Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorAgnarsson, Ingi
dc.contributor.advisorFlorez-Daza, Eduardo
dc.contributor.authorCala Riquelme, Franklyn
dc.date.accessioned2020-07-17T21:55:36Z
dc.date.available2020-07-17T21:55:36Z
dc.date.issued2020-05-16
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77795
dc.description.abstractThe Euophryini tribe is currently one of the most diverse groups of salticidae. Within this group, the neotropic is represented by 11 clades, included the Antillattus clade (Antillattus 13 spp, Truncattus 5 spp, Petemathis 5 spp, possibly Allodecta 1 spp and Caribatus 1 spp). To clarify the phylogeny and biogeography of the Antillattus clade, we amplified and sequenced three genes (nuclear: 28S rDNA; mitochondrial: 16S, COI) corresponding to species belonging to the study group and outgroups (68 terminals). In addition, a total of 125 morphological characters were used, which in combination with the molecular evidence, helped to clarify the relationships between genera and species. Additionally, the GAARlandia hypothesis and the non-GAARlandia hypothesis are tested as possible routes of colonization and diversification of the Antillattus clade. The combined working hypothesis (DNA + morphology) supports the monophyly of the Antillattus clade. The results indicate that the genus Antillattus sensus Zhang and Maddison (2015), is not monophyletic, and it is divided into the genus Pensacolatus, Antillattus and Bryanattus gen. nov.. The results also supported the transferences of species to the genera Truncattus, Bryanattus gen. nov., Cobanus, Compsodecta, and the description of the genus Paracobanus gen. nov.. The detailed review provides new limits of genera and species, 19 comb. nov., 2 gen. nov., 11 sp. nov.. Finally, the results also suggest that the radiation of the group occurred in the last period of GAARlandia and that diversification within the Greate Antilles is the result of vicariance and founder-event. Additionally, evidence suggest that Hispaniola played a role as a point of dispersion to other Antillean islands.
dc.description.abstractLa tribu Euophryini resulta en la actualidad, una de las más diversas dentro de la familia salticidae. Dentro de este grupo, los representantes neotropicales conforman 11 clados, de los cuales, el clado Antillattus (Antillattus 13 spp, Truncattus 5 spp, Petemathis 5 spp, posiblemente Allodecta 1 spp, Caribatus 1 spp) resulta exclusivo del Caribe insular. Para aclarar la filogenia y biogeografía del clado Antillattus, amplificamos y secuenciamos tres genes (nuclear: 28S rDNA; mitocondrial: 16S, COI) correspondientes a especies pertenecientes al grupo de estudio y a grupos hermanos (68 terminales en total) dentro de gran parte del Caribe biogeográfico. Además, se utilizó un total de 125 caracteres morfológicos, que en combinación con la evidencia molecular, ayudó a aclarar las relaciones entre los géneros y especies. Se estudió en mayor detalle los caracteres morfológicos de los géneros y especies del clado Antillattus así como de sus grupos relacionados con el objetivo de profundizar en la comprensión de filogenética desde una panorámica morfológica. Adicionalmente, para comprender el origen y el momento de la colonización del grupo, se pone a prueba la hipótesis de GAARlandia y la hipotesis no-GAARlandia como posibles vías de colonización y diversificación del cladoAntillattus en las Antillas Mayores. La hipotesis combinada (ADN+morfología) de trabajo, apoya la monofilia del clado Antillattus. Los resultados indican que el género Antillattus sensus Zhang y Maddison (2015), no es monofilético, y para el presente estudio se divide en los géneros Pensacolatus, Antillattus y Bryanattus gen. nov.. La filogenia combinada de datos morfológicos y moleculares, también apoyó la transferencia de especies a los géneros Truncattus, Bryanattus, Cobanus, Compsodecta y la descripción del género Paracobanus gen. nov.. La revisión detallada proporciona nuevos limites de géneros y especies, 19 comb. nov., 2 gen. nov., 11 sp. nov.. Finalmente, los resultados también sugieren que la radiación del grupo tuvo lugar en el último periodo de GAARlandia y que la diversificación dentro del Caribe insular, es el resultado de vicarianza y eventos fundadores. Adicionalmente, se encontró evidencia que sugiere que La Española jugó un papel como punto de distribución hacia Cuba y Puerto Rico.
dc.format.extent519
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología
dc.titleFilogenia y biogeografía del Clado Antillattus (Araneae: Salticidae: Euophryini)
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biología
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAguilar FPG. (1974). Arañas del campo cultivado I: Población de araneidos en algodonales de Cañete, Huaura y Rímac. Rev. Per. Ent. 17(1): 21-27.
dc.relation.referencesAguilar FPG. (1975). Arañas del campo cultivado II: Fluctuación de las familias de araneidos en algodonales de la Costa Central. Rev. Per. Ent. 18(1): 25-28.
dc.relation.referencesAguilar FPG. (1976). Arañas del campo cultivado III: Araneidos en algodonales del Valle de Lurín, Lima. Rev. Per. Ent. 19(1): 71-72.
dc.relation.referencesAguilar FPG. (1977). Las arañas en el agroecosistema algodonero de la Costa Peruana. Anales Científicos UNA, XV (1-4): 109-121.
dc.relation.referencesAlayón GG. (2001a). Especie nueva de Selenops (Araneae: Selenopidae) de Curazao, Antillas Holandesas. Solenodon 1: 17-20.
dc.relation.referencesAlayón GG. (2006). Endemicidad y relaciones de las arañas (Araneae) de las Antillas mayores. Cocuyo 16. 63-68.
dc.relation.referencesAlayón GG. (2000). Las arañas endémicas de Cuba (Arachnida: Araneae). Revista Ibérica de Aracnología 2: 1-48.
dc.relation.referencesBlackwall J. (1841). The difference in the number of eyes with which spiders are provided proposed as the basis of their distribution into tribes; with descriptions of newly discovered species and the characters of a new family and three new genera of spiders. Transactions of the Linnean Society of London 18: 601-670.
dc.relation.referencesBloom, T., Binford, G., Esposito, L. A., Alayón G., G., Peterson, I., Nishida, A., Loubet-Senear, K. and Agnarsson, I. (2014). Discovery of two new species of eyeless spiders within a single Hispaniola cave. Journal of Arachnology 42: 148-154. doi:10.1636/k13-84.1
dc.relation.referencesBodner MR, Maddison WP. (2012). The biogeography and age of salticid spider radiations (Araneae: Salticidae). Molecular Phylogenetics and Evolution 65: 213-240.
dc.relation.referencesBodner MR. (2009) MS Thesis: The Biogeography and Age of Salticid Spider Radiations with the Introduction of a New African Group (Araneae: Salticidae). 108pp.
dc.relation.referencesBryant EB. (1940). Cuban spiders in the Museum of Comparative Zoology. Bulletin of the Museum of Comparative Zoology 86, 247-554.
dc.relation.referencesBryant EB. (1943) The salticid spiders of Hispaniola. Bulletin of the Museum of Comparative Zoology 92, 445-529.
dc.relation.referencesBryant EB. (1950) The salticid spiders of Jamaica. Bulletin of the Museum of Comparative Zoology 103, 163-209.
dc.relation.referencesCandek K, Agnarsson I, Binford G, Kuntner M. 2019. Biogeographic history of Cyrtognatha spiders reveals a single mid-Miocene owerwater colonization of the Caribbean archipelago. Scientific Reports 9: 397.
dc.relation.referencesChamberland L, McHugh A, Kechejian S, Binford GJ, Bond JA, Coddiongton JA, Dolman G, Hamliton C, Harvey MS, Kuntner M, Agnarsson I. 2018. From Gondwana to GAARlandia: global biogeography of ogre-faced spiders (Deinopidae) mirrors geologic history. Journal of Biogeography 45: 2442-2457.
dc.relation.referencesClausen IHS. (1986). The use of spiders as ecological indicators. Bulletin of the British Arachnological Society, 7, 83-86.
dc.relation.referencesCoddington JA, Giribet G, Harvey SM, Prendini L, Walter ED. (2004). Arachnida. Pages 296-318. In: Cracraft J, Donoghue JM. (eds.), Assembling the Tree of Life. Oxford University Press, New York.
dc.relation.referencesCoddington JA, Levi HW. (1991). Systematics and Evolution of Spiders (Araneae). Annual Review of Ecology and Systematics, 22(1), 565–592.doi:10.1146/annurev.es.22.110191.003025
dc.relation.referencesDunlop JA, Penney D, Jekel D (2012) A summary list of fossil spiders and their relatives. In: Platnick NI (2012) The World Spider Catalog, version 12.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html
dc.relation.referencesDunlop JA. (1999). Pasando revista a la evolución de los quelicerados. In: Melic A, De Haro JJ, Mendez M, Ribera I. (eds.), Evolución y filogenia de Arthropoda. Boletin de la Sociedad Entomologica Aragonesa 26: 255-272.
dc.relation.referencesFoelix, R. 2011. Biology of spiders, 3rd ed. Oxford: Oxford University Press.
dc.relation.referencesFranganillo BP. (1930). Arácnidos de Cuba: Mas arácnidos nuevos de la Isla de Cuba. Memorias del Instituto Nacional de Investigaciones Cientificas 1: 47-99. [reprinted separately, pp. 1-55; only reprint seen and cited]
dc.relation.referencesFranganillo BP. (1935c). Estudio de los arácnidos recogidos durante el verano de 1934. Estudios de "Belen" 1935(?55-56): 23-30.
dc.relation.referencesFranganillo BP. (1936). Los arácnidos de Cuba hasta 1936. Cultural La Habana, 183 pp.
dc.relation.referencesGaliano ME. (1976b). Comentarios sobre la categoria sistematica del taxon Lyssomanidae (Araneae). Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia (Ent.) 5: 59-70.
dc.relation.referencesGaliano, M. E. (1968c). Revision de los géneros Acragas, Amycus, Encolpius, Hypaeus, Mago y Noegus (Salticidae, Araneae). Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia (Ent.) 2: 267-360.
dc.relation.referencesIturralde-Vinent MA.(2006). Meso-Cenozoic Caribbean paleogeography: implications for the historical biogeography of the region. Int Geol Rev, 48:791–827.
dc.relation.referencesJackson RR, Li D, Barrion AT, Edwards GB. (1998) Prey-capture techniques and prey preferences of nine species of ant-eating jumping spiders (Araneae: Salticidae) from the Philippines. New Zealand of Zoology, 25, 249-272.
dc.relation.referencesJackson RR, Li D. (2001) Prey-capture techniques and prey preferences of Zenodorus durvillei, Z. metallescens and Z. orbiculatus, tropical ant-eating jumping spiders (Araneae: Salticidae) from Australia. New Zealand Journal of Zoology, 28, 299-341.
dc.relation.referencesJackson, R. R. (1989) The biology of Cobanus mandibularis, a jumping spider (Araneae: Salticidae) from Costa Rica: intraspecific interactions, predatory behaviour, and silk utilization. New Zealand Journal of Zoology, 16, 383-392.
dc.relation.referencesMaddison W. (1987). Marchena and other jumping spiders with an apparent leg-carapace stridulatory mechanism (Araneae: Salticidae: Heliophaninae and Thiodinae). Bulletin of the British Arachnological Society 7: 101-106.
dc.relation.referencesMaddison WP, Li D Q, Bodner M, Zhang JX, Xu X, Liu QQ, Liu FX. (2014). The deep phylogeny of jumping spiders (Araneae, Salticidae). ZooKeys 440: 57-87. doi:10.3897/zookeys.440.7891
dc.relation.referencesMaddison WP. (1996). Pelegrina Franganillo and other jumping spiders formerly placed in the genus Metaphidippus (Araneae: Salticidae). Bulletin of the Museum of Comparative Zoology 154: 215-368.
dc.relation.referencesMaddison WP. (2015). A phylogenetic classification of jumping spiders (Araneae: Salticidae). Journal Arachnology 43,231-292.
dc.relation.referencesMaddison, W.P., and Hedin, M.C. (2003a). Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics 17,529-549.
dc.relation.referencesMarc P, Canard A, Ysnel F. (1999). Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems and Environment 74: 229-273.
dc.relation.referencesMchugh A., Yablonsky C., Binford G., and Agnarsson I., (2014). Molecular phylogenetics of Caribbean Micrathena (Araneae: Araneidae) suggests multiple colonization events and single island endemism. Invertebrate Systematics 28, 337-349
dc.relation.referencesMetcalf CL, Flint WP. (1974). Insectos destructivos e insectos útiles. Sus Costumbres y su Control. Cía. Editorial Continental. Barcelona. 1208 p.
dc.relation.referencesMittermeier, R.A., Robles-Gil, P., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J., and da Fonseca, G.A.B. (2005). Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. Mexico: Agrupación Sierra Madre, 1–392 pp.
dc.relation.referencesOtto JC, Hill DE. (2012b). Two new Australian peacock spiders that display inflated and extended spinnerets (Araneae: Salticidae: Euophryinae: Maratus Karsch 1878). Peckhamia 104.1: 1-28.
dc.relation.referencesPenney D, Dunlop J, Marusik Y. (2012). Summary statistics for fossil spider species taxonomy. ZooKeys, 192, 1–13.doi:10.3897/zookeys.192.3093
dc.relation.referencesPenney D. (2008) Dominican Amber Spiders: A comparative palaeontological-neontological approach to identification, faunistics, ecology and biogeography. Siri Scientific Press.
dc.relation.referencesPetrunkevitch A. (1950) Baltic amber spiders in the Museum of Comparative Zoology. Bulletin of the Museum of Comparative Zoology at Harvard College. Cambridge, Massachusetts, USA, 326-263.
dc.relation.referencesPetrunkevitch A. (1958) Amber spiders in European collections. Transactions of the Connecticut Academy of Arts and Sciences. Yale University Press. New Haven Connecticut, USA, (41), 97-400.
dc.relation.referencesPlatnick NI, Coddington AJ, Forster RR, Griswold EC. (1991). Spinneret morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae). American Museum Novitates. 3016: 1-73.
dc.relation.referencesPlatnick NI, Gertsch JW. (1976). The suborders of spiders: A cladistic analysis (Arachnida, Araneae). American Museum Novitates 2607, 1-15.
dc.relation.referencesPrószyński J, Deeleman-Reinhold CL. (2012). Description of some Salticidae (Aranei) from the Malay Archipelago. II. Salticidae of Java and Sumatra, with comments on related species. Arthropoda Selecta, 21 (1), 29-60.
dc.relation.referencesPrószyński J. (1976) Studium systematyczno-zoogeograficzne nad rodzina Salticidae (Aranei) Regionow Palearktycznego i Nearktycznego. Rozprawy Wyzszej Szkoly Pedagogicznej 6, 1- 260.
dc.relation.referencesRamírez MJ. (2014). The morphology and phylogeny of dionychan spiders (Araneae: Araneomorphae). Bulletin of the American Museum of Natural History 390: 1-374. Link doi:10.1206/821.1
dc.relation.referencesRaven RJ. (1985a). The spider infraorder Mygalomorphae (Araneae): Cladistics and systematics. Bulletin of the American Museum of Natural History 182: 1-180.
dc.relation.referencesSelden PA, Corronca JA, Hünicken MA. (2005). The true identity of the supposed giant fossil spider Megarachne. Biology Letters, 1(1), 44–48.doi:10.1098/rsbl.2004.0272
dc.relation.referencesSelden PA, Penney D (2010) Fossil spiders. Biological Reviews 85: 171–206. doi: 10.1111/j.1469-185X.2009.00099.x
dc.relation.referencesSelden PA, Shear WA, Sutton MA, (2008b). Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proc. Natl. Acad. Sci. U. S. A. 105, 20781–20785.
dc.relation.referencesShear WA, Selden PA, Rolfe WDI, Bonamo PM, Grierson JD. (1987). New terrestrial arachnids from the Devonian of Gilboa, New York (Arachnida: Trigonotarbida). Am. Mus. Novit. 2901, 1–74.
dc.relation.referencesSimon E. (1902). Description d'arachnides nouveaux de la famille des Salticidae (Attidae) (suite). Annales de la Société Entomologique de Belgique 46: 24-56, 363-406.
dc.relation.referencesSimon E. (190l). Histoire naturelle des Araignees. Tome 2, Fascicule 3. Seconde edition. Paris, Librairie encyclopedique de Roret. 381-668pp.
dc.relation.referencesTong Y, Binford G, Agnarsson I. 2019. Huntsmen of the Caribbean: multiple tests of the GAARlandia hypothesis. Molecular Phylogenetics and Evolution 130: 259-268.
dc.relation.referencesUbick, D., Paquin, P., Cushing, P. E., and Roth, V. 2017. Spiders of North America: an identification manual.2nd Edition. American Arachnological Society. Keene, New Hampshire, USA.
dc.relation.referencesWalckenaer C A. (1837). Histoire naturelle des insectes. Aptères. Paris 1, 1-682. doi:10.5962/bhl.title.61095
dc.relation.referencesWanless FR. (1980c). A revision of the spider genus Onomastus (Araneae: Salticidae). Bulletin of the British Museum of Natural History (Zool.) 39: 179-188.
dc.relation.referencesWanless FR. (1981a). A revision of the spider genus Hispo (Araneae: Salticidae). Bulletin of the British Museum of Natural History(Zool.) 41: 179-198.
dc.relation.referencesWeitschat W, Wichard W. (2002) Atlas of plants and animals in Baltic amber. Geological Magazine, 139 (5), 597.
dc.relation.referencesWheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff, P. A., Griswold, C. E., … Zhang, J. (2016). The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics, 33(6), 574–616.doi:10.1111/cla.12182
dc.relation.referencesWilson EO. (1992). The diversity of life. Cambridge, Mass., Harvard University. Press. 424 pp.
dc.relation.referencesWorld Spider Catalog (2020). World Spider Catalog. Natural History Museum Bern, online at http://wsc.nmbe.ch, version 19.0, accessed on February 1th. doi: 10.24436/2
dc.relation.referencesWunderlich J. (2004) Fossil spiders in amber and copal. Beiträge zur Araneologie, 3ab, 1-1908.
dc.relation.referencesZhang JX, Maddison WP. (2012a). New euophryine jumping spiders from the Dominican Republic and Puerto Rico (Araneae: Salticidae: Euophryinae). Zootaxa. 3476:1-54.
dc.relation.referencesZhang JX, Maddison WP. (2012b). New euophryine jumping spiders from Papua New Guinea (Araneae: Salticidae: Euophryinae). Zootaxa 3491: 1-74.
dc.relation.referencesZhang JX, Maddison WP. (2013). Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 68,81-92.
dc.relation.referencesZhang JX, Maddison WP. (2015). Genera of euophryine jumping spiders (Araneae: Salticidae), with a combined molecular-morphological phylogeny. Zootaxa. 3938:1-147.
dc.relation.referencesAgnarsson I. (2004) Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zoological Journal of the Linnean Society, 141 (4), 447–626.
dc.relation.referencesAltekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F. (2004). Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20, 407–415. doi:10.1093/bio informatics/btg427
dc.relation.referencesÁlvarez-Padilla F, Dimitrov D, Giribet G, Hormiga G. (2009). Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. Cladistics 25: 109-146. doi:10.1111/j.1096-0031.2008.00242.x
dc.relation.referencesÁlvarez-Padilla F, Hormig G. (2011). Morphological and phylogenetic atlas of the orb-weaving spider family Tetragnathidae (Araneae: Araneoidea). Zoological Journal of the Linnean Society 162: 713-879.
dc.relation.referencesÁlvarez-Padilla F, Hormiga G. (2007). A protocol for digesting internal soft tissues and mounting spiders for scanning electron microscopy. J. Arachnol. 35, 538–542.
dc.relation.referencesÁlvarez-Padilla F, Hormiga G. (2008). A protocol for digesting internal soft tissues and mounting spiders for scanning electron microscopy. Journal of Arachnology 35: 538-542.
dc.relation.referencesAzevedo GHF, Griswold CE, Santos AJ. (2018a). To complicate or to simplify? Phylogenetic tests of complexity trends and genital evolution in ground spiders (Araneae: Dionycha: Gnaphosidae). Zoological Journal of the Linnean Society 84(3): 673-694. doi:10.1093/zoolinnean/zly016
dc.relation.referencesBaker A. (2003). Quantitative parsimony and explanatory power. British Journal for the Philosophy of Science 54: 245–259.
dc.relation.referencesBarker D. (2015). Seeing the wood for the trees: philosophical aspects of classical, Bayesian and likelihood approaches in statistical inference and some implications for phylogenetic analysis. Biology and Philosophy 30: 505–525.
dc.relation.referencesBennett RG. (1992). The spermathecal pores of spiders with special reference to dictynoids and amaurobioids (Araneae, Araneomorphae, Araneoclada). Proceedings of the Entomological Society of Ontario 123: 1-21.
dc.relation.referencesBenton MJ. (1999) Early origins of modern birds and mammals: molecules vs. morphology. BioEssays 21:1043–1051
dc.relation.referencesBerry JW, Beatty JA, Prószyński J. (1997). Salticidae of the Pacific Islands. II. Distribution of nine genera, with descriptions of eleven new species. Journal of Arachnology 25: 109-136.
dc.relation.referencesBodner GSS. (2002) PhD Thesis: Biodiversity assessment and systematics of Neotropical jumping spiders (Araneae: Salticidae). 450pp.
dc.relation.referencesBösenberg W, Strand E. (1906). Japanische Spinnen. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 30: 93-422.
dc.relation.referencesBremer K. (1988) The limits of aminoacid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42 (4), 795– 803.
dc.relation.referencesBryant EB. (1950) The salticid spiders of Jamaica. Bulletin of the Museum of Comparative Zoology 103, 163-209.
dc.relation.referencesCabra-García J, Brescovit AD. (2016). Revision and phylogenetic analysis of the orb-weaving spider genus Glenognatha Simon, 1887 (Araneae, Tetragnathidae). Zootaxa 4069(1): 1-183. doi:10.11646/zootaxa.4069.1.1
dc.relation.referencesCabra-García J, Hormiga G. (2019). Exploring the impact of morphology, multiple sequence alignment and choice of optimality criteria in phylogenetic inference: a case study with the Neotropical orb-weaving spider genus Wagneriana (Araneae: Araneidae), Zoological Journal of the Linnean Society, XX, 1–176. DOI: 10.1093/zoolinnean/zlz088
dc.relation.referencesCala-Riquelme F, Gutiérrez-Estrada MA, Flórez-Daza E. (2015). The genus Loxosceles Heineken and Lowe 1832 (Araneae: Sicariidae) in Colombia, with description of new cave-dwelling species. Zootaxa 4012(2): 396-400. doi:10.11646/zootaxa.4012.2.12
dc.relation.referencesCarico JE, Holt PC. (1964). A comparative study of the female copulatory apparatus of certain species in the spider genus Dolomedes. Technical Bulletin VA 5–27. Blacksburg: Virginia Agricultural Experiment Station.
dc.relation.referencesChakrabarty P, Faircloth BC, Alda F, Ludt WB, Mcmahan CD, Near TJ, Dornburg A, Albert JS, Arroyave J, Stiassny MLJ, Sorenson L, Alfaro ME. (2017). Phylogenomic systematics of ostariophysan fishes: ultraconserved elements support the surprising nonmonophyly of characiformes. Systematic Biology 66: 881–895.
dc.relation.referencesChickering AM. (1946). The Salticidae of Panama. Bulletin of the Museum of Comparative Zoology 97: 1-474.
dc.relation.referencesCoddington JA. (1990). Ontogeny and homology in the male palpus of orb-weaving spiders and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea). Smithsonian Contributions to Zoology 496: 1-52.
dc.relation.referencesDarriba D, Taboada GL, Doallo R, Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772. doi:10.1038/nmeth.2109
dc.relation.referencesDavies VT, Żabka M. (1989). Illustrated keys to the genera of jumping spiders (Araneae: Salticidae) in Australia. Memoirs of the Queensland Museum 27: 189-266.
dc.relation.referencesde S. RO, Grant T, Camargo A, Heyer WR, Ponssa ML, Stanley E. (2014). Systematics of the Neotropical genus Leptodactylus Fitzinger, 1826 (Anura: Leptodactylidae): phylogeny, the relevance of non-molecular evidence, and species accounts. South American Journal of Herpetology 9: S1–S128.
dc.relation.referencesde S., R.O., Grant, T., Camargo, A., Heyer, W.R., Ponssa, M.L., and Stanley, E. (2014). Systematics of the Neotropical genus Leptodactylus Fitzinger, 1826 (Anura: Leptodactylidae): phylogeny, the relevance of non-molecular evidence, and species accounts. South American Journal of Herpetology 9, S1–S128.
dc.relation.referencesDoleschall L. (1859). Tweede Bijdrage tot de kennis der Arachniden van den Indischen Archipel. Acta Societatis Scientiarum Indica-Neerlandica 5: 1-60.
dc.relation.referencesEasteal S. (1999) Molecular evidence far the early divergence of placental mammals. BioEssays 21:1052– 1058
dc.relation.referencesEdgecombe GD. (2017). Inferring arthropod phylogeny: fossils and their interaction with other data sources. Integrative and Comparative Biology 57: 467–476.
dc.relation.referencesEdwards GB. (2015). Freyinae, a major new subfamily of Neotropical jumping spiders (Araneae: Salticidae). Zootaxa 4036(1): 1-87. doi:10.11646/zootaxa.4036.1.1
dc.relation.referencesFarris JS. (1989a). The retention index and homoplasy excess. Systematic Zoology 38: 406- 407.
dc.relation.referencesFarris JS. (1989b). The retention index and the rescaled consistency index. Cladistics. 5:417–419.
dc.relation.referencesFarris, J.S. (2008). Parsimony and explanatory power. Cladistics 24, 825-847. doi:10.1111/j.1096-0031.2008.00214.x
dc.relation.referencesFelsenstein J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27: 401–410.
dc.relation.referencesFolmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. (1994). DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
dc.relation.referencesForster RR, Platnick IN, Coddington AJ. (1990). A proposal and review of the spider family Synotaxidae (Araneae, Araneoidea), with notes on theridiid interrelationships. Bulletin of the American Museum of Natural History 193:1–116.
dc.relation.referencesForster RR. (1970). The spiders of New Zealand. Part III. Otago Museum Bulletin 3: 1-184.
dc.relation.referencesFranganillo BP. (1936). Los arácnidos de Cuba hasta 1936. Cultural La Habana, 183 pp.
dc.relation.referencesFreudenstein, J.V. (2005) Characters, States and Homology, Systematic Biology 54 (6), 965–973, https://doi.org/10.1080/10635150500354654
dc.relation.referencesGaliano ME. (1994a). Revision of the genus Pachomius (Araneae, Salticidae). Bulletin of the British Arachnological Society 9: 214-220.
dc.relation.referencesGiribet G. (2015). Morphology should not be forgotten in the era of genomics–a phylogenetic perspective. Zool Anz 256:96-103.
dc.relation.referencesGoicoechea N, Frost DR, De la Riva I, Pellegrino K, Sites J, Rodrigues MT, Padial JM. (2016). Molecular systematics of teioid lizards (Teioidea/Gymnophthalmoidea: Squamata) based on the analysis of 48 loci under tree‐alignment and similarity‐alignment. Cladistics 32: 624–671.
dc.relation.referencesGoloboff PA, Catalano SA. (2016). TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32: 221–238.
dc.relation.referencesGoloboff PA, Farris JS, Nixon KC. (2008a) TNT, a free program for phylogenetic analysis. Cladistics, 24 (5), 774–786. http://dx.doi.org/10.1111/j.1096-0031.2008.00217.x
dc.relation.referencesGoloboff PA, Farris JS. (2001). Methods for quick consensus estimation. Cladistics 17, S26–S34. https://doi.org/10.1111/j.1096-0031.2001.tb00102.x
dc.relation.referencesGoloboff PA, Pittman M, Pol D, Xu X. (2019). Morphological datasets fit a common mechanism much more poorly than DNA sequences and call into question the Mkv model. Systematic Biology 68: 494–504.
dc.relation.referencesGoloboff PA, Pol D. (2005). Parsimony and Bayesian phylogenetics. In: Albert V, ed. Parsimony, phylogeny, and genomics. London: Oxford University, 148–159.
dc.relation.referencesGoloboff PA, Torres A, Arias JS. (2018a). Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34: 407–437.
dc.relation.referencesGoodman M, Olson CB, Beeber JE, Czelusniak J. (1982) New perspectives in the molecular biological analysis of mammalian phylogeny. Acta Zoologica Fennica, 169, 19–35.
dc.relation.referencesGrant T, Kluge A. (2008a) Credit where credit is due: The Goodman-Bremer support metric. Molecular Phylogenetics and Evolution, 49 (1), 405–406.
dc.relation.referencesGreen P, Ewing B. (2002). Phred, version 0.020425 c. Distributed by the authors. Available via: http://phrap.org.
dc.relation.referencesGreen P. (1999). Phrap, version 0.990329. Distributed by the author. Available from http://www.phrap.org.
dc.relation.referencesGriswold C E, Ramírez MJ, Coddington JA, Platnick NI. (2005). Atlas of phylogenetic data for entelegyne spiders (Araneae: Araneomorphae: Entelegynae) with comments on their phylogeny. Proceedings of the California Academy of Sciences56(Suppl. II): 1-324.
dc.relation.referencesHedin MC, Maddison WP. (2001). Acombined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403. doi:10. 1006/mpev.2000.0883
dc.relation.referencesHoff M, Orf S, Riehm B, Darriba D, Stamatakis A. (2016). Does the choice of nucleotide substitution models matter topologically? BMC Bioinformatics 17: 143.
dc.relation.referencesHolder MT, Sukumaran J, Lewis PO. (2008). A justification for reporting the majority-rule consensus tree in Bayesian phylogenetics. Systematic Biology 57: 814–821.
dc.relation.referencesHormiga G. (1994a). A revision and cladistic analysis of the spider family Pimoidae (Araneoidea: Araneae). Smithsonian Contributions to Zoology 549: 1-104.
dc.relation.referencesHormiga G. (1994b). Cladistics and the comparative morphology of linyphiid spiders and their relatives (Araneae, Araneoidea, Linyphiidae). Zoological Journal of the Linnean Society 111: 1-71.
dc.relation.referencesHuang D, Hormiga G, Cai C, Su Y, Yin Z, Xia F, Giribet G. (2018). Origin of spiders and their spinning organs illuminated by mid-Cretaceous amber fossils. Nature Ecology and Evolution 2: 623–627.
dc.relation.referencesHuelsenbeck JP, Bull JJ. (1996). A likelihood ratio test to detect conflicting phylogenetic signal. Syst Biol. 45:92–98. DOI: 10.1093/sysbio/45.1.92
dc.relation.referencesHuelsenbeck JP, Ronquist F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bio¬informatics 17, 754–755. doi: 10.1093/bioinformatics/17.8.754
dc.relation.referencesJenner RA (2004) Accepting partnership by submission? Morphological phylogenetics in a molecular millennium. Syst Biol 53:333–342
dc.relation.referencesKainer D, Lanfear R. (2015). The effects of partitioning on phylogenetic inference. Molecular Biology and Evolution 32: 1611–1627.
dc.relation.referencesKalyaanamoorthy S, Minh BQ, Wong TFK, von Haeseler A, Jermiin LS. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589.
dc.relation.referencesKanesharatnam N, Benjamin SP. (2016). Three new generic records and descriptions of four new species of jumping spiders (Araneae, Salticidae) from Sri Lanka. European Journal of Taxonomy 228: 1-23. doi:10.5852/ejt.2016.228
dc.relation.referencesKarsch F. (1878a). Übersicht der von Peters in Mossambique gesammelten Arachniden. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 1878: 314-338.
dc.relation.referencesKass RE, Raftery AE, (1995). Bayes factors. J. Am. Stat. Assoc. 90, 773–795.
dc.relation.referencesKatoh K, Standley DM. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
dc.relation.referencesKearney M. (2002). Fragmentary taxa, missing data, and ambiguity: mistaken assumptions and conclusions. Systematic Biology 51: 369–381.
dc.relation.referencesKitching IJ, Forey PL, Humphries CJ, Williams DM. (1998). Cladistics: the theory and practice of parsimony analysis. 2nd ed. Oxford: Oxford University Press.
dc.relation.referencesKlingenberg C, Gidaszewski N. (2010). Testing and Quantifying Phylogenetic Signals and Homoplasy in Morphometric Data. Systematic Biology 59(3): 245-261.
dc.relation.referencesKluge A, Grant T. (2006). From conviction to anti-superfluity: old and new justifications of parsimony in phylogenetic inference. Cladistics 22: 276–288.
dc.relation.referencesKluge A. (2001b). Parsimony with and without scientific justification. Cladistics 17: 199–210.
dc.relation.referencesKluge A. (2004). On total evidence: for the record. Cladistics 20:205–207.
dc.relation.referencesKluge A. (2009). Explanation and falsification in phylogenetic inference: exercises in Popperian philosophy. Acta Biotheoretica 57: 171–186.
dc.relation.referencesKoch N. M., and Gauthier J. A. (2018). Noise and biases in genomic data may underlie radically different hypotheses for the position of Iguania within Squamata. PLoS ONE 13: e0202729.
dc.relation.referencesKolaczkowski B, Thornton JW. (2004). Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431: 980–984.
dc.relation.referencesKolaczkowski, B., and Thornton J.W. (2009). Long-branch attraction bias and inconsistency in Bayesian phylogenetics. PLoS ONE 4: e7891.
dc.relation.referencesLee, M. S. Y. and A. Palci. 2015. Morphological Phylogenetics in the Genomic Age. Current Biology 25:R922-R929.
dc.relation.referencesLogunov, D. V. and Azarkina, G. N. (2008b). Two new genera and species of Euophryinae (Aranei: Salticidae) from SE Asia. Arthropoda Selecta 17: 111-115.
dc.relation.referencesLogunov, D. V. and Cutler, B. (1999). Revision of the genus Paramarpissa F. O. P.-Cambridge, 1901 (Araneae, Salticidae). Journal of Natural History 33(8): 1217-1236. doi:10.1080/002229399299996
dc.relation.referencesMaddison, W. P. (1996). Pelegrina Franganillo and other jumping spiders formerly placed in the genus Metaphidippus (Araneae: Salticidae). Bulletin of the Museum of Comparative Zoology 154: 215-368.
dc.relation.referencesMaddison, W. P. and Maddison, D.R. (2018b). Mesquite: a modular system for evolutionary analysis. Version 3.6 http://mesquiteproject.org
dc.relation.referencesMaddison, W. P., Bodner, M. R., and Needham, K. M. (2008). Salticid spider phylogeny revisited, with the discovery of a large Australasian clade (Araneae: Salticidae). Zootaxa, 1893, 46-64.
dc.relation.referencesMaddison, W. P., Zhang, J. X. and Bodner, M. R. (2007). A basal phylogenetic placement for the salticid spider Eupoa, with descriptions of two new species (Araneae: Salticidae). Zootaxa 1432: 23-33.
dc.relation.referencesMaddison, W.P., and Hedin, M.C. (2003). Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics 17,529-549.
dc.relation.referencesMartin RP, Olson EE, Girard MG, Smith WL, Davis MP. 2018. Light in the darkness: new perspective on lanternfish relationships and classification using genomic and morphological data. Molecular Phylogenetics and Evolution 121: 71–85.
dc.relation.referencesMartin, R., P., Olson, E.E., Girard, M.G., Smith. W.L., and Davis, M.P. (2018). Light in the darkness: new perspective on lanternfish relationships and classification using genomic and large‐scale analyses. Cladistics 33, 333–350.
dc.relation.referencesMasta, S. E. and Boore, J. L. (2004) The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Molecular Biology and Evolution, 21 (5), 893-902.
dc.relation.referencesMichalik, P., Reiher, W., Tintelnot-Suhm, M., Coyle, F. A. and Alberti, G. (2005). Female genital system of the folding-trapdoor spider Antrodiaetus unicolor (Hentz, 1842) (Antrodiaetidae, Araneae): ultrastructural study of form and function with notes on reproductive biology of spiders. Journal of Morphology 263: 284-309.
dc.relation.referencesMiller, M.A., Pfeiffer, W., and Schwartz, T. (2010) "Creating the CIPRES Science Gateway for inference of large phylogenetic trees" in Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1 - 8.
dc.relation.referencesMirande JM. 2017. Combined phylogeny of ray‐finned fishes (Actinopterygii) and the use of morphological characters in large‐scale analyses. Cladistics 33: 333–350.
dc.relation.referencesMirande, J.M. (2017). Combined phylogeny of ray‐finned fishes (Actinopterygii) and the use of morphological characters in large‐scale analyses. Cladistics 33, 333–350.
dc.relation.referencesNguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274.
dc.relation.referencesNixon, K. (2002). WinClada. Version 1.00.08. Available at: http://www.cladistics.com/
dc.relation.referencesNylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey J. 2004. Bayesian phylogenetic analysis of combined data. Systematic Biology 53: 47–67.
dc.relation.referencesO’Reilly J, Puttick M, Parry L, Tanner A, Tarver J, Fleming J, Pisani D, and Donoghue P. (2016). Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biology Letters 12: 20160081.
dc.relation.referencesOspina-Sarria JJ, Cabra-García J. 2018. Parsimony analysis of unaligned sequence data: some clarifications. Cladistics 34: 574–577.
dc.relation.referencesPadial JM, Grant T, Frost DR. 2014. Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria. Zootaxa 3825: 001–132.
dc.relation.referencesPagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884.
dc.relation.referencesParry LA, Baron MG, and Vinter J. (2017). Multiple optimality criteria support Ornithoscelida. Royal Society Open Science 4: 170833.
dc.relation.referencesParry LA, Baron MG, and Vinter J. (2017). Multiple optimality criteria support Ornithoscelida. Royal Society Open Science 4: 170833.
dc.relation.referencesPetrunkevitch, A. (1914b). Attidae of the Yale Dominica Expedition. Journal of The New York Entomological Society 22: 329-331.
dc.relation.referencesPetrunkevitch, A. (1930a). The spiders of Porto Rico. Part two. Transactions of the Connecticut Academy of Arts and Sciences 30: 159-356.
dc.relation.referencesPickard-Cambridge, F. O. (1900). Arachnida - Araneida and Opiliones. In: Biologia Centrali-Americana, Zoology. London 2, 89-192.
dc.relation.referencesPickard-Cambridge, F. O. (1901a). Arachnida - Araneida and Opiliones. In: Biologia Centrali-Americana, Zoology. London 2, 193-312.
dc.relation.referencesPol D. Siddall ME. 2001. Biases in maximum likelihood and parsimony, a simulation approach to a 10-taxon case. Cladistics 17: 266–281.
dc.relation.referencesPosada, D., and Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian Approaches over Likelihood Ratio Tests. Systematic Biology 53, 793–808.
dc.relation.referencesPrószyński, J. (1976) Studium systematyczno-zoogeograficzne nad rodzina Salticidae (Aranei) Regionow Palearktycznego i Nearktycznego. Rozprawy Wyzszej Szkoly Pedagogicznej 6, 1- 260.
dc.relation.referencesPrószyński, J. (1984a). Atlas rysunków diagnostycznych mniej znanych Salticidae (Araneae). Wyższa Szkola Rolniczo-Pedagogiczna, Siedlcach 2: 1-177.
dc.relation.referencesPrószyński, J., and Deeleman-Reinhold, C. L. (2012). Description of some Salticidae (Aranei) from the Malay Archipelago. II. Salticidae of Java and Sumatra, with comments on related species. Arthropoda Selecta, 21 (1), 29-60.
dc.relation.referencesPurcell, W. F. (1910). The phylogeny of the tracheae in Araneae. Quarterly Journal of Microscopical Science 54: 519-564.
dc.relation.referencesPyron RA. 2015. Post-molecular systematics and the future of phylogenetics. Trends in Ecology and Evolution 30: 384–389.
dc.relation.referencesRambaut, A., Suchard, M.A., Xie, D., and Drummond, A.J. (2014). Tracer v1.6. Available at: <http://beast.bio.ed.ac.uk/Tracer>.
dc.relation.referencesRamírez MJ. 2014. The morphology and phylogeny of dionychan spiders (Araneae: Araneomorphae). Bulletin of the American Museum of Natural History 390: 1–374.
dc.relation.referencesRamírez, M.J. (2003) The spider subfamily amaurobioidinae (Araneae: Anyphaenidae): A phylogenetic revision at generic level. Bulletin of the Museum of Natural History, 277, 1–262.
dc.relation.referencesRichardson, B. J. and Żabka, M. (2007). A revision of the Australian jumping spider genus Prostheclina Keyserling, 1892 (Araneae: Salticidae). Records of the Australian Museum 59: 79-96.
dc.relation.referencesRindal E, Brower AV. 2011. Do model‐based phylogenetic analyses perform better than parsimony? A test with empirical data. Cladistics 27: 331–334.
dc.relation.referencesRonquist, F., and Huelsenbeck, J. P. (2003). Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19,1572–1574.
dc.relation.referencesRubio, G. D., Baigorria, J. E. and Edwards, G. B. (2016). First description of the female of the jumping spider Balmaceda nigrosectaMello-Leitão (Salticidae, Dendryphantini, Marpissina). ZooKeys 563: 11-19. doi:10.3897/zookeys.563.6705
dc.relation.referencesRuiz, G. R. S. and Maddison, W. P. (2012). DNA sequences corroborate Soesiladeepakius as a non-salticoid genus of jumping spiders: placement with lapsiines, phylogeny, and description of six new species (Araneae, Salticidae). Zoological Journal of the Linnean Society 165: 274-295.
dc.relation.referencesSalgado, A. and Ruiz, G. R. S. (2017). Ten new species of Amphidraus Simon, 1900 (Araneae: Salticidae: Euophryini) and three new combinations. Zootaxa 4312(3): 401-437. doi:10.11646/zootaxa.4312.3.1
dc.relation.referencesSánchez‐Pacheco SJ, Torres ‐Carvajal O, Aguirre‐Peñafiel V, Nunes PM, Verrastro L, Rivas GA, Rodrigues MT, Grant T, Murphy RW. 2018. Phylogeny of Riama (Squamata: Gymnophthalmidae), impact of phenotypic evidence on molecular datasets, and the origin of the Sierra Nevada de Santa Marta endemic fauna. Cladistics 34: 260–291.
dc.relation.referencesSansom RS, Choate PG, Keating JN, Randle E. 2018. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biology Letters 14: 20180263.
dc.relation.referencesScharaschkin, T. and Doyle, J.A. (2006) Character evolution in Anaxagorea (Annonaceae). The American Journal of Botany, 93 (1), 36–54.
dc.relation.referencesSchrago CG, Aguiar BO, Mello B. 2018. Comparative evaluation of maximum parsimony and Bayesian phylogenetic reconstruction using empirical morphological data. Journal of Evolutionary Biology 31: 1477–1484.
dc.relation.referencesScotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction: the role of morphology. Syst Biol 52:539–548
dc.relation.referencesSereno PC. 2007. Logical basis for morphological characters in phylogenetics. Cladistics 23: 565–587.
dc.relation.referencesShear, W.A. 1967. Expanding the palpi of male spiders. Breviora 259: 1–27.
dc.relation.referencesSiddall ME. 1998. Success of parsimony in the four-taxon case, long-branch repulsion by likelihood in the Farris Zone. Cladistics 14: 209–220.
dc.relation.referencesSierwald, P. 1989. Morphology and ontogeny of female copulatory organs in American Pisauridae, with special reference to homologous features (Arachnida, Araneae). Smithsonian Contributions to Zoology 484: 1–24.
dc.relation.referencesSimon, E. (1877b). Etudes arachnologiques. 5e Mémoire. IX. Arachnides recueillis aux îles Phillipines par MM. G. A. Baer et Laglaise. Annales de la Société Entomologique de France (5) 7: 53-96.
dc.relation.referencesSimon, E. (1885a). Arachnides recueillis par M. Weyers à Sumatra. Premier envoi. Annales de la Société Entomologique de Belgique29(C.R.): 30-39.
dc.relation.referencesSimon, E. (1899a). Contribution à la faune de Sumatra. Arachnides recueillis par M. J. L. Weyers, à Sumatra. (Deuxiéme mémoire). Annales de la Société Entomologique de Belgique 43: 78-125.
dc.relation.referencesSimon, E. (1902). Description d'arachnides nouveaux de la famille des Salticidae (Attidae) (suite). Annales de la Société Entomologique de Belgique 46: 24-56, 363-406.
dc.relation.referencesSimon, E. (190l). Histoire naturelle des Araignees. Tome 2, Fascicule 3. Seconde edition. Paris, Librairie encyclopedique de Roret. 381-668pp.
dc.relation.referencesStamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.
dc.relation.referencesStamatakis, A. (2006). RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. In Bioinformatics 22(21):2688-2690.
dc.relation.referencesSteel M, Penny D. 2000. Parsimony, likelihood, and the role of models in molecular phylogenetics. Molecular Biology and Evolution 17: 839–850.
dc.relation.referencesSwofford DL, Waddell PJ, Huelsenbeck JP, Foster PG, Lewis PO, Rogers JS. 2001. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Systematic Biology 50: 525–539.
dc.relation.referencesThorell, T. (1877b). Studi sui Ragni Malesi e Papuani. I. Ragni di Selebes raccolti nel 1874 dal Dott. O. Beccari. Annali del Museo Civico di Storia Naturale di Genova 10: 341-637.
dc.relation.referencesThorell, T. (1892). Studi sui ragni Malesi e Papuani. IV, 2. Annali del Museo Civico di Storia Naturale di Genova 31: 1-490.
dc.relation.referencesTuffley C, Steel M. 1997. Links between maximum likelihood and maximum parsimony under a simple model of substitution. Bulletin of Mathematical Biology 59: 581–607.
dc.relation.referencesUbick, D., Paquin, P., Cushing, P. E., and Roth, V. 2017. Spiders of North America: an identification manual.2nd Edition. American Arachnological Society. Keene, New Hampshire, USA.
dc.relation.referencesWaldock, J. M. (1995). A new species of Maratus from southwestern Australia (Araneae: Salticidae). Records of the Western Australian Museum, Supplement 52: 165-169.
dc.relation.referencesWang B, Dunlop JA, Selden PA, Garwood RJ, Shear WA, Müller P, Lei X. 2018. Cretaceous arachnid Chimerarachne yingi gen. et sp. nov. illuminates spider origins. Nature Ecology and Evolution 2: 614–622.
dc.relation.referencesWanninger A. 2015. Morphology is dead – long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics. Frontiers in Ecology and Evolution 3: 54.
dc.relation.referencesWard PS, Brady SG, Fisher BL, Schultz TR. 2015. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Systematic Entomology 40: 61–81.
dc.relation.referencesWhelan NV, Kocot KM, Moroz LL, and Halanych KM. (2015). Error, signal, and the placement of Ctenophora sister to all other animals. Proceedings of the National Academy of Sciences of the United States of America 112: 5773–5778.
dc.relation.referencesWiens JJ (2004) The role of morphological data in phylogeny reconstruction. Syst Biol 53:653–661
dc.relation.referencesWright A, and Hillis D. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9: e109210.
dc.relation.referencesWright A, Hillis D. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9: e109210.
dc.relation.referencesŻabka, M. (1987). Salticidae (Araneae) of Oriental, Australian and Pacific Regions, II. Genera Lycidas and Maratus. Annales Zoologici, Warszawa 40: 451-482.
dc.relation.referencesŻabka, M. (1994). Salticidae (Arachnida: Araneae) of Oriental, Australian and Pacific regions, X. Genus Simaetha Thorell. Records of the Western Australian Museum 16: 499-534.
dc.relation.referencesŻabka, M. and Pollard, S. (2002). Salticidae (Arachnida: Araneae) of New Zealand: genus Hypoblemum Peckham and Peckham, 1886. Records of the Canterbury Museum 16: 64-72.
dc.relation.referencesZhou X, Shen X, Hittinger CT, Rokas A. 2018. Evaluating fast maximum likelihood-based phylogenetic programs using empirical phylogenomic data sets. Molecular Biology and Evolution 35: 486–503.
dc.relation.referencesAgnarsson, I. (2004) Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zoological Journal of the Linnean Society 141 (4), 447–626.
dc.relation.referencesChamberland, L., McHugh, A., Kechejian, S., Binford, J. G., Bond J. E., Coddington, J., Dolman, G., Hamilton C. A., Harvey M. S., Kuntner, M., and Agnarsson, I. (2018). From Gondwana to GAARlandia: Evolutionary history and biogeography of ogre‐faced spiders (Deinopis). Journal of Biogeography 45: 2442–2457. https://doi.org/10.1111/jbi.13431
dc.relation.referencesSchrago, C. G., Aguiar, B. O., Mello, B. (2018). Comparative evaluation of maximum parsimony and Bayesian phylogenetic reconstruction using empirical morphological data. Journal of Evolutionary Biology 31, 1477–1484.
dc.relation.referencesAgnarsson, I., and Kuntner, M. (2012). The generation of a biodiversity hotspot: biogeography and phylogeography of the western Indian Ocean islands. In ´Current Topics in Phylogenetics and Phylogeography of Terrestrial and Aquatic Systems´. (Ed. K. Anamthawat-Jonsson). pp. 33–82. (Tech Publishers: Rijeka). doi: 10.5772/38958
dc.relation.referencesAgnarsson, I., Cheng, R. C., Kuntner, M. (2014). A Multi-Clade Test Supports the Intermediate Dis¬persal Model of Biogeography. PlosOne 91, e86780. doi: 10.1371/journal.pone.0086780.
dc.relation.referencesAgnarsson, I., LeQuier, S. M., Kuntner, M., Cheng, R-C., Coddington, J. A., and Binford, G. (2016). Phylogeography of a good Caribbean disperser: Argiope argentata (Araneae, Araneidae) and a new ‘cryptic’ species from Cuba. ZooKeys 2016, 25–44. doi: https://doi.org/10.3897/zookeys.625.8729.
dc.relation.referencesAli, J. R. (2012). Colonizing the Caribbean: is the GAARlandia land-bridge hypothesis gaining a foothold? Journal of Biogeography 39, 431–433.
dc.relation.referencesAlonso, R., Crawford, A. J., and Bermingham, E. (2012). Molecular phylogeny of an endemic radiation of Cuban toads (Bufonidae: Peltophryne) based on mitochondrial and nuclear genes. Journal of Biogeography 39, 434–451.
dc.relation.referencesBarel, C. J. A. (1973) Studies on dispersal of Adoxophyes orana F.V.R. in relation to the population sterilization technique. Mededelingen Landbhoogesch, Wageningen 73, 1–107.
dc.relation.referencesBattistuzzi, F. U., Billing-Ross, P., Paliwal, A., and Kumar, S. (2011). Fast and slow implementations of relaxed‐clock methods show similar patterns of accuracy in estimating divergence times. Molecular Biology and Evolution 28(9), 2439–2442. doi: https://doi.org/10.1093/molbev/msr100
dc.relation.referencesBell, J. R., Bohan, D. A., Shaw E. M., Weyman, G. S. (2005). Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bulletin of Entomological Research 95, 69–114. doi: 10.1079/BER2004350.
dc.relation.referencesBerger B. A., Kriebel R., Spalink D., and Sytsma K.J. (2016) Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Molecular Phylogenetics and Evolution 95, 116–136.
dc.relation.referencesBinford, G. J., Callahan, M. S., Bodner, M. R., Rynerson, M. R., Nunez, P. B., Ellison, C. E., and Duncan, R. P. (2008). Phylogenetic relationships of Loxosceles and Sicarius spiders are consistent with Western Gondwanan vicariance. Molecular Phylogenetics and Evolution 49, 538–553. doi:10.1016/j.ympev.2008.08.003
dc.relation.referencesBodner, M. R., and Maddison, W. P. (2012). The biogeography and age of salticid spider radiations (Araneae: Salticidae). Molecular Phylogenetics and Evolution 65, 213–240.
dc.relation.referencesBristowe, W.S. (1958) The world of spiders. (Collins: London).
dc.relation.referencesČandek, K., Agnarsson, I., Binford, G. J., and Kuntner, M. (2019). Biogeography of the Caribbean Cyrtognatha spiders. Scientific Reports, 9, 397. doi:10.1038/s41598-018-36590-y
dc.relation.referencesCarlquist, S. (1974). Island Biology. (Columbia Univ. Press: New York/London)
dc.relation.referencesCarson, H. L. (1983) Chromosomal sequences and interisland colonizations in Hawaiian Drosophila. Genetics 103, 465–482.
dc.relation.referencesCensky, E. J., Hodge, K., and Dudley, J. (1998). Over-water dispersal of lizards due to hurricanes. Nature 395(6702), 556. doi: https://doi.org/10.1038/26886
dc.relation.referencesClaramunt, S., Derryberry, E.P., Remsen Jr., J.V., Brumfield, R.T. (2012). High dispersal ability inhib¬its speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B-Biological Sciences 279, 1567–1574. doi: 10.1098/rspb.2011.1922
dc.relation.referencesCowie, R. H., and Holland, B. S. (2006). Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. Journal of Biogeography 33(2), 193–198. https://doi.org/10.1111/j.1365-2699.2005.01383.x
dc.relation.referencesCoyle, F.A. (1983) Aerial dispersal by mygalomorph spiderlings (Araneae, Mygalomorphae). Journal of Arachnology 11, 283–286.
dc.relation.referencesCoyle, F.A. (1985) Ballooning behavior of Ummidia spiderlings (Araneae, Ctenizidae). Journal of Arachnology 13, 137–138.
dc.relation.referencesCoyle, F. A., Greenstone, M. H., Hulsch, A. L. and Morgan, C. L. (1985) Ballooning mygalomorphs: estimates of the masses of Sphodros and Ummidia ballooners (Araeneae: Atypidae, Ctenizidae). Journal of Arachnology 13, 291–296.
dc.relation.referencesCoyne, J. A., and Orr, H. A. (2004). Speciation. (Sinauer: Sunderland, MA)
dc.relation.referencesCrews, S. C., and Gillespie, R. G. (2010). Molecular systematics of Selenops spiders (Araneae: Selenopidae) from North and Central America: implications for Caribbean biogeography. Biological Journal of the Linnean Society 101: 288–322.
dc.relation.referencesDarriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772. doi:10.1038/nmeth.2109
dc.relation.referencesDarwin, C. (1839) Journal of researches into the geology and natural history of the various countries visited by H.M.S. Beagle under the command of Captain Fitzroy R.N. from 1832 to 1836. London, Henry Colburn.
dc.relation.referencesDarwin, C. (1879) A naturalist’s voyage. (John Murray: London).
dc.relation.referencesDávalos, L. M. (2004). Phylogeny and biogeography of Caribbean mammals. Biological Journal of the Linnean Society 81, 373–394.
dc.relation.referencesDe Queiroz, K. (2005). A unified species concept and its consequences for the future of taxonomy. Proceedings of the California Academy of Sciences 56, 196-215.
dc.relation.referencesDeler-Hernández, A., Sýkora, V., Seidel, M., Cala-Riquelme, F., and Fikáček, M. (2017). Multiple origins of the Phaenonotum beetles in the Greater Antilles (Coleoptera: Hydrophilidae): phylogeny, biogeography and systematics, Zoological Journal of the Linnean Society 183, 97–120. doi: https://doi.org/10.1093/zoolinnean/zlx071
dc.relation.referencesDiamond, J. M., Gilpin, M. E., and Mayr, E. (1976). Species-Distance Relation for Birds of Solomon Archipelago, and Paradox of Great Speciators. Proceedings of the National Academy of Sciences of the United States of America 73, 2160–2164. doi: 10.1073/pnas.73.6.2160
dc.relation.referencesDrummond, A. J., Suchard, M. A., Xie, D. and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
dc.relation.referencesDziki, A., Binford, G.J., Coddington, J.A., and Agnarsson, I. (2015). Spintharus flavidus in the Caribbean – a 30 million year biogeographical history and radiation of a ‘widespread species’. PeerJ 3, e1422.
dc.relation.referencesEberhard, W. G. (1987). How spiders initiate airborne lines. Journal of Arachnology 15, 1–9.
dc.relation.referencesEsposito, L. A., Prendini, L. (2019). Island ancestors and New World biogeography: A case study from the scorpions (Buthidae: Rhopalurusinae). Scientific Reports 1–11. doi: https://doi.org/10.1038/s41598-018-33754-8.
dc.relation.referencesEsposito, L. A., Bloom, T., Caicedo, L., Alicia-Serrano, A., Sanchez-Ruiz, J., May-Collado, L. J., Binford, G., Agnarsson, I. (2015). Islands within islands: diversification of tailless whip spiders (Amblypygi, Phrynus) in Caribbean caves. Molecular Phylogenetics and Evolution 93: 107–117.
dc.relation.referencesFabre, P.-H., Vilstrup, J. T., Raghavan, M., Der Sarkissian, C., Willerslev, E., Douzery, E. J. P., and Orlando, L. (2014). Rodents of the Caribbean: origin and diversification of hutias unravelled by next-generation museomics. Biology Letters 10(7), 20140266–20140266.doi:10.1098/rsbl.2014.0266
dc.relation.referencesFoelix, R. (2011). Biology of spiders. 3rd ed. (Oxford University Press: Oxford).
dc.relation.referencesFollner, K., and Klarenberg, A. J. (1995) Aeronautic behaviour in the wasp-like spider Argiope bruennichi (Scopoli) (Araneae. Argiopidae). pp. 66–72 In `Proceedings of the 15th European Colloquium of Arachnology`. (Budejovice: Czech Republic).
dc.relation.referencesFolmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
dc.relation.referencesGernhard T. 2008. The conditioned reconstructed process. J. Theor. Biol. 253(4):769–778.
dc.relation.referencesGillespie, R. G., and Roderick, G. K. (2002). Arthropods on islands: Colonization, speciation, and conservation. Annual Review of Entomology, 47(1), 595–632. https://doi.org/10.1146/annurev.ento.47.091201.145244
dc.relation.referencesGillespie, R. G., Baldwin, B. G., Waters, J. M., Fraser, C. I., Nikula, R., and Roderick, G. K. (2012). Long‐distance dispersal: A framework for hypothesis testing. Trends in Ecology and Evolution, 27(1), 47–55. https://doi.org/10.1016/j.tree.2011.08.009
dc.relation.referencesGittenberger, E. (1991) What about non-adaptive radiation? Biol. J.Linn. Soc. Lond. 43, 263–272
dc.relation.referencesGreen, P. (1999). Phrap, version 0.990329. Distributed by the author. Available from http://www.phrap.org.
dc.relation.referencesGreen, P., and Ewing, B. (2002). Phred, version 0.020425 c. Distributed by the authors. Available via: http://phrap.org.
dc.relation.referencesHarrell, J.C. and Yoshimoto, C.M. (1964) Trapping of air-borne insects on ships in the Pacific. Part 5. Pacific Insects 6, 274–282.
dc.relation.referencesHedges, S. B. (2001). Biogeography of the West Indies: an overview. In ´Biogeography of the West Indies: Patterns and Perspectives´. (Eds C. A. Woods and F.E Sergile) pp15-33. (CRC Press. Baton Rouge, LA).
dc.relation.referencesHedges, S. B. (2006). Paleogeography of the Antilles and origin of West Indian terrestrial vertebrates. Annals of the Missouri Botanical Garden,93(2), 231–244. https://doi.org/10.3417/0026-6493(2006)93[231:POTAAO]2.0.CO;2
dc.relation.referencesHedges, S.B., Hass, C. y Maxson, L., 1992. Caribbean biogeography: molecular evidence for dispersal in West Indian terrestrial vertebrates. Proceedings of National Academy of Sciences 89: 1909-1913.
dc.relation.referencesHedges, S.B., Woods, C.A. (1993): Caribbean hot spot. Nature 364: 375.
dc.relation.referencesHill, D.E. (2009). Salticidae ofthe Antarctic land bridge. Peckhamia 76(1),1–14.
dc.relation.referencesIturralde-Vinent MA.(2006). Meso-Cenozoic Caribbean paleogeography: implications for the historical biogeography of the region. Int Geol Rev, 48:791–827.
dc.relation.referencesIturralde-Vinent, M.A. y MacPhee, R.D.E., 1999. Paleogeography of the Caribbean region: implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History 238: 1-95.
dc.relation.referencesIturralde-Vinent, M.A., 1982. Aspectos geológicos de la biogeografía de Cuba. Ciencias de la Tierra y del Espacio 5:85-100.
dc.relation.referencesKatoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
dc.relation.referencesKennedy, G.G. and Smitley, D.R. (1985) Dispersal. pp. 233–242 in Helle, W. and Sabelis, M.W. (Eds) Spider mites. Their biology, natural enemies and control. Volume 1A. The Tetranychidae. Oxford, Elsevier.
dc.relation.referencesKozak, K.H. et al. (2006) Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in Eastern North American woodland salamanders (Plethodontidae: Plethodon). Proc. R. Soc. Lond. B Biol. Sci. 273, 539–546
dc.relation.referencesLandis MJ, Matzke NJ, Moore BR, Huelsenbeck JP. 2013. Bayesian analysis of biogeography when the number of áreas is large. Systematic Biology 62: 789–804.
dc.relation.referencesLeigh EG Jr., Hladik A, Hladik CM, Jolly A. 2007. The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play? Rev. E´ col. 62:105–68
dc.relation.referencesLomolino, M.V., Riddle, B.R., Whittaker, R.J. and Brown, J.H. (2010) Biogeography, 4th edn. Sinauer Associated Inc, Sun- derland, MA.
dc.relation.referencesLosos JB, Parent CE. 2009. The speciation-area relationship. In The Theory of Island Biogeography Revisited, ed. JB Losos, RE Ricklefs, pp. 415–38. Princeton, NJ: Princeton Univ. Press
dc.relation.referencesMacPhee, R.D.E. and Iturralde-Vinent, M.A. 2000. A short history of Greater Antillean land mammals: Biogeography, paleogeography, radiation, and extinctions. Tropics 10(1): 145-154.
dc.relation.referencesMann, P., Schubert, C., and Burke, K. (1990). Review of Caribbean neotectonics. In The geology of North America. Vol. H-The Caribbean region. Boulder, CO: Geological Society of America, Vol. 1990, 307–338. Research supported by University of Texas, CONICIT, and Universidad de Los Andes.
dc.relation.referencesMasta, S. E. and Boore, J. L. (2004) The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Molecular Biology and Evolution, 21 (5), 893-902.
dc.relation.referencesMatos-Maraví P., Águila R.N., Peña C., Miller J.Y., Sourakov A., and Wahlberg N. (2014) Causes of endemic radiation in the Caribbean: evidence from the historical biogeography and diversification of the butterfly genus Calisto (Nymphalidae: Satyrinae: Satyrini). BMC Evolutionary Biology, 14, 199.
dc.relation.referencesMatos-Maraví, P., Núñez Águila, R., Peña, C., Miller, J.Y., Sourakov, A., Wahlberg, N. (2014). Causes of endemic radiation in the Caribbean: evidence from the historical biogeography and diversification of the butterfly genus Calisto (Nymphalidae: Satyrinae: Satyrini). BMC Evolutionary Biology, 14: 199.
dc.relation.referencesMatzke, N. J. (2013). Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5, 242–248.
dc.relation.referencesMatzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. Systematic Biology 63, 951–970.
dc.relation.referencesMatzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. Systematic Biology 63, 951–970.
dc.relation.referencesMittermeier, R.A., Robles-Gil, P., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J., and da Fonseca, G.A.B. (2005). Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. (Agrupación Sierra Madre: Mexico).
dc.relation.referencesMorse, D.H. (1993) Some determinants of dispersal by crab spiderlings. Ecology 74, 427–432.
dc.relation.referencesNosil, P. (2012). Ecological Speciation. (Oxford University Press: Oxford, UK).
dc.relation.referencesO’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M. P. P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., Finnegan, S., Gasparini, G. M. M., Grossman, E. L., Johnson, K. G., Keigwin, L. D., Knowlton, N., Leigh, E. G., Leonard-Pingel, J. S., Marko, P. B., Pyenson, N. D., Rachello-Dolmen, P. G., Soibelzon, E., Soibelzon, L., Todd, J. A., Vermeij, G. J., Jackson, J. B. (2016). Formation of the Isthmus of Panama. Science Advances 2, e1600883.
dc.relation.referencesOkuma, C., and Kisimoto, R. (1981) Air borne spiders collected over the East China Sea. Japanese Journal of Applied Entomology and Zoology 25, 296–298.
dc.relation.referencesPaulay, G., and Meyer, C. (2002) Diversification in the tropical pacific: comparisons between marine and terrestrial systems and the importance of founder speciation. Integrative and Comparative Biology, 42, 922–934.
dc.relation.referencesPindell, J. L., and Barrett, S. F. (1990). Geological evolution of the Caribbean region: A plate tectonic perspective. In `The Caribbean Region: Geological society of America`. (Eds. G. Dengo and J. E. Case). pp. 405–432. (The Geology of North America:)
dc.relation.referencesPlatnick, N. I. (1976a) Concepts of dispersal in historical biogeography. Systematic Zoology 25, 294–295.
dc.relation.referencesPregill, G. K., and Olson, S. L. (1981). Zoogeography of West Indian Vertebrates in Relation to Pleistocene Climatic Cycles. Annual Review of Ecology and Systematics 12(1), 75–98. doi:10.1146/annurev.es.12.110181.000451
dc.relation.referencesRambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). Tracer v1.6. Available at http://beast.bio.ed.ac.uk/Tracer.
dc.relation.referencesRee, R. H, Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4–14.
dc.relation.referencesŘíčan, O., Piálek, L., Zardoya, R., Doadrio, I., Zrzavý, J. (2013). Biogeography of the Mesoamerican Cichlidae (Teleostei: Heroini): colonization through the GAARlandia land bridge and early diversification. Journal of Biogeography 40, 579–593.
dc.relation.referencesRicklefs, R. and Bermingham, E. (2008). The West Indies as a laboratory of biogeography and evolution. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 363, 2393-2413.
dc.relation.referencesRodriguez, J., Pitts, J. P., von Dohlen, C. D. (2015). Historical biogeography of the widespread spider wasp tribe Aporini (Hymenoptera: Pompilidae). Journal of Biogeography 42: 495–506.
dc.relation.referencesRonquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3), 539-42. doi: 10.1093/sysbio/sys029.
dc.relation.referencesRonquist, F. (1997). Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46, 195–203.
dc.relation.referencesRosen, D.E. (1975). A vicariance model of Caribbean biogeography. Systematic Zoology 24, 431-464.
dc.relation.referencesRosen, D. E., (1985). Geological hierarchies and biogeographical congruence in the Caribbean. Annals of the Missouri Botanical Garden 72, 636-659.
dc.relation.referencesRundell, R. J., and Price, T. D. (2009). Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends in Ecology and Evolution 24(7), 394–399.doi:10.1016/j.tree.2009.02.007
dc.relation.referencesSato, J. J., Ohdachi, S. D., Echenique-Diaz, L. M., Borroto-Páez, R., Begué-Quiala, G., Delgado-Labañino, L. J., Gámez-Díez, J., Álbarez-Lemus, J., Nguyen, T. S., Yamaguchi, N., and Kita, M. (2016). Molecular phylogenetic analysis of nuclear genes suggests a Cenozoic overwater dispersal origin for the Cuban solenodon. Scientific Report 6, 31173. doi: https://doi.org/10.1038/srep31173
dc.relation.referencesSchluter, D. (2000). The Ecology of Adaptive Radiation. (Oxford University Press: Oxford, UK)
dc.relation.referencesSchluter, D. (2009). Evidence for ecological speciation and its alternative. Science 323(5915), 737–41
dc.relation.referencesSchneider, J. M., Roos, J., Lubin, Y., and Henschel, J. R. (2001) Dispersal of Stegodyphus dumicola (Araneae, Eresidae): they do balloon after all! Journal of Arachnology 29, 114–116.
dc.relation.referencesSchönhofer, A. L., McCormack, M., Tsurusaki, N., Martens, J., and Hedin, M. (2013). Molecular phylogeny of the harvestmen genus Sabacon (Arachnida: Opiliones: Dyspnoi) reveals multiple Eocene–Oligocene intercontinental dispersal events in the Holarctic. Molecular Phylogenetics and Evolution 66(1), 303–315. doi:10.1016/j.ympev.2012.10.001
dc.relation.referencesShaw, A. J., Shaw, B., Johnson, M. G., Devos N., Stenøien, H. K., Flatberg, K. I., and Carter, B. E. (2015) Phylogenetic structure and biogeography of the Pacific Rim clade of Sphagnum subgen. Subsecunda: haploid and allodiploid taxa. Biological Journal of the Linnean Society 116, 295–311.
dc.relation.referencesSimpson, G. G. (1953). The Major Features of Evolution. (Columbia University Press: New York)
dc.relation.referencesStuart, Y. E., and Losos, J. B. (2013). Ecological character displacement: glass half full or half empty? Trends in Ecology and Evolution 28(7), 402–8.
dc.relation.referencesTada, R., Iturralde-Vinent, M., Matsui, T., Tajika, E., Oji, T., Goto, K., Nakano, Y., Takayama, H., Yamamoto, S., Toyoda, K., García-Delgado, D., Díaz-Otero, C., and Rojas Consuegra, R. (2003). K/T Boundary deposits in the Paleo-western Caribbean basin. AAPG Mem. Chapter 26. 23 p.
dc.relation.referencesTänzler, R., Dam, M. H. V., Toussaint, E. F. A., Suhardjono, Y. R., Balke, M., and Riedel, A. (2016). Macroevolution of hyperdiverse flightless beetles reflects the complex geological history of the Sunda Arc. Scientific Reports 6, 18793.
dc.relation.referencesTempleton, A. R. (2008). The reality and importance of founder speciation in evolution. BioEssays 30, 470-479.
dc.relation.referencesToft, S. (1995) Two functions of gossamer dispersal in spiders? Acta Jutlandica 70, 257–268.
dc.relation.referencesTong, Y., Binford, G., Rheims, A. R., Kuntner, M., Liu, J., and Agnarsson, I. (2019). Huntsmen of the Caribbean: Multiple tests of the GAARlandia hypothesis. Molecular Phylogenetics and Evolution 130, 259-268. doi: https://doi.org/10.1016/j.ympev.2018.09.017
dc.relation.referencesToussaint, E. F. A., Fikacek, M. and Short, A. E. Z. (2016) India-Madagascar vicariance explains cascade beetle bio- geography. Biological Journal of the Linnean Society 118, 982–991.
dc.relation.referencesUit de Weerd, D. R., Robinson, D. G., and Rosenberg, G. (2016). Evolutionary and biogeographical history of the land snail family Urocoptidae (Gastropoda: Pulmonata) across the Caribbean region. Journal of Biogeography 43, 763–777.
dc.relation.referencesVoelker, G., Peñalba, J. V., Huntley J. W., and Bowie R. C. K. (2014) Diversification in an Afro- Asian songbird clade (Erythropygia–Copsychus) reveals founder-event speciation via trans-oceanic dispersals and a southern to northern colonization pattern in Africa. Molecular Phylogenetics and Evolution 73, 97–105.
dc.relation.referencesVollrath, F. (1982) Colony formation in a social spider. Zeitschrift fu ̈r Tierpyschologie 60, 313–324.
dc.relation.referencesWahlberg, N. (2006). That awkward age for butterflies: insights from the age of the butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae). Systematic Biology 55, 703–714.
dc.relation.referencesWahlberg, N., and Freitas, A.V. (2007). Colonization of and radiation in South America by butterflies in the subtribe Phyciodina (Lepidoptera: Nymphalidae). Molecular Phylogenetics and Evolution 44, 1257–1272.
dc.relation.referencesWeaver, P. F., Cruz, A., Johnson, S., Dupin, J., and Weaver, K. F. (2016). Colonizing the Caribbean: Biogeography and evolution of livebearing fishes of the genus Limia (Poeciliidae). Journal of Biogeography 43(9), 1808–1819. doi: https://doi.org/10.1111/jbi.12798
dc.relation.referencesWhite, J. L. and MacPhee, R. D. E. (2001). The sloths of the West Indies: a systematic and phylogenetic review. In: `Biogeography of the West Indies: Patterns and perspectives`. (Eds. C.A. Woods and F.E. Sergile). pp201-235. (CRC Press: Boca Raton, FL).
dc.relation.referencesWoods, C., Borroto P. R., and Kilpatrick C. (2001) Insular patterns and radiation of West Indian rodents. In: `Biogeography of the West Indies: Patterns and perspectives`. (Eds. C.A. Woods and F.E. Sergile). pp. 333–351. (CRC Press: Boca Raton, FL).
dc.relation.referencesXie, W., Lewis, P. O., Fan, Y., Kuo, L., Chen, M. H. (2011). Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology 60, 150–160.
dc.relation.referencesYoshimoto, C. M. and Gressitt, J. C. (1961) Trapping of air borne insects on ships in the Pacific (part 4). Pacific Insects 3, 556–558.
dc.relation.referencesYoshimoto, C. M. and Gressitt, J. C. (1963) Trapping of air borne insects in the Pacific-Antarctic Area. 2. Pacific Insects 5, 873–883.
dc.relation.referencesYoshimoto, C. M., Gressitt, J. C. and Mitchell, C. J. (1962a) Trapping of air borne insects in the Pacific-Antarctic Area. 1. Pacific Insects 4, 847–858.
dc.relation.referencesYoshimoto, C. M., Gressitt, J. C. and Wolff, T. (1962b) Airborne insects Galathea expedition. Pacific Insects 4, 269–291.
dc.relation.referencesZhang, G., Basharat, U., Matzke, N., and Franz, N. M. (2017). Model selection in statistical historical biogeography of Neotropical insects – the Exophthalmus genus complex (Curculionidae: Entiminae). Molecular Phylogenetics and Evolution 109, 226–239.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalfilogénia
dc.subject.proposalphylogeny
dc.subject.proposaltotal evidence
dc.subject.proposalevidencia total
dc.subject.proposalSalticidae
dc.subject.proposalSalticidae
dc.subject.proposalinsular caribbean
dc.subject.proposalCaribe insular
dc.subject.proposalfounder-event
dc.subject.proposalevento-fundador
dc.subject.proposalsistemática
dc.subject.proposalsystematic
dc.subject.proposalClado Antillattus
dc.subject.proposalClado Antillattus
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito