Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorPerilla Perilla, Jairo Ernesto
dc.contributor.authorUrbina Ramirez, Andres Francisco
dc.date.accessioned2020-07-21T13:42:27Z
dc.date.available2020-07-21T13:42:27Z
dc.date.issued2020-06-20
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77804
dc.description.abstractAbstract The development of computational tools has allowed to advance in the tool and part design and establish suitable process parameter to enhance cost effectiveness and answers in real time. The polymers are non-newtonian fluids that have non-lineal behavior depending on temperatures and shear rates that are exposed. According to this, the Cross WLF model has been one of the most important the simulation software’s have used to approximate the mold filling behavior for thermoplastic materials. In this research it will be study in depth how the simulation package Sigmasoft Virtual Molding solves the Navier-Stokes equations for the mold filling stage. Subsequently, it will make a comparative analysis between filling models 2.5D and 3D, forecasting through discretization, the optimal operation point according to pattern geometries that injection molding parts have with the material PC Makrolon 2805. There, it was obtained that, from eight elements in wall thickness, the results converge and have high congruency with the real measurements of previous researchers. Then, sensitivity analysis is performed to figure out the impact that each term of model equation has, based on own raw material characterization of PP Purell HP371P from LyondeBassell and a real and virtual process design of experiments (DoE). As a result: A set of fit equations were performed to get minor difference of simulation and reality in between. The main conclusion was that the terms A1, n, D1 and D2 have sensibility for results of pressure, temperature and viscosity, are suitable for a fir equation and figure out thermal impact with the non-dimensional parameters (n and D1) to correct the Cross WLF model, that didn’t happen for the transition shear stress (D4) and the pressure dependency (D3)
dc.description.abstractEl desarrollo de herramientas computacionales ha permitido avanzar con creces en el diseño de piezas y moldes y establecer parámetros de proceso idóneos para lograr efectividad en costos y respuestas en tiempo real. Los polímeros son fluidos no newtonianos que tienen comportamiento no lineal dependiendo de temperaturas y tasas de corte a las que están expuestos. Conforme a esto, el modelo Cross WLF, ha sido uno de los más usados por los softwares de simulación para aproximar el comportamiento de llenado de moldes de materiales termoplásticos. En la presente investigación se estudiará a profundidad cómo un paquete de simulación resuelve las ecuaciones de Navier-Stokes para la fase de llenado de moldes con el software Sigmasoft Virtual Molding. Posteriormente, se hará un análisis comparativo entre modelos de llenado 2.5D y 3D, descifrando a través de la discretización, el punto óptimo de operación con base a geometrías patrón presentes en las piezas de inyección con el material PC Makrolon 2805. Allí se obtuvo que, a partir de ocho elementos en el espesor de pared, los resultados convergen y tienen alta congruencia con mediciones de investigadores previos. Finalmente, se realiza un análisis de sensibilidad con base a la caracterización de laboratorio propia del material PP Purell HP371P de LyondeBassell para establecer el impacto que tiene cada término de la ecuación del modelo con base a un diseño de experimentos de proceso real y computacional (DoE), lo que permitió al final establecer ecuaciones de ajuste para obtener menor brecha entre los datos medidos y la simulación. La conclusión general fue que los términos A1, n, D1 y D2 tienen sensibilidad para resultados de presión, temperatura y viscosidad, encajan en una ecuación de ajuste y determinan un efecto térmico junto a los factores adimensionales (n y D1) para corrección del modelo Cross WLF, situación que no sucedió para los efectos del esfuerzo de corte de transición (D4) y la dependencia de presión (D3).
dc.description.sponsorshipPM-Tec Servicios de Ingeniería S.A.S & SIGMA Engineering GmbH
dc.format.extent125
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleEvaluación de sensibilidad del modelo Cross WLF sobre la etapa de llenado en moldes de inyección
dc.title.alternativeSensitivity assessment of the Cross WLF model at the filling stage on injection molds
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Procesamiento de Materiales Poliméricos
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGrupo de Procesos Químicos y Bioquímicos
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesD. Cardozo, “A brief history of the filling simulation of injection moulding,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 223, no. 3, pp. 711–721, 2009.
dc.relation.referencesP. Kennedy and R. Zheng, Flow Analysis of Injection Molds. 2013.
dc.relation.referencesR. I. T. Rong Zheng and X.-J. Fan, Injection Molding : Integration of theory and modeling methods. 2011.
dc.relation.referencesM. Shaw, Introduction to Polymer Rheology. Hoboken: John Wiley & Sons Inc, 2012
dc.relation.referencesJ. Dealy and K. Wissbrun, Melt rheology and its role in plastics processing, vol. 49, no. 0. 1999.
dc.relation.referencesJ. Shoemaker, Moldflow Design Guide : A Resource for Plastics Engineers. 2006.
dc.relation.referencesHuamin Zhou, COMPUTER MODELING FOR INJECTION MOLDING :Simulation, Optimization, and Control. 2013.
dc.relation.referencesG. A. A. V. Haagh and F. N. Van De Vosse, “Simulation of three-dimensional polymer mould filling processes using a pseudo-concentration method,” Int. J. Numer. Methods Fluids, vol. 28, no. 9, pp. 1355–1369, 1998.
dc.relation.referencesR. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena. 2002.
dc.relation.referencesM. L. Williams, R. F. Landel, and J. D. Ferry, “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids.,” J. Am. Chem. Soc., vol. 77, no. 12, pp. 3701–3707, 1955.
dc.relation.referencesC. A. Hieber and H. H. Chiang, “Shear‐rate‐dependence modeling of polymer melt viscosity,” Polym. Eng. Sci., vol. 32, no. 14, pp. 931–938, 1992.
dc.relation.referencesT. A. Osswald and N. Rudolph, Polymer Rheology. 2015.
dc.relation.referencesP. Guerrier, G. Tosello, and J. H. Hattel, “Flow visualization and simulation of the filling process during injection molding,” CIRP J. Manuf. Sci. Technol., vol. 16, pp. 12–20, 2017.
dc.relation.referencesR. S. Spencer and G. D. Gilmore, “Equation of state for high polymers,” J. Appl. Phys., vol. 21, no. 6, pp. 523–526, 1950.
dc.relation.referencesJ. L. Berger and C. G. Gogos, “A numerical simulation of the cavity filling process with PVC in injection molding,” Polym. Eng. Sci., vol. 13, no. 2, pp. 102–112, 1973.
dc.relation.referencesG. Williams and H. A. Lord, “Mold filling studies for the injection molding of thermoplastic materials. part 1 : the flow of plastic materials in hot and cold walled circular channels,” Polym Eng Sci, vol. 15, no. 8, pp. 553–568, 1975.
dc.relation.referencesG. Menges and P. Thienel, “Mathematical and Experimental Determination of Temperature, Velocity, and Pressure Fields in Flat Molds During the Filling Process in Injection Molding of Thermoplastics,” Polym. Eng. Sci., vol. 18, no. 4, pp. 314–320, 1978.
dc.relation.referencesZ. Chen and L. S. Turng, “A review of current developments in process and quality control for injection molding,” Adv. Polym. Technol., vol. 24, no. 3, pp. 165–182, 2005.
dc.relation.referencesV. W. Wang, C. A. Hieber, and K. K. Wang, “Dynamic Simulation and Graphics for the Injection Molding of Three-Dimensional Thin Parts.,” J. Polym. Eng., vol. 7, no. 1, pp. 21–45, 1986.
dc.relation.referencesH. Zhou, Y. Zhang, and D. Li, “Injection moulding simulation of filling and post-filling stages based on a three-dimensional surface model,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 215, no. 10, pp. 1459–1463, 2001.
dc.relation.referencesT. J. Bress and D. R. Dowling, “Simulations and measurements of in-mold melt flow during the injection molding of polystyrene,” Polym. Eng. Sci., vol. 53, no. 4, pp. 770–779, 2013.
dc.relation.referencesG. A. A. V. Haagh, G. W. M. Peters, F. N. Van De Vosse, and H. E. H. Meijer, “A 3-D finite element model for gas-assisted injection molding: Simulations and experiments,” Polym. Eng. Sci., vol. 41, no. 3, pp. 449–465, 2001.
dc.relation.referencesB. Yan, H. Zhou, and D. Li, “Numerical simulation of the filling stage for plastic injection moulding based on the Petrov-Galerkin methods,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 221, no. 10, pp. 1573–1577, 2007.
dc.relation.referencesJ. P. Benitez-Rangel, A. Domínguez-González, G. Herrera-Ruiz, and M. Delgado-Rosas, “Filling process in injection mold: A review,” Polym. - Plast. Technol. Eng., vol. 46, no. 7, pp. 721–727, 2007.
dc.relation.referencesS. Jiang, Z. Wang, G. Zhou, and W. Yang, “An implicit control-volume finite element method and its time step strategies for injection molding simulation,” Comput. Chem. Eng., vol. 31, no. 11, pp. 1407–1418, 2007.
dc.relation.referencesJ. M. Hyman, “NUMERICAL METHODS FOR TRACKING INTERFACES* James M. HYMAN,” Interface, vol. 12, pp. 396–407, 1984.
dc.relation.referencesS. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988.
dc.relation.referencesE. Flender, L. Kallien, and E. Hepp, “New developments for process modeling of the thixitropic forming process,” in Magnesium Konferenz der Duerschen Gesellschaft für Metallkunde, 1998.
dc.relation.referencesJ. Zachert, “Analyse uns Simulation dreidimensionaler Strömungsvorgänge beim Spritzgießen,” RWTH Aachen, 1998.
dc.relation.referencesG. Dibelius, “Änlichkeitsprobleme im Maschinenbau Vorlesungsumdruck des Institutes für Dampf und Gasturbinen an der RWTH Aachen,” 1991.
dc.relation.referencesT. Gossel, “Vergleich de Strômungsberechnung mit 2D Schalenelementen und 3D-Volumenelementen,” RWTH Aachen, 1996.
dc.relation.referencesJ. P. Hernández-ortiz, Polymer processing: modeling and simulation, vol. 44, no. 05. 2013.
dc.relation.referencesF. H. Harlow, “Numerical Study of Large-Amplitude Free-Surface Motions,” Phys. Fluids, vol. 9, no. 5, p. 842, 1966.
dc.relation.referencesJ. A. Luoma and V. R. Voller, “An explicit scheme for tracking the filling front during polymer mold filling,” Appl. Math. Model., vol. 24, no. 8–9, pp. 575–590, 2000.
dc.relation.referencesD. C. Montgomery, Design and analysis of experiments, vol. 106, no. 11. 2017.
dc.relation.referencesG. Menges, W. Michaeli, P. Mohren, G. Menges, W. Michaeli, and P. Mohren, How to Make Injection Molds. 2012.
dc.relation.referencesJ. M. Piau and J. F. Agassant, Rheology for Polymer Melt Processing. 1996.
dc.relation.referencesF. Liu, L. Deng, and H. Zhou, “Residual Stress and Warpage Simulation,” in Computer Modeling for Injection Molding: Simulation, Optimization, and Control, 2013.
dc.relation.referencesA. Naranjo, P. Noriega, T. A. Osswald, and A. Roldán-alzate, Plastics Testing and Characterization Industrial Applications.
dc.relation.referencesASTM standards, “D792 − 13: Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement,” ASTM Int., vol. 15, no. 3, pp. 145–149, 2013.
dc.relation.referencesD. T. Ana-, S. Calorimeters, and R. Apparatus, “Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning,” pp. 1–7, 2019.
dc.relation.referencesD. S. C. Polyma, “Differential Scanning Calorimetry DSC 214.”
dc.relation.referencesJ. E.Mark, Physical Properties of Polymers Handbook, Second ed. ohio. 2007.
dc.relation.referencesASTM standards, “Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient,” Changes, vol. 05, pp. 1–5, 2017.
dc.relation.referencesJ. Wang, “PVT Properties of Polymers for Injection Molding,” Some Crit. Issues Inject. Molding, 2012.
dc.relation.referencesASTM standards, “Standard Test Method for Determination of Properties of Polymeric Materials by Means of a Capillary Rheometer 1,” Annu. B. ASTM Stand., vol. i, no. C, pp. 1–11, 2010.
dc.relation.referencesS. E. GmbH, “SIGMASOFT Virtual Molding.” Aachen, Alemania, 1998.
dc.relation.referencesA. Saitelli, Sensitivity Analysis in Practice, 1st ed. John Wiley & Sons Inc, 2004.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalFilling simulation
dc.subject.proposalsimulación de llenado
dc.subject.proposalmoldeo por inyección
dc.subject.proposalinjection molding
dc.subject.proposalllenado de moldes
dc.subject.proposalmolds filling
dc.subject.proposalreología
dc.subject.proposalrheology
dc.subject.proposalCross WLF
dc.subject.proposalCross WLF
dc.subject.proposalcaracterización de polímeros
dc.subject.proposalpolymers characterization
dc.subject.proposalSigmasoft Virtual Molding
dc.subject.proposalSigmasoft Virtual Molding
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito