558-558.
dc.relation.referencesLederberg, J. and Tatum, E. L. (1946b). Novel genotypes in mixed cultures of biochemical mutants of bacteria. In Cold Spring Harbor Symposia on Quantitative Biology, volume 11, pages 113-114. Cold Spring Harbor Laboratory Press.
dc.relation.referencesLiebert, C. A., Hall, R. M., and Summers, A. O. (1999). Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev., 63 (3):507-522.
dc.relation.referencesLivermore, D. (1991). Mechanisms of resistance to -lactam antibiotics. Scand J Infect Dis, 78 (Supl):7-16.
dc.relation.referencesLopez De Heredia Larrea, U. (2016). Las tecnicas de secuenciacion masiva en el estudio de la diversidad biologica. Munibe Ciencias Naturales, 64 :7-31.
dc.relation.referencesLynch, A. S. (2006). Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? an industry view. Biochemical pharmacology, 71 (7):949-956.
dc.relation.referencesMagiorakos, A.-P., Srinivasan, A., Carey, R., Carmeli, Y., Falagas, M., Giske, C., Harbarth, S., Hindler, J., Kahlmeter, G., Olsson-Liljequist, B., et al. (2012). Multidrug-resistant, extensively drugresistant and pandrugresistant bacteria: an international expert proposal for interim standard de nitions for acquired resistance. Clinical microbiology and infection, 18 (3):268-281.
dc.relation.referencesMahrouki, S., Chihi, H., Bourouis, A., Ayari, K., Ferjani, M., Moussa, M. B., and Belhadj, O. (2015). Nosocomial dissemination of plasmids carrying blaTEM-24, blaDHA-1, aac(6') -Ib-cr, and qnrA6 in Providencia spp. strains isolated from a tunisian hospital. Diagnostic microbiology and infectious disease, 81 (1):50-52
dc.relation.referencesManos, J. and Belas, R. (2006). The genera Proteus, Providencia, and Morganella. The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass, pages 245-269.
dc.relation.referencesMarchetti, M. L., Errecalde, J. O., and Mestorino, O. N. (2011). Resistencia bacteriana a los antimicrobianos ocasionada por bombas de efujo. Analecta Veterinaria, 31.
dc.relation.referencesMarquez-Ortiz, R. A., Haggerty, L., Olarte, N., Duarte, C., Garza-Ramos, U., Silva-Sanchez, J., Castro, B. E., Sim, E. M., Beltran, M., Moncada, M. V., et al. (2017a). Genomic epidemiology of NDM-1-encoding plasmids in latinamerican clinical isolates reveals insights into the evolution of multidrug resistance. Genome biology and evolution, 9 (6):1725-1741.
dc.relation.referencesMarquez-Ortiz, R. A., Haggerty, L., Sim, E. M., Duarte, C., Castro-Cardozo, B. E., Beltran, M., Saavedra, S., Vanegas, N., Escobar-Perez, J., and Petty, N. K. (2017b). First complete Providencia rettgeri genome sequence, the NDM-1-producing clinical strain rb151. Genome Announc., 5 (3):e01472-16.
dc.relation.referencesMartinez-Martinez, L. (2007). Association of ESBL with other resistance mechanisms. Enferm Infecc Microbiol Clin, 25 (Suppl 2):38-47.
dc.relation.referencesMarvin, D. and Hohn, B. (1969). Filamentous bacterial viruses. Bacteriological reviews, 33 (2):172.
dc.relation.referencesMataseje, L., Boyd, D., Lefebvre, B., Bryce, E., Embree, J., Gravel, D., Katz, K., Kibsey, P., Kuhn, M., Langley, J., et al. (2013). Complete sequences of a novel blaNDM-1-harbouring plasmid from Providencia rettgeri and an FII-type plasmid from Klebsiella pneumoniae identi ed in canada. Journal of Antimicrobial Chemotherapy, 69 (3):637-642.
dc.relation.referencesMcArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay, A. J., Bhullar, K., Canova, M. J., De Pascale, G., Ejim, L., et al. (2013). The comprehensive antibiotic resistance database. Antimicrobial agents and chemotherapy, 57 (7):3348-3357.
dc.relation.referencesMitsuyama, J., Hiruma, R., Yamaguchi, A., and Sawai, T. (1987). Identi cation of porins in outer membrane of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of beta-lactams. Antimicrobial agents and chemotherapy, 31 (3):379-384.
dc.relation.referencesMontealegre, M., Correa, A., Briceno, D., Rosas, N., De La Cadena, E., Ruiz, S., Mojica, M., Camargo, R., Zuluaga, I., Mar n, A., Quinn, J., and Villegas, M. (2011). Novel VIM metallo- -lactamase variant, VIM-24, from a Klebsiella pneumoniae isolate from colombia. Antimicrobial agents and chemotherapy, 55 :2428-30.
dc.relation.referencesMuller, H. (1986). Occurrence and pathogenic role of morganella-proteusprovidencia group bacteria in human feces. Journal of clinical microbiology, 23 (2):404-405.
dc.relation.referencesNavarro, F., Calvo, J., Canton, R., Fernandez-Cuenca, F., and Mirelis, B. (2011). Deteccion fenotipica de mecanismos de resistencia en microorganismos gramnegativos. Enfermedades Infecciosas y microbiologia clinica, 29 (7):524-534.
dc.relation.referencesNordmann, P., Naas, T., and Poirel, L. (2011a). Global spread of carbapenemase-producing Enterobacteriaceae. Emerging infectious diseases, 17 (10):1791.
dc.relation.referencesNordmann, P., Poirel, L., Toleman, M. A., and Walsh, T. R. (2011b). Does broad-spectrum -lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by gram-negative bacteria? Journal of antimicrobial chemotherapy, 66 (4):689-692.
dc.relation.referencesNordmann, P., Poirel, L., Walsh, T. R., and Livermore, D. M. (2011c). The emerging NDM carbapenemases. Trends in microbiology, 19 (12):588-595.
dc.relation.referencesNovick, R. P. (1987). Plasmid incompatibility. Microbiological reviews, 51 (4):381.
dc.relation.referencesOgura, T. and Hiraga, S. (1983). Partition mechanism of f plasmid: two plasmid gene-encoded products and a cis-acting region are involved in partition. Cell, 32 (2):351-360.
dc.relation.referencesO'Hara, C. M., Brenner, F. W., and Miller, J. M. (2000). Classi cation, identi cation, and clinical signi cance of proteus, providencia, and morganella. Clinical microbiology reviews, 13 (4):534-546.
dc.relation.referencesOlaitan, A. O., Diene, S. M., Assous, M. V., and Rolain, J.-M. (2015). Genomic plasticity of multidrug-resistant NDM-1 positive clinical isolate of Providencia rettgeri. Genome biology and evolution, 8 (3):723-728.
dc.relation.referencesOtlu, B., Yakupogullari, Y., G ursoy, N., Duman, Y., Bayindir, Y., Tekerekoglu, M., and Ersoy, Y. (2018). Co-production of OXA-48 and NDM-1 carbapenemases in Providencia rettgeri : the rst report. Mikrobiyoloji bul-teni, 52 (3):300-307.
dc.relation.referencesPage, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T., Fookes, M., Falush, D., Keane, J. A., and Parkhill, J. (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31 (22):3691-3693.
dc.relation.referencesPasquali, F., Kehrenberg, C., Manfreda, G., and Schwarz, S. (2005). Physical linkage of tn 3 and part of Tn 1721 in a tetracycline and ampicillin resistance plasmid from Salmonella Typhimurium. Journal of Antimicrobial Chemotherapy, 55 (4):562-565.
dc.relation.referencesPasteran, F., Meo, A., Gomez, S., Derdoy, L., Albronoz, E., Faccone, D., Guerriero, L., Archuby, D., Tarzia, A., Lopez, M., et al. (2014). Emergence of genetically related NDM-1-producing Providencia rettgeri strains in argentina. Journal of global antimicrobial resistance, 2 (4):344.
dc.relation.referencesPatel, G. and Bonomo, R. (2013). "stormy waters ahead": global emergence of carbapenemases. Frontiers in microbiology, 4 :48.
dc.relation.referencesPavel, A. B. and Vasile, C. I. (2012). PyElph-a software tool for gel images analysis and phylogenetics. BMC bioinformatics, 13 (1):9.
dc.relation.referencesPetersen, T. N., Brunak, S., Von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature methods, 8 (10):785.
dc.relation.referencesPfeifer, Y., Cullik, A., and Witte, W. (2010). Resistance to cephalosporins and carbapenems in gram-negative bacterial pathogens. International Journal of Medical Microbiology, 300 (6):371-379.
dc.relation.referencesPhilippon, A., Arlet, G., and Jacoby, G. A. (2002). Plasmid-determined AmpC-type -lactamases. Antimicrobial agents and chemotherapy, 46 (1):1-11.
dc.relation.referencesPoirel, L., Gniadkowski, M., and Nordmann, P. (2002). Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related -lactamase CTX-M-3. Journal of Antimicrobial Chemotherapy, 50 (6):1031-1034.
dc.relation.referencesQueenan, A. M. and Bush, K. (2007). Carbapenemases: the versatile -betalactamases. Clinical microbiology reviews, 20 (3):440-458.
dc.relation.referencesRasheed, J. K., Kitchel, B., Zhu, W., Anderson, K. F., Clark, N. C., Ferraro, M. J., Savard, P., Humphries, R. M., Kallen, A. J., and Limbago, B. M. (2013). New delhi metallo- -lactamase{producing enterobacteriaceae, united states. Emerging infectious diseases, 19(6):870.
dc.relation.referencesRecchia, G. D. and Sherratt, D. J. (2002). Gene acquisition in bacteria by integron-mediated site-speci c recombination. In Mobile DNA II, pages 162-176. American Society of Microbiology.
dc.relation.referencesRevilla, C., Garcillan-Barcia, M. P., Fernandez-Lopez, R., Thomson, N. R., Sanders, M., Cheung, M., Thomas, C. M., and de la Cruz, F. (2008). Different pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids. Antimicrobial agents and chemotherapy, 52 (4):1472-1480.
dc.relation.referencesRobicsek, A., Jacoby, G. A., and Hooper, D. C. (2006). The worldwide emergence of plasmid-mediated quinolone resistance. The Lancet infectious diseases, 6 (10):629-640.
dc.relation.referencesRojas, L. J.,Wright, M. S., De La Cadena, E., Motoa, G., Hujer, K. M., Villegas, M. V., Adams, M. D., and Bonomo, R. A. (2016). Initial assessment of the molecular epidemiology of blaNDM-1 in colombia. Antimicrobial agents and chemotherapy, 60 (7):4346-4350.
dc.relation.referencesRojas, S.-Y. S., Duarte, C., de Arias, M. N. G., and Ovalle, M. V. (2017). Emergencia de Providencia rettgeri NDM-1 en dos departamentos de colombia, 2012-2013. Enfermedades infecciosas y microbiologia clinica, 35 (6):358-358.
dc.relation.referencesRoyer, G., Decousser, J., Branger, C., Dubois, M., M edigue, C., Denamur, E., and Vallenet, D. (2018). Plascope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Microbial genomics, 4 (9).
dc.relation.referencesRozov, R., Brown Kav, A., Bogumil, D., Shterzer, N., Halperin, E., Mizrahi, I., and Shamir, R. (2017). Recycler: an algorithm for detecting plasmids from de novo assembly graphs. Bioinformatics, 33 (4):475-482.
dc.relation.referencesSagar, S., Narasimhaswamy, N., and d'Souza, J. (2017). Providencia Rettgeri : An emerging nosocomial uropathogen in an indwelling urinary catheterised patient. Journal of clinical and diagnostic research: JCDR, 11 (6):DD01.
dc.relation.referencesSaier JR, M. H., Paulsen, I. T., Sliwinski, M. K., Pao, S. S., Skurray, R. A., and Nikaido, H. (1998). Evolutionary origins of multidrug and drug-speci c effux pumps in bacteria. The FASEB Journal, 12 (3):265-274.
dc.relation.referencesSchechter, L. M., Creely, D. P., Garner, C. D., Shortridge, D., Nguyen, H., Chen, L., Hanson, B. M., Sodergren, E., Weinstock, G. M., Dunne, W. M., et al. (2018). Extensive gene ampli cation as a mechanism for piperacillintazobactam resistance in Escherichia coli. MBio, 9 (2):e00583-18.
dc.relation.referencesSchloss, J. A. (2008). How to get genomes at one ten-thousandth the cost. Nature biotechnology, 26 (10):1113.
dc.relation.referencesSeemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30 (14):2068-2069.
dc.relation.referencesSekizuka, T., Matsui, M., Yamane, K., Takeuchi, F., Ohnishi, M., Hishinuma, A., Arakawa, Y., and Kuroda, M. (2011). Complete sequencing of the blaNDM-1-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens. PloS one, 6 (9).
dc.relation.referencesSharma, D., Sharma, P., and Soni, P. (2017). First case report of Providencia Rettgeri neonatal sepsis. BMC research notes, 10 (1):536.
dc.relation.referencesShin, S., Jeong, S. H., Lee, H., Hong, J. S., Park, M.-J., and Song, W. (2018). Emergence of multidrug-resistant Providencia rettgeri isolates co-producing NDM-1 carbapenemase and PER-1 extended-spectrum -betalactamase causing a rst outbreak in korea. Annals of clinical microbiology and antimicrobials, 17 (1):20.
dc.relation.referencesSmalla, K., Jechalke, S., and Top, E. M. (2015). Plasmid detection, characterization and ecology. Microbiology spectrum, 3 (1).
dc.relation.referencesSmillie, C., Garcillan-Barcia, M. P., Francia, M. V., Rocha, E. P., and de la Cruz, F. (2010). Mobility of plasmids. Microbiol. Mol. Biol. Rev., 74 (3):434-452.
dc.relation.referencesSmith, D., Johnson, J., Harris, A., Furuno, J., Perencevich, E., and Morris Jr, J. (2003). Assessing risks for a pre-emergent pathogen: virginiamycin use and the emergence of streptogramin resistance in Enterococcus faecium. The Lancet infectious diseases, 3 (4):241-249.
dc.relation.referencesSummers, D. K. and Sherratt, D. J. (1984). Multimerization of high copy number plasmids causes instability: ColE 1 encodes a determinant essential for plasmid monomerization and stability. Cell, 36 (4):1097-1103.
dc.relation.referencesSyvanen, M. and Kado, C. I. (2001). Horizontal gene transfer. Academic Press.
dc.relation.referencesTada, T., Miyoshi-Akiyama, T., Dahal, R. K., Sah, M. K., Ohara, H., Shimada, K., Kirikae, T., and Pokhrel, B. M. (2014). NDM-1 metallo-beta -lactamase and arma 16s rrna methylase producing providencia rettgeri clinical isolates in nepal. BMC infectious diseases, 14 (1):56.
dc.relation.referencesTafur, J. D., Torres, J. A., and Villegas, M. V. (2011). Mecanismos de resistencia a los antibioticos en bacterias gram negativas. Infectio, 12 (3).
dc.relation.referencesTatusova, T., Ciufo, S., Fedorov, B., O'Neill, K., and Tolstoy, I. (2014). Ref-Seq microbial genomes database: new representation and annotation strategy. Nucleic acids research, 42 (D1):D553-D559.
dc.relation.referencesToleman, M., Spencer, J., Jones, L., and Walsh, T. R. (2012). blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrobial agents and chemotherapy, 56 (5):2773-2776.
dc.relation.referencesTolmasky, M. and Alonso, J. C. (2015). Plasmids: biology and impact in biotechnology and discovery. ASM Press.
dc.relation.referencesTran, J. H. and Jacoby, G. A. (2002). Mechanism of plasmid-mediated quinolone resistance. Proceedings of the National Academy of Sciences, 99 (8):5638-5642.
dc.relation.referencesTran, T., Sherratt, D. J., and Tolmasky, M. E. (2010). fpr, a de cient Xer recombination site from a salmonella plasmid, fails to confer stability by dimer resolution: comparative studies with the pJHCMW1 mwr site. Journal of bacteriology, 192 (3):883-887.
dc.relation.referencesTrapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., Salzberg, S. L., Wold, B. J., and Pachter, L. (2010). Transcript assembly and quanti cation by RNA-seq reveals unannotated transcripts and isoform switching during cell di erentiation. Nature biotechnology, 28 (5):511.
dc.relation.referencesTumbarello, M., Citton, R., Spanu, T., Sanguinetti, M., Romano, L., Fadda, G., and Cauda, R. (2004). ESBL-producing multidrug resistant Providencia stuartii infections in a university hospital. Journal of Antimicrobial Chemotherapy, 53 (2):277-282.
dc.relation.referencesVan den Bogaard, A., London, N., Driessen, C., and Stobberingh, E. (2001). Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. Journal of Antimicrobial Chemotherapy, 47 (6):763-771.
dc.relation.referencesVielva, L., de Toro, M., Lanza, V. F., and de la Cruz, F. (2017). PLACNETw: a web-based tool for plasmid reconstruction from bacterial genomes. Bioinformatics, 33 (23):3796-3798.
dc.relation.referencesVignoli, R. and Seija, V. (2007). Principales mecanismos de resistencia antibiotica. Temas De Bacteriologia Y Virologia Medica, cap, 35 :649-662.
dc.relation.referencesVoor, A. F., Severin, J. A., Hagenaars, M. B., de Goeij, I., Gommers, D., Vos, M. C., et al. (2018). VIM-positive Pseudomonas aeruginosa in a large tertiary care hospital: matched case-control studies and a network analysis. Antimicrobial Resistance & Infection Control, 7 (1):32.
dc.relation.referencesWalsh, T. R., Weeks, J., Livermore, D. M., and Toleman, M. A. (2011). Dissemination of NDM-1 positive bacteria in the new delhi environment and its implications for human health: an environmental point prevalence study. The Lancet infectious diseases, 11 (5):355-362.
dc.relation.referencesWang, G.-H. and Brucker, R. M. (2019). Genome sequence of providencia rettgeri nvit03, isolated from nasonia vitripennis. Microbiology resource announcements, 8(3).
dc.relation.referencesWhite, P. A., McIver, C. J., and Rawlinson, W. D. (2001). Integrons and gene cassettes in theenterobacteriaceae. Antimicrobial agents and chemotherapy, 45 (9):2658-2661.
dc.relation.referencesWHO (2018). Resistencia a los antibioticos. https://www.who.int/es/newsroom/ fact-sheets/detail/resistencia-a-los-antibioticos. Accedido 29-08-2019.
dc.relation.referencesWoodford, N., Turton, J. F., and Livermore, D. M. (2011). Multiresistant gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS microbiology reviews, 35 (5):736-755.
dc.relation.referencesWray, C. and Wray, A. (2000). Salmonella in domestic animals. Cabi.
dc.relation.referencesWu, P.-J., Shannon, K., and Phillips, I. (1995). Mechanisms of hyperproduction of TEM-1 -lactamase by clinical isolates of Escherichia coli. Journal of Antimicrobial Chemotherapy, 36 (6):927-939.
dc.relation.referencesYong, D., Toleman, M. A., Giske, C. G., Cho, H. S., Sundman, K., Lee, K., andWalsh, T. R. (2009). Characterization of a new metallo- -lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from india. Antimicrobial agents and chemotherapy, 53 (12):5046-5054.
dc.relation.referencesZhao, J., Chen, Z., Chen, S., Deng, Y., Liu, Y., Tian, W., Huang, X., Wu, C., Sun, Y., Sun, Y., et al. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial agents and chemotherapy, 54 (10):4219-4224.
dc.relation.referencesZhao, W.-H. and Hu, Z.-Q. (2013). Epidemiology and genetics of CTXM extended-spectrum -lactamases in gram-negative bacteria. Critical reviews in microbiology, 39 (1):79-101.
dc.relation.referencesZhou, F. and Xu, Y. (2010). cBar: a computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics, 26 (16):2051-2052.
dc.relation.referencesZurita, J., Parra, H., Gestal, M. C., McDermott, J., and Barba, P. (2015). First case of NDM-1-producing Providencia rettgeri in ecuador. Journal of global antimicrobial resistance, 4 (3):302-303.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalProvidencia rettgeri
dc.subject.proposalProvidencia rettgeri
dc.subject.proposalWhole Genome Sequencing (WGS)
dc.subject.proposalSecuenciación de Genoma Completo (WGS)
dc.subject.proposalPlásmidos
dc.subject.proposalPlasmids
dc.subject.proposalContigs
dc.subject.proposalContigs
dc.subject.proposalPipeline
dc.subject.proposalPipeline
dc.subject.proposalAntimicrobial Resistance (AMR)
dc.subject.proposalResistencia a Antimicrobianos (RAM)
dc.subject.proposalPerfil genotípico de resistencia
dc.subject.proposalGenotypic resistance perfil
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito