Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorOlaya Florez, Jhon Jairo
dc.contributor.advisorPrieto de Castro, Carlos
dc.contributor.authorTriana Martínez, Rudolf Arthur
dc.date.accessioned2020-07-17T22:10:59Z
dc.date.available2020-07-17T22:10:59Z
dc.date.issued2020-01-31
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77796
dc.description.abstractEste trabajo de investigación se realiza un estudio de la resistencia a la de corrosión de recubrimientos (película de grafeno monocapa) sintetizados mediante deposición química de vapor (CVD) en sustratos de cobre. Este nanomaterial presenta propiedades como película impermeable, estabilidad química, térmica y otras cualidades (mecánicas, eléctricas, y ópticas) que lo proponen como un candidato para la protección de metales ante diferentes ambientes electroquímicos. Para la caracterización morfológica y estructural de las películas de grafeno, se evaluaron antes de la prueba de corrosión mediante la Microscopía Óptica Confocal y la Espectrometría Raman. Se estudió la corrosión química del óxido de cobre en las películas del recubrimiento a un tiempo corto (6 meses) y largo plazo (12 meses). La resistencia a la de corrosión de las muestras de las películas de grafeno monocapa en los sustratos de cobre se estudiaron mediante Espectrometría de Impedancia Electroquímica y Ensayos de Polarización Potenciodinámica utilizando diferentes electrolitos (0.5M HCl, 0,5M H2SO4,3,5wt% NaCl, 3,5% NaCl+0,5M H2SO4 y Na2S2O3 +NaCl +CH3 COOH). Para la morfología y caracterización después de las pruebas de corrosión se utilizo la Microscopía Auger, Microscopía Óptica Confocal, Espectrometría Raman y Microscopía Electrónica de Barrido (MEB). El grafeno monocapa sin defectos es un recubrimiento óptimo para la protección de metales ante los ambientes corrosivos ácidos y salinos. Los defectos del recubrimiento proporcionan el flujo de iones de los electrolitos y de la oxidación química que permite la delaminación e inducen a acelerar la corrosión. Por otro lado también se promueve la formación del grafeno multicapa en la huella de corrosión. En este trabajo se observa que mediante los electrolitos 0,5M H2SO4 y 3,5 wt% NaCl se obtiene un mejor comportamiento a la resistencia a la corrosión con respecto al sustrato sin recubrimiento. Como acto culminante el trabajo permite discutir frente a los mecanismos de corrosión del grafeno en el sustrato de cobre, su proyección en el estudio de propiedades físico- químicas del recubrimiento en electródos metálicos y la búsqueda de alternativas para la protección del cobre utilizando películas de grafeno.
dc.description.abstractThis research work develops a study on corrosion resistance in coatings (single-layer graphene film) synthesized by chemical vapor deposition (CVD) on copper substrates. Single-layer graphene has properties such as waterproof film, chemical and thermal stability, among other qualities (mechanical, electrical, and optical). These properties make graphene a candidate for the protection of metals against different electrochemical environments. The morphological and structural characterization of graphene films was performed before the corrosion test by Confocal Optical Microscopy and Raman Spectrometry. The chemical corrosion of copper oxide in the coating films at a short time (6 months) and long term (12 months) was studied. The corrosion resistance of single-layer graphene film samples on copper substrates were evaluated by Electrochemical Impedance Spectrometry and Potentiodynamic Polarization Tests, using different electrolytes (0.5M HCl, 0.5M H2SO4.3.5wt% NaCl , 3.5% NaCl + 0.5M H2SO4 and Na2S2O3 + NaCl + CH3 COOH). For morphology and characterization, after the corrosion tests, Auger Microscopy, Confocal Optical Microscopy, Raman Spectrometry and Scanning Electron Microscopy (MEB) were used. Graphene monolayer without defects is an optimal coating for the protection of metals against corrosive acid and saline environments. Defects in the coating generate the flow of electrolyte ions and chemical oxidation that allows delamination and foster the acceleration of corrosion. On the other hand, the formation of multilayer graphene in the corrosion trace is also promoted. This work shows that by means of 0.5M H2SO4 and 3.5 wt% NaCl electrolytes, a better corrosion resistance behavior is obtained, with respect to the uncoated substrate. Finally, the work allows us to discuss the corrosion mechanisms of graphene in the copper substrate, its projection in the study of physicochemical properties of the coating on metal electrodes and the search for alternatives for the protection of copper using graphene films.
dc.format.extent201
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
dc.titleEvaluación de la resistencia de la corrosión de grafeno sobre un sustrato de cobre
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupAFIS
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesK. s. Novoselov, V. I. Fal´Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol. 10, no. 192–200, p. 490, 2013.
dc.relation.referencesA. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp. 183–191, 2007.
dc.relation.referencesA. C. Ferrari et al., “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale, vol. 7, pp. 4598–4810, 2015.
dc.relation.referencesM. M. et al . Bhuyan, M.S.A, Uddin, M.n., Islam, “Synthesis of graphene Abstract Synthesis of graphene | SpringerLink Synthesis of graphene Mother of all graphene forms . Graphene is a 2D building material for carbon material of all other dimensionalities . It can be wrapped up into 0D buckyballs , rolle,” Int. Nano Lett., vol. 6, no. 2, pp. 65–83, 2016.
dc.relation.referencesP. Miró, M. Audiffred, and T. Heine, “An atlas of two-dimensional materials,” Chem. Soc. Rev., vol. 43, no. 18, pp. 6537–6554, 2014.
dc.relation.referencesÁ. Camacho et al., “Definición de nanomateriales para Colombia,” Rev. Colomb. Química, vol. 45, no. 1, p. 15, Aug. 2016.
dc.relation.referencesK. S. Novoselov et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science (80-. )., vol. 306, no. 5696, pp. 666 LP – 669, Oct. 2004.
dc.relation.referencesU. K. S. Strategy, “Developing a UK Standards Strategy for Graphene,” 2018.
dc.relation.referencesE. Tem, “Comercialización de la I + D : Análisis de patentes con KMX Patent Analytics Solution Resumen.”
dc.relation.referencesK. S. Novoselov et al., “Electronic properties of graphene,” basic solid state physic, vol. 244, no. 11, pp. 4106–4111, 2007.
dc.relation.referencesC. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science (80-. )., vol. 321, no. 5887, pp. 385 LP – 388, Jul. 2008.
dc.relation.referencesA. Sakhaee-Pour, “Elastic properties of single-layered graphene sheet,” Solid State Commun., vol. 149, no. 1–2, pp. 91–95, Jan. 2009.
dc.relation.referencesG. López-Polín, “Propiedades mecánicas de membranas de grafeno: consecuencias de la inducción controlada de defectos,” Sep. 2016. [14]
dc.relation.referencesR. A. Bizao, T. Botari, and D. S. Galvao, “Mechanical properties of graphene nanowiggles,” Mater. Res. Soc. Symp. Proc., vol. 1658, no. January, pp. 14–18, 2014.
dc.relation.referencesR. Rafiee and A. Eskandariyun, “Comparative study on predicting Young’s modulus of graphene sheets using nano-scale continuum mechanics approach,” Phys. E Low-dimensional Syst. Nanostructures, vol. 90, Mar. 2017.
dc.relation.referencesA. Politano and G. Chiarello, “Probing the Young’s modulus and Poisson’s ratio in graphene/metal interfaces and graphite: a comparative study,” Nano Res., vol. 8, no. 6, pp. 1847–1856, 2015.
dc.relation.referencesR. Faccio, P. A. Denis, H. Pardo, C. Goyenola, and Á. W. Mombrú, “Mechanical properties of graphene nanoribbons,” J. Phys. Condens. Matter, vol. 21, no. 28, p. 285304, Jul. 2009.
dc.relation.referencesV. Berry, “Impermeability of graphene and its applications,” Carbon N. Y., vol. 62, pp. 1–10, 2013.
dc.relation.referencesJ. S. Bunch et al., “Impermeable atomic membranes from graphene sheets,” Nano Lett., vol. 8, no. 8, pp. 2458–2462, 2008.
dc.relation.referencesY. Sanguansak et al., “Permselective properties of graphene oxide and reduced graphene oxide electrodes,” Carbon N. Y., vol. 68, pp. 662–669, Mar. 2014.
dc.relation.referencesA. A. Balandin et al., “Superior Thermal Conductivity of Single-Layer Graphene,” NANO Lett., vol. 8, no. 3, pp. 902–907, 2008.
dc.relation.referencesW. Bao et al., “Controlled ripple texturing of suspended graphene and ultrathin graphite membranes,” Nat. Nanotechnol., vol. 4, no. 9, pp. 562–566, 2009.
dc.relation.referencesD. Yoon, Y.-W. Son, and H. Cheong, “Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy,” Nano Lett., vol. 11, no. 8, pp. 3227–3231, 2011.
dc.relation.referencesL. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser., vol. 129, p. 012004, Oct. 2008.
dc.relation.referencesF. Bonaccorso, Z. Sun, and T. Hasan, “Graphene photonics and optoelectronics.,” Nat. Phot., vol. 4, pp. 611–622, 2010.
dc.relation.referencesJ. Atalaya, A. Isacsson, and J. Kinaret, “Continuum elastic modeling of graphene resonators,” Nano Lett., vol. 8, no. 12, pp. 4196–4200, 2008.
dc.relation.referencesT. Que, P. Obtener, and E. L. Grado, “Transporte De Carga En Grafeno Bajo,” 2010.
dc.relation.referencesS. S. Shams and R. Zhang, “Graphene synthesis: A Review,” Mater. Sci., vol. 33, Jan. 2015.
dc.relation.referencesM. Yi and Z. Shen, “A review on mechanical exfoliation for the scalable production of graphene,” J. Mater. Chem. A, vol. 3, no. 22, pp. 11700–11715, 2015.
dc.relation.referencesJ. Chen, M. Duan, and G. Chen, “Continuous mechanical exfoliation of graphene sheets via three-roll mill,” J. Mater. Chem., vol. 22, no. 37, pp. 19625–19628, 2012.
dc.relation.referencesB. Jayasena and S. Subbiah, “A novel mechanical cleavage method for synthesizing few-layer graphenes,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–7, 2011.
dc.relation.referencesH. Y et al., “High-yield production of graphene by liquid-phase exfoliation of graphite.,” Pubmed, vol. 3, no. 9, pp. 563–571, 2008.
dc.relation.referencesS. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat. Nanotechnol., vol. 4, no. 4, pp. 217–224, 2009.
dc.relation.referencesA. B. Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, and A. K. Stubos, “Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes,” Small, vol. 5, no. 16, pp. 1841–1845, 2009.
dc.relation.referencesG. Yazdi, T. Iakimov, and R. Yakimova, “Epitaxial Graphene on SiC: A Review of Growth and Characterization,” Crystals, vol. 6, p. 53, May 2016.
dc.relation.referencesG. Yazdi, T. Iakimov, and R. Yakimova, “Epitaxial Graphene on SiC: A Review of Growth and Characterization,” Crystals, vol. 6, p. 53, May 2016.
dc.relation.referencesM. Choucair, P. Thordarson, and J. A. Stride, “Gram-scale production of graphene based on solvothermal synthesis and sonication,” Nat. Nanotechnol., vol. 4, no. 1, pp. 30–33, 2009.
dc.relation.referencesB. Berlanga de la Mata and J. D. Tutor Sánchez, “USO DE LA TECNOLOGÍA CVD (CHEMICAL VAPOR DEPOSITION) EN LA OBTENCIÓN DE NANOESTRUCTURAS DE COMPUESTOS DE CARBONO,” INGENIERO INDUSTRIAL, 2012.
dc.relation.referencesY. Zhang, L. Zhang, and C. Zhou, “Review of Chemical Vapor Deposition of Graphene and Related Applications,” ACCOUNTS Chem. Res., vol. 46, no. 10, pp. 2329–2339, 2013.
dc.relation.referencesC. Mattevi, H. Kima, and M. Chhowalla, “A review of chemical vapour deposition of graphene on copper,” J. Mater. Chem., no. 10, pp. 21898–21909, 2011.
dc.relation.referencesY. Zhang, Y. Fu, M. Edwards, K. Jeppson, L. Ye, and J. Liu, “Chemical vapor deposition grown graphene on Cu-Pt alloys,” Mater. Lett., vol. 193, pp. 255–258, Apr. 2017.
dc.relation.referencesL. Álvarez Fraga, A. Andrés Miguel, C. Prieto de Castro, and L. Bausá López, “Materiales híbridos grafeno- -metal para detección óptica,” Universidad Autonoma de Madrid.
dc.relation.referencesC. Goberna, C l UNCI AS Marisol Faraldos. .
dc.relation.referencesD. R. Cooper et al., “Experimental Review of Graphene,” ISRN Condens. Matter Phys., vol. 2012, pp. 1–56, 2012.
dc.relation.referencesA. K. Geim, “Graphene: Status and Prospects,” Science (80-. )., vol. 324, no. 5934, pp. 1530 LP – 1534, Jun. 2009.
dc.relation.referencesD. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, and K. I. Bolotin, “Graphene: Corrosion-Inhibiting Coating,” ACS Nano, vol. 6, no. 2, pp. 1102–1108, 2012.
dc.relation.referencesT.-H. Han, M.-R. C. Youngbin Lee, S.-H. Woo, S.-H. Bae, B. H. Hong, and J.-H. A. & T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics, vol. 6, pp. 105–110, 2012.
dc.relation.referencesJ. Wu et al., “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano, vol. 4, pp. 43–48, 2010.
dc.relation.referencesQ. Ke and J. Wang, “Graphene-based materials for supercapacitor electrodes – A review,” J. Mater., vol. 2, no. 1, pp. 37–54, Mar. 2016.
dc.relation.referencesJ. Zhu, R. Duan, S. Zhang, N. Jiang, Y. Zhang, and J. Zhu, “The application of graphene in lithium ion battery electrode materials,” Springerplus, vol. 3, no. 1, p. 585, Oct. 2014.
dc.relation.referencesJ. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor,” Mater. Today, vol. 13, no. 3, pp. 52–59, Mar. 2010.
dc.relation.referencesS. R. Shin et al., “Graphene-based materials for tissue engineering,” Adv. Drug Deliv. Rev., vol. 105, pp. 255–274, Oct. 2016.
dc.relation.referencesN. Shadjou and M. Hasanzadeh, “Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances,” J. Biomed. Mater. Res., vol. 104, no. 5, pp. 1250–1275, 2016.
dc.relation.referencesS.-Y. Wu, S. S. A. An, and J. Hulme, “Current applications of graphene oxide in nanomedicine,” Int. J. Nanomedicine, vol. 10 Spec Is, no. Spec Iss, pp. 9–24, Aug. 2015.
dc.relation.referencesP. B. Pawar, S. K. Maurya, R. P. Chaudhary, D. Badhe, S. Saxena, and S. Shukla, “Water Purification using Graphene Covered Micro-porous, Reusable Carbon Membrane,” MRS Adv., vol. 1, no. 20, pp. 1411–1416, 2016
dc.relation.referencesY. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, “Graphene and graphene oxide: biofunctionalization and applications in biotechnology,” Trends Biotechnol., vol. 29, no. 5, pp. 205–212, May 2011.
dc.relation.referencesT. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, “Recent advances in graphene-based biosensors,” Biosens. Bioelectron., vol. 26, no. 12, pp. 4637–4648, Aug. 2011.
dc.relation.referencesJ. Hu, Y. Ji, and Y. Shi, “A Review on the use of Graphene as a Protective Coating against Corrosion,” Ann. Mater. Sci. Eng., vol. 1, no. 3, pp. 1–16, 2014.
dc.relation.referencesA. Tiwari and R. K. Singh Raman, “Multilayer graphene coating on copper for corrosion mitigation,” Annu. Conf. Australas. Corros. Assoc. 2013 Corros. Prev. 2013, no. April, pp. 711–717, 2013.
dc.relation.referencesA. S. Sai Pavan and S. R. Ramanan, “A study on corrosion resistant graphene films on low alloy steel,” Appl. Nanosci., vol. 6, no. 8, pp. 1175–1181, 2016.
dc.relation.referencesS. . Chen et al., “Oxidation resistance of graphene-coated Cu and Cu/Ni alloy,” ACS Nano, vol. 5, no. 2, pp. 1321–1327, 2011.
dc.relation.referencesE. Corro- et al., “Standard Guide for Laboratory Immersion Corrosion Testing of Metals 1,” 2019.
dc.relation.referencesW. Callister Jr, Materials science and Engineering an Introduction, John Wiley. New York, 2003.
dc.relation.referencesJ. Ávila and J. Genescá, MÁS ALLÁ DE LA HERRUMBRE, Económica. Ciudad de Mexico, 1987.
dc.relation.referencesJ. Avila and J. Genescá, Más allá de la herrumbre II. La lucha contra la corrosión, no. Figura 9. 1996.
dc.relation.referencesI. Platzman, R. Brener, H. Haick, and R. Tannenbaum, “Oxidation of polycrystalline copper thin films at ambient conditions,” J. Phys. Chem. C, vol. 112, no. 4, pp. 1101–1108, 2008.
dc.relation.referencesF. Yu, “Graphene based coatings for corrosion protection,” Techmical University of Denmark, 2018.
dc.relation.referencesD. E. N. Ciencias and R. G. Inzunza, “CALIFORNIA,” 2014.
dc.relation.referencesV. AMIGO BORRAS and M. D. SALVADOR MOYA, Fundamentos de Ciencia De los Materiales. Cuaderno de Laboratorio., Universita. Valencia, 1999
dc.relation.referencesC. Moreno, “Termodinámica electroquímica,” pp. 4262–4266, 2017.
dc.relation.referencesV. G. Celante and M. B. J. G. Freitas, “Electrodeposition of copper from spent Li-ion batteries by electrochemical quartz crystal microbalance and impedance spectroscopy techniques,” J. Appl. Electrochem., vol. 40, no. 2, pp. 233–239, 2010.
dc.relation.referencesR. Larios-Durán, “Estudio Electrocinético De La Adsorción De Iones En Electrodos Líquidos Y Sólidos Mediante Técnicas De Impedancia Y Modulación De La Capacitancia,” Centro de Investigación y Desarrollo Tecnológico en Electroquimica, 2007.
dc.relation.referencesF. J. Garfias Vázquez, La interfase electrodo-electrolito y el modelo de la doble capa. .
dc.relation.referencesJ. hu, Y. Ji, Y. Shi, F. Hui, H. Duan, and M. Lanza, “A Review on the use of Graphene as a Protective Coating against Corrosion,” Ann J Mater. Sci Eng, vol. 1, p. 16, Nov. 2014.
dc.relation.referencesU. Mogera, N. Kurra, and D. Radhakrishnan, “Low cost , rapid synthesis of graphene on Ni : An efficient barrier for corrosion and thermal oxidation,” Carbon N. Y., vol. 78, no. Cvd, pp. 384–391, 2014.
dc.relation.referencesM. Topsakal, H. Aahin, and S. Ciraci, “Graphene coatings: An efficient protection from oxidation,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 85, no. 15, 2012.
dc.relation.referencesA. Tiwari, P. C. Banerjee, R. K. R. Singh, and M. Majumder, “Cvd Graphene on Metals for Remarkable Corrosion Resistance,” Corros. Prev., no. April 2014, pp. 1–7, 2012.
dc.relation.referencesA. U. Honor and T. Presented, “Graphene Oxidation Barrier Coating Xu Zhou,” no. April, 2011.
dc.relation.referencesB. Luo, P. R. Whelan, A. Shivayogimath, D. M. A. Mackenzie, P. Bøggild, and T. J. Booth, “Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene,” Chem. Mater., vol. 28, no. 11, pp. 3789–3795, 2016.
dc.relation.referencesY. P. Hsieh et al., “Complete corrosion inhibition through graphene defect passivation,” ACS Nano, vol. 8, no. 1, pp. 443–448, 2014.
dc.relation.referencesS. Chen et al., “Manufacturing Graphene-Encapsulated Copper Particles by Chemical Vapor Deposition in a Cold Wall Reactor,” ChemistryOpen, vol. 8, no. 1, pp. 58–63, 2019.
dc.relation.referencesM. Wu et al., “High oxidation resistance of CVD graphene-reinforced copper matrix composites,” Nanomaterials, vol. 9, no. 4, pp. 1–8, 2019.
dc.relation.referencesM. Schriver, W. Regan, W. J. Gannett, A. M. Zaniewski, M. F. Crommie, and A. Zettl, “Graphene as a long-term metal oxidation barrier: Worse than nothing,” ACS Nano, vol. 7, no. 7, pp. 5763–5768, 2013.
dc.relation.referencesF. Zhou, Z. Li, G. J. Shenoy, L. Li, and H. Liu, “Enhanced Room-Temperature Corrosion of Copper in the Presence of Graphene,” no. 8, pp. 6939–6947, 2013
dc.relation.referencesD. W. Boukhvalov et al., “Atomic and electronic structure of a copper/graphene interface as prepared and 1.5 years after,” Appl. Surf. Sci., vol. 426, pp. 1167–1172, 2017.
dc.relation.referencesL. Álvarez-Fraga et al., “Oxidation Mechanisms of Copper under Graphene: The Role of Oxygen Encapsulation,” Chem. Mater., vol. 29, no. 7, pp. 3257–3264, 2017.
dc.relation.referencesF. Fauzi et al., “A simple method to examine room-temperature corrosion of graphene-coated copper foil after A simple method to examine room-temperature corrosion of graphene-coated copper foil after stored for 2 . 5 years,”
dc.relation.referencesR. Ramírez-Jíménez, L. Álvarez-Fraga, F. Jimenez-Villacorta, E. Climent-Pascual, C. Prieto, and A. De Andrés, “Interference enhanced Raman effect in graphene bubbles,” Carbon N. Y., vol. 105, pp. 556–565, 2016.
dc.relation.referencesN. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, “Exploring graphene as a corrosion protection barrier,” Corros. Sci., vol. 56, pp. 1–4, 2012
dc.relation.referencesR. K. Singh Raman et al., “Protecting copper from electrochemical degradation by graphene coating,” Carbon N. Y., vol. 50, no. 11, pp. 4040–4045, Sep. 2012.
dc.relation.referencesJ. H. Huh, S. H. Kim, J. H. Chu, S. Y. Kim, J. H. Kim, and S. Y. Kwon, “Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating,” Nanoscale, vol. 6, no. 8, pp. 4379–4386, 2014.
dc.relation.referencesI. Jung and K. Rhee, “Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution,” vol. 5, 2014.
dc.relation.referencesY. Dong, Q. Liu, and Q. Zhou, “Corrosion behavior of Cu during graphene growth by CVD,” Corros. Sci., vol. 89, pp. 214–219, 2014.
dc.relation.referencesN. Pu et al., “Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates,” J. Power Sources, vol. 282, pp. 248–256, 2015.
dc.relation.referencesA. C. Stoot, Protective coatings based on 2D-materials. DTU Nanotech, 2016.
dc.relation.referencesY. Wu, X. Zhu, W. Zhao, Y. Wang, and C. Wang, “Corrosion mechanism of graphene coating with different defect levels,” vol. 777, pp. 135–144, 2019.
dc.relation.referencesY. J. Ren, M. R. Anisur, W. Qiu, J. J. He, S. Al-Saadi, and R. K. Singh Raman, “Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study,” J. Power Sources, vol. 362, pp. 366–372, Sep. 2017.
dc.relation.referencesFREDY ALEJANDRO ORJUELA GUERRERO, “RESISTENCIA A LA CORROSIÓN EN RECUBRIMIENTOS DE CARBURO DE VANADIO Y CARBURO DE NIOBIO DEPOSITADOS CON LA TÉCNICA TRD,” J. Chem. Inf. Model., vol. 53, p. 160, 2013.
dc.relation.referencesF. Leonardo, J. Jairo, and H. Bautista, “Síntesis y evaluación de resistencia a la corrosión,” vol. 7, pp. 195–206, 2018.
dc.relation.referencesL. Julieta and C. Flechas, “DE Ti-Zr-Si-N,” 2018.
dc.relation.referencesI. N. G. Magda, M. Torres, I. N. G. Magda, and M. Torres, “No Title,” 2010.
dc.relation.referencesG. Ivonne and C. Gonz, “Evaluación de la resistencia a la corrosión de recubrimientos de ZrO,” 2012.
dc.relation.referencesG. Instruments, “Introduction to Electrochemical Impedance Spectroscopy.”
dc.relation.referencesB. Soediono et al., “Espectroscopía De Impedancia Electroquímica En Corrosión,” J. Chem. Inf. Model., vol. 41, no. 7, pp. 3–5, 2014.
dc.relation.referencesA. C. Ferrari et al., “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, no. 18, pp. 1–4, 2006.
dc.relation.referencesR. K. Singh Raman and A. Tiwari, “Graphene: The thinnest known coating for corrosion protection,” Jom, vol. 66, no. 4, pp. 637–642, 2014.
dc.relation.referencesA. S. Sai Pavan and S. R. Ramanan, “A study on corrosion resistant graphene films on low alloy steel,” Appl. Nanosci., vol. 6, no. 8, pp. 1175–1181, 2016.
dc.relation.referencesA. Forero Ballesteros, I. de Bott, and J. A. Cunha Ponciano, “Evaluation of the susceptibility to sulphide stress corrosion cracking and hydrogen embrittlement of API 5L X80 girth welds steel manufactured in Brazil,” Rev. ION, vol. 25, no. SPE, pp. 7–15, 2012.
dc.relation.referencesC. Material and P. Databases, “Making Potentiodynamic Anodic Polarization,” pp. 1–8, 2013.
dc.relation.referencesF. Schedin et al., “Surface Enhanced Raman Spectroscopy of Graphene,” pp. 1–11.
dc.relation.referencesA. Manuscript, “c[1] A. Manuscript, ‘ce pte pt,’ 2018.e pte pt,” 2018.
dc.relation.referencesJ. Lei, Y. Hu, Z. Liu, G. J. Cheng, and K. Zhao, “Defects Mediated Corrosion in Graphene Coating Layer,” ACS Appl. Mater. Interfaces, vol. 9, no. 13, pp. 11902–11908, 2017.
dc.relation.referencesJ. Bartolom, Á. Leo, S. Cortijo, and A. Cremades, “Grain selective Cu oxidation and anomalous shift of graphene 2D Raman peak in the graphene – Cu system Grain selective Cu oxidation and anomalous shift of graphene 2D Raman peak in the graphene – Cu system,” 2019.
dc.relation.referencesI. Wlasny et al., “Impact of electrolyte intercalation on the corrosion of graphene-coated copper,” Corros. Sci., vol. 92, pp. 69–75, 2015.
dc.relation.referencesH. Zhang, Q. Ma, Y. Wang, B. Xu, and J. Guo, “Improved corrosion resistance of copper coated by graphene,” New Carbon Mater., vol. 34, no. 2, pp. 153–160, 2019.
dc.relation.referencesR. K. Singh Raman et al., “Protecting copper from electrochemical degradation by graphene coating,” Carbon N. Y., vol. 50, no. 11, pp. 4040–4045, 2012.
dc.relation.referencesR. K. Singh Raman et al., “Protecting copper from electrochemical degradation by graphene coating,” Carbon N. Y., vol. 50, no. 11, pp. 4040–4045, 2012.
dc.relation.referencesJ. Wang et al., “The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites,”
dc.relation.referencesM. A. Krishnan et al., “Graphene-based anticorrosive coatings for copper,” RSC Adv., vol. 8, no. 1, pp. 499–507, 2018.
dc.relation.referencesA. Fateh, M. Aliofkhazraei, and A. R. Rezvanian, “Review of corrosive environments for copper and its corrosion inhibitors,” Arab. J. Chem., vol. 13, no. 1, pp. 481–544, 2020.
dc.relation.referencesS. Das, D. Lahiri, D. Lee, A. Agarwal, and W. Choi, “Measurements of the adhesion energy of graphene to metallic substrates,” Carbon N. Y., vol. 59, pp. 121–129,
dc.relation.referencesC. Cui, A. T. O. Lim, and J. Huang, “A cautionary note on graphene anti-corrosion coatings,” Nat. Nanotechnol., vol. 12, no. 9, pp. 834–835, 2017.
dc.relation.referencesY. Xu, J. Qu, Y. Shen, and W. Feng, “Different graphene layers to enhance or prevent corrosion of polycrystalline copper,” RSC Adv., vol. 8, no. 27, pp. 15181–15187, 2018.
dc.relation.referencesH. Ding and L. H. Hihara, “Galvanic corrosion in metal-matrix composites containing semiconducting constituents,” J. Electrochem. Soc., vol. 156, no. 12, 2009.
dc.relation.referencesY. H. Zhang et al., “Role of wrinkles in the corrosion of graphene domain-coated Cu surfaces,” Appl. Phys. Lett., vol. 104, no. 14, 2014.
dc.relation.referencesS. Akhtar, T. Laoui, A. Ibrahim, A. M. Kumar, J. Ahmed, and I. ul H. Toor, “Few-Layers Graphene Film and Copper Surface Morphology for Improved Corrosion Protection of Copper,” J. Mater. Eng. Perform., vol. 28, no. 9, pp. 5541–5550, 2019.
dc.relation.referencesY. X. Zhu, C. Y. Duan, H. Y. Liu, Y. F. Chen, and Y. Wang, “Graphene coating for anti-corrosion and the investigation of failure mechanism,” J. Phys. D. Appl. Phys., vol. 50, no. 11, 2017.
dc.relation.referencesA. Tiwari and R. K. Raman, Multilayer Graphene on Copper for Corrosion Mitigation. 2013
dc.relation.referencesM. Liu and J. Li, “In-situ Raman characterization of initial corrosion behavior of copper in neutral 3.5% (wt.) NaCl solution,” Materials (Basel)., vol. 12, no. 13, 2019.
dc.relation.referencesL. M. S. G. A. Applegarth, C. R. Corbeil, D. J. W. Mercer, C. C. Pye, and P. R. Tremaine, “Raman and ab initio investigation of aqueous Cu(I) chloride complexes from 25 to 80 C,” J. Phys. Chem. B, vol. 118, no. 1, pp. 204–214, 2014.
dc.relation.referencesM. Metikoš-Huković, R. Babić, I. Škugor, and Z. Grubač, “Copper-nickel alloys modified with thin surface films: Corrosion behaviour in the presence of chloride ions,” Corros. Sci., vol. 53, no. 1, pp. 347–352, 2011.
dc.relation.referencesK. F. Khaled, “Studies of the corrosion inhibition of copper in sodium chloride solutions using chemical and electrochemical measurements,” Mater. Chem. Phys., vol. 125, no. 3, pp. 427–433, 2011.
dc.relation.referencesE. P. Grishina, A. M. Udalova, and E. M. Rumyantsev, “Anodic Oxidation of Copper in Concentrated Sulfuric Acid Solutions,” vol. 38, no. 9, pp. 1155–1158, 2002.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPelícula de Grafeno
dc.subject.proposalSingle-layer Graphene Film
dc.subject.proposalChemical vapor deposition
dc.subject.proposalDeposición Química de Vapor
dc.subject.proposalCorrosion Resistance
dc.subject.proposalResistencia a la corrosión
dc.subject.proposalGrafeno
dc.subject.proposalGraphene
dc.subject.proposalNanomateriales
dc.subject.proposalNanomaterials
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito