Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorSaavedra Trujillo, Carlos Humberto
dc.contributor.advisorLeal Castro, Aura Lucía
dc.contributor.advisorEscobar Perez, Javier Antonio
dc.contributor.authorBravo Ojeda, Juan Sebastián
dc.date.accessioned2020-07-21T14:23:11Z
dc.date.available2020-07-21T14:23:11Z
dc.date.issued2020-07-01
dc.identifier.citationBravo-Ojeda J, Saavedra-Trujillo C, Leal-Castro Aura L, Escobar-Perez J.Descripción de tipos de carbapenemasas expresadas en Klebsiella sp. y Pseudomonas aeruginosa en hospitales de tercer nivel de la ciudad de Bogotá, estudio descriptivo. Parte 3: Comportamiento microbiológico y los mecanismos genéticos en aislamientos de Pseudomonas aeruginosa portadores del gen blaKPC en hospitales de tercer nivel de Bogotá. Universidad Nacional de Colombia-Sede Bogota; 2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77807
dc.description.abstractIntroduction: Pseudomonas aeruginosa is a Gram-negative rod and an opportunistic pathogen that causes infections in hospitalized patients, some of them with an special issue to treat due to their ability to become resistant to almost all the families of antibiotics available. One of its main mechanisms of resistance to carbapenems is the acquisition and production of carbapenemases, enzymes capable of hydrolyzing most β-lactam antibiotics. KPC enzyme, class A carbapenemase most frequently found in Enterobacteriaceae and widely distributed in Klebsiella pneumoniae. However, in Colombia, P. aeruginosa isolates were detected for the first time with this enzyme and since then, it has spread throughout the country. The objective of this study was to determine the genetic diversity of P. aeruginosa isolates that cause infection in patients treated in tertiary level hospitals in Bogotá, Colombia. Methodology: A descriptive observational cross-sectional study was carried out in adult patients treated at four third-level institutions in the city of Bogotá. The genetic relationship was determined by PFGE and complete genome sequencing of two isolates was established by PacBio. Results: During the study period, 23 isolates of P. aeruginosa resistant to carbapenems and carriers of blaKPC gene were identified. Of these, 19 (83%) had blaKPC-2 variant; and 2 blaKPC-3; blaVIM gene was detected in 3 (12%). 100% of isolates were multiresistant. PFGE analysis revealed 12 pulsotypes distributed in 8 different clones. Clone 1 was the most frequent and identified in the 4 institutions, suggesting a wide spread. Two sequenced isolates belonged to ST111 and ST235 (pandemic clones) and showed two new platforms for mobilization of blaKPC gene related to Tn3 transposon and ISPae38 insertion sequence. For the first time, the mobilization and acquisition of blaKPC-3 gene is detected in P. aeruginosa worldwide. Conclusion: Pseudomonas aeruginosa has acquired, maintained and assimilated carbapenemase KPC. The behavior of the enzyme activity in this pathogen, as its clinical implications and activity to new anti-infective agents are unknown, constituting a new challenge due to the impact on molecular diagnosis of resistance and for the clinician, due to its results in manifestations, prognosis and treatment. Key words: Pseudomonas aeruginosa, blaKPC-3, Carbapenems, Resistance, genetic variability, Colombia
dc.description.abstractIntroducción: Pseudomonas aeruginosa es una bacteria Gram-negativa y un patógeno oportunista que causa infecciones en pacientes hospitalizados, algunas de ellas de muy difícil tratamiento por su capacidad de volverse resistente a casi todas las familias de antibióticos disponibles. Uno de los principales mecanismos de resistencia a carbapenémicos en Pseudomonas aeruginosa es la adquisición y producción de carbapenemasas, enzimas capaces de hidrolizar la mayoría de antibióticos β-lactámicos. La enzima KPC es la carbapenemasa de clase A más frecuentemente hallada en Enterobacterias y ampliamente distribuida en Klebsiella pneumoniae. Sin embargo, en Colombia, se detectó por primera vez aislamientos de Pseudomonas aeruginosa con esta enzima y desde entonces se han diseminado por todo el país. El objetivo de este estudio fue determinar la diversidad genética de aislamientos de P. aeruginosa causantes de infección en pacientes atendidos en hospitales de tercer nivel de Bogotá, Colombia. Metodología: Se realizó un estudio observacional descriptivo de tipo corte transversal en pacientes adultos atendidos en cuatro instituciones de tercer nivel en la ciudad de Bogotá. La relación genética fue determinada por PFGE y el genoma completo de dos aislamientos fue establecido por medio de PacBio. Resultados: Durante el periodo de estudio, 23 aislamientos de P. aeruginosa resistentes a carbapenémicos y portadores del gen blaKPC fueron identificados. De estos, 19 (83%) tenían la variante blaKPC-2; y 2 blaKPC-3; en 3 (12%) fue detectado el gen blaVIM. El 100% de los aislamientos fueron multirresistentes. El análisis PFGE reveló 12 pulsotipos distribuidos en 8 clones diferentes. El clon 1 fue el más frecuente e identificado en las 4 instituciones, sugiriendo una amplia diseminación. Los dos aislamientos secuenciados pertenecieron a los ST111 y ST235 (clones pandémicos) y mostraron dos nuevas plataformas de movilización del gen blaKPC relacionadas con el transposón Tn3 y la secuencia de inserción ISPae38. Por primera vez se detecta la movilización y adquisición del gen blaKPC-3 en P. aeruginosa a nivel mundial. Conclusión: Pseudomonas aeruginosa ha adquirido, mantenido y asimilado la carbapenemasa KPC. Se desconoce el comportamiento de la actividad de la enzima en este patógeno, así como sus implicaciones clínicas y actividad a nuevos agentes anti-infecciosos, constituyendo un nuevo desafío por el impacto en diagnóstico molecular de resistencia y para clínico por su resultado en manifestaciones, pronóstico y tratamiento. Palabras clave: Pseudomonas aeruginosa, blaKPC-3, Carbapenémicos, Resistencia, variabilidad genética, Colombia.
dc.format.extent64
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleDescripción de tipos de carbapenemasas expresadas en Klebsiella sp. y Pseudomonas aeruginosa en hospitales de tercer nivel de la ciudad de Bogotá, estudio descriptivo. Parte 3: Comportamiento microbiológico y los mecanismos genéticos en aislamientos de Pseudomonas aeruginosa portadores del gen blaKPC en hospitales de tercer nivel de Bogotá
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Especialidad en Infectología
dc.description.degreelevelEspecialidades Médicas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesGREBO. Grupo para el control de la resistencia bacteriana en Bogotá. Boletín informativo. 2015.
dc.relation.referencesConde C, Saavedra C LA. Descripción de tipos de carbapenemasas expresadas en Klebsiella sp. y Pseudomonas aeruginosa en hospitales de tercer nivel de la ciudad de Bogotá, estudio descriptivo. Universidad Nacional de Colombia;
dc.relation.referencesPacheco R, Osorio L, Correa AM, Villegas MV. Prevalencia de bacterias Gram negativas portadoras del gen blaKPC en hospitales de Colombia. Biomédica [Internet]. 2014 Apr 1;34(Sup1 SE-Artículos originales):81–90. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/1642
dc.relation.referencesVillegas MV, Lolans K, Correa A, Kattan JN, Lopez JA, Quinn JP, et al. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother [Internet]. 2007/01/29. 2007 Apr;51(4):1553–5. Available from: https://pubmed.ncbi.nlm.nih.gov/17261621
dc.relation.referencesVanegas JM, Cienfuegos A V, Ocampo AM, López L, del Corral H, Roncancio G, et al. Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. J Clin Microbiol. 2014 Nov;52(11):3978–86.
dc.relation.referencesWorld Health Organization - WHO. Antimicrobial resistance: global report on surveillance. 2014. 257 p.
dc.relation.referencesPrabaker K, Weinstein RA. Trends in antimicrobial resistance in intensive care units in the United States. Curr Opin Crit Care. 2011 Oct;17(5):472–9.
dc.relation.referencesvan Duijn PJ, Dautzenberg MJD, Oostdijk EAN. Recent trends in antibiotic resistance in European ICUs. Curr Opin Crit Care. 2011 Dec;17(6):658–65.
dc.relation.referencesRhomberg PR, Jones RN. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program: a 10-year experience in the United States (1999-2008). Diagn Microbiol Infect Dis. 2009 Dec;65(4):414–26.
dc.relation.referencesCenters for Disease Control and Prevention. Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep. 2013 Mar;62(9):165–70.
dc.relation.referencesCenters for Disease Control and Prevention. Antibiotic Resistance Threats in the United States. [Internet]. 2013. Available from: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
dc.relation.referencesBorer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol. 2009 Oct;30(10):972–6.
dc.relation.referencesVillalobos AP, Díaz MH, Barrero LI, Rivera SM, Henríquez DE, Villegas MV et al. Tendencias de los fenotipos de resistencia bacteriana en los hospitales públicos y privados de alta complejidad de Colombia. Rev Panam Salud Pública. 2011;30 (6):627–33.
dc.relation.referencesMaya JJ, Ruiz SJ, Blanco VM, Gotuzzo E, Guzman-Blanco M, Labarca J, et al. Current status of carbapenemases in Latin America. Expert Rev Anti Infect Ther. 2013 Jul;11(7):657–67.
dc.relation.referencesYigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001 Apr;45(4):1151–61.
dc.relation.referencesRuiz-Garbajosa P, Curiao T, Tato M, Gijón D, Pintado V, Valverde A, et al. Multiclonal dispersal of KPC genes following the emergence of non-ST258 KPC-producing Klebsiella pneumoniae clones in Madrid, Spain. J Antimicrob Chemother. 2013 Nov;68(11):2487–92.
dc.relation.referencesGales AC, Castanheira M, Jones RN, Sader HS. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008-2010). Diagn Microbiol Infect Dis. 2012 Aug;73(4):354–60.
dc.relation.referencesMensa J, Gatell J G-SJ et al. Guía de terapéutica antimicrobiana [Internet]. Barcelona: Editorial Antares; 2010. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=6336737
dc.relation.referencesBennett JE, Dolin R, Blaser MJ. Mandell, Douglas y Bennett. Enfermedades infecciosas. Síndrome de inmunodeficiencia adquirida [Internet]. Elsevier Health Sciences Spain; 2015. Available from: https://books.google.com.co/books?id=txJACwAAQBAJ
dc.relation.referencesBush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010 Mar;54(3):969–76.
dc.relation.referencesVillegas MV, Lolans K, Correa A, Suarez CJ, Lopez JA, Vallejo M, et al. First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob Agents Chemother [Internet]. 2006 Aug;50(8):2880–2. Available from: https://pubmed.ncbi.nlm.nih.gov/16870793
dc.relation.referencesMojica Medina MF. Widespread Dissemination of KPC-2 and 3-Producing Enterobacteriaceae (EB) in Colombia. In: 51 st Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago-USA; 2011.
dc.relation.referencesGasink LB, Edelstein PH, Lautenbach E, Synnestvedt M, Fishman NO. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Infect Control Hosp Epidemiol [Internet]. 2009 Dec;30(12):1180–5. Available from: https://pubmed.ncbi.nlm.nih.gov/19860564
dc.relation.referencesZavascki AP, Barth AL, Gonçalves ALS, Moro ALD, Fernandes JF, Martins AF, et al. The influence of metallo-beta-lactamase production on mortality in nosocomial Pseudomonas aeruginosa infections. J Antimicrob Chemother. 2006 Aug;58(2):387–92.
dc.relation.referencesCrespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, et al. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol. 2004 Nov;42(11):5094–101.
dc.relation.referencesVillegas MV, Lolans K, del Rosario Olivera M, Suarez CJ, Correa A, Queenan AM, et al. First detection of metallo-beta-lactamase VIM-2 in Pseudomonas aeruginosa isolates from Colombia. Antimicrob Agents Chemother. 2006 Jan;50(1):226–9.
dc.relation.referencesMontealegre MC, Correa A, Briceño DF, Rosas NC, De La Cadena E, Ruiz SJ, et al. Novel VIM metallo-beta-lactamase variant, VIM-24, from a Klebsiella pneumoniae isolate from Colombia. Antimicrob Agents Chemother [Internet]. 2011/01/31. 2011 May;55(5):2428–30. Available from: https://pubmed.ncbi.nlm.nih.gov/21282438
dc.relation.referencesRojas LJ, Mojica MF, Blanco VM, Correa A, Montealegre MC, De La Cadena E, et al. Emergence of Klebsiella pneumoniae Coharboring KPC and VIM Carbapenemases in Colombia. Antimicrob Agents Chemother [Internet]. 2012/12/10. 2013 Feb;57(2):1101–2. Available from: https://pubmed.ncbi.nlm.nih.gov/23229478
dc.relation.referencesEscobar Pérez JA, Olarte Escobar NM, Castro-Cardozo B, Valderrama Márquez IA, Garzón Aguilar MI, Martinez de la Barrera L, et al. Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrob Agents Chemother. 2013 Apr;57(4):1957–60.
dc.relation.referencesVillegas MV, Kattan JN, Correa A, Lolans K, Guzman AM, Woodford N, et al. Dissemination of Acinetobacter baumannii clones with OXA-23 Carbapenemase in Colombian hospitals. Antimicrob Agents Chemother [Internet]. 2007/04/02. 2007 Jun;51(6):2001–4. Available from: https://pubmed.ncbi.nlm.nih.gov/17403994
dc.relation.referencesMontealegre MC, Maya JJ, Correa A, Espinal P, Mojica MF, Ruiz SJ, et al. First identification of OXA-72 carbapenemase from Acinetobacter pittii in Colombia. Antimicrob Agents Chemother [Internet]. 2012/04/16. 2012 Jul;56(7):3996–8. Available from: https://pubmed.ncbi.nlm.nih.gov/22508295
dc.relation.referencesVanegas JM, Higuita LF, Vargas CA, Cienfuegos AV, Rodríguez EA, Roncancio GE, et al. Acinetobacter baumannii resistente a carbapenémicos causante de osteomielitis e infecciones de la piel y los tejidos blandos en hospitales de Medellín, Colombia. Biomédica [Internet]. 2015 Dec 1;35(4 SE-Artículos originales):522–30. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/2572
dc.relation.referencesInstituto Nacional de Salud. Resultados del Programa de Informe de Resultados de la Vigilancia por Laboratorio de Resistencia antimicrobiana en Infecciones Asociadas a la Atención en Salud (IAAS) 2017. 2017;
dc.relation.referencesEl Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, et al. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015;10(10):1683–706.
dc.relation.referencesXiao M, Wang Y, Yang Q-W, Fan X, Brown M, Kong F, et al. Antimicrobial susceptibility of Pseudomonas aeruginosa in China: a review of two multicentre surveillance programmes, and application of revised CLSI susceptibility breakpoints. Int J Antimicrob Agents [Internet]. 2012;40(5):445–9. Available from: http://www.sciencedirect.com/science/article/pii/S0924857912002798
dc.relation.referencesPotron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob Agents. 2015 Jun;45(6):568–85.
dc.relation.referencesWalsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev [Internet]. 2005 Apr;18(2):306–25. Available from: https://pubmed.ncbi.nlm.nih.gov/15831827
dc.relation.referencesMarquez-Ortiz RA, Haggerty L, Olarte N, Duarte C, Garza-Ramos U, Silva-Sanchez J, et al. Genomic Epidemiology of NDM-1-Encoding Plasmids in Latin American Clinical Isolates Reveals Insights into the Evolution of Multidrug Resistance. Genome Biol Evol. 2017 Jun;9(6):1725–41.
dc.relation.referencesSevillano E, Gallego L, García-Lobo JM. First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. Pathol Biol (Paris). 2009 Sep;57(6):493–5.
dc.relation.referencesAbril D, Marquez-Ortiz RA, Castro-Cardozo B, Moncayo-Ortiz JI, Olarte Escobar NM, Corredor Rozo ZL, et al. Genome plasticity favours double chromosomal Tn4401b-blaKPC-2 transposon insertion in the Pseudomonas aeruginosa ST235 clone. BMC Microbiol [Internet]. 2019;19(1):45. Available from: https://doi.org/10.1186/s12866-019-1418-6
dc.relation.referencesMartinez E, Pérez JE, Buelvas F, Tovar C, Vanegas N, Stokes HW. Establishment and multi drug resistance evolution of ST235 Pseudomonas aeruginosa strains in the intensive care unit of a Colombian hospital. Res Microbiol. 2014 Dec;165(10):852–6.
dc.relation.referencesPirnay J-P, De Vos D, Cochez C, Bilocq F, Vanderkelen A, Zizi M, et al. Pseudomonas aeruginosa displays an epidemic population structure. Environ Microbiol. 2002 Dec;4(12):898–911.
dc.relation.referencesPirnay J-P, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, et al. Pseudomonas aeruginosa population structure revisited. PLoS One. 2009 Nov;4(11):e7740.
dc.relation.referencesMulet X, Cabot G, Ocampo-Sosa AA, Domínguez MA, Zamorano L, Juan C, et al. Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother. 2013 Nov;57(11):5527–35.
dc.relation.referencesX. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol [Internet]. 2011/05/18. 2011 Jul;49(7):2578–83. Available from: https://pubmed.ncbi.nlm.nih.gov/21593258
dc.relation.referencesPeña C, Cabot G, Gómez-Zorrilla S, Zamorano L, Ocampo-Sosa A, Murillas J, et al. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2015 Feb;60(4):539–48.
dc.relation.referencesMiriagou V, Cornaglia G, Edelstein M, Galani I, Giske CG, Gniadkowski M, et al. Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2010 Feb;16(2):112–22.
dc.relation.referencesNordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis [Internet]. 2012 Sep;18(9):1503–7. Available from: https://pubmed.ncbi.nlm.nih.gov/22932472
dc.relation.referencesCury AP, Andreazzi D, Maffucci M, Caiaffa-Junior HH, Rossi F. The modified Hodge test is a useful tool for ruling out Klebsiella pneumoniae carbapenemase. Clinics (Sao Paulo) [Internet]. 2012 Dec;67(12):1427–31. Available from: https://pubmed.ncbi.nlm.nih.gov/23295597
dc.relation.referencesGiakkoupi P, Vourli S, Polemis M, Kalapothaki V, Tzouvelekis LS, Vatopoulos AC. Supplementation of growth media with Zn2+ facilitates detection of VIM-2-producing Pseudomonas aeruginosa. Vol. 46, Journal of clinical microbiology. 2008. p. 1568–9.
dc.relation.referencesTsakris A, Kristo I, Poulou A, Themeli-Digalaki K, Ikonomidis A, Petropoulou D, et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol. 2009 Feb;47(2):362–7.
dc.relation.referencesPasteran F, Mendez T, Guerriero L, Rapoport M, Corso A. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol [Internet]. 2009/04/22. 2009 Jun;47(6):1631–9. Available from: https://pubmed.ncbi.nlm.nih.gov/19386850
dc.relation.referencesGiske CG, Gezelius L, Samuelsen Ø, Warner M, Sundsfjord A, Woodford N. A sensitive and specific phenotypic assay for detection of metallo-β-lactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin Microbiol Infect [Internet]. 2011;17(4):552–6. Available from: http://www.sciencedirect.com/science/article/pii/S1198743X14632729
dc.relation.referencesVandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. PLOS Med [Internet]. 2007 Oct 16;4(10):e297. Available from: https://doi.org/10.1371/journal.pmed.0040297
dc.relation.referencesWorld Health Organization - WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2017; Available from: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/
dc.relation.referencesKung VL, Ozer EA, Hauser AR. The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev [Internet]. 2010 Dec;74(4):621–41. Available from: https://pubmed.ncbi.nlm.nih.gov/21119020
dc.relation.referencesTato M, Coque TM, Baquero F, Cantón R. Dispersal of carbapenemase blaVIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010 Jan;54(1):320–7.
dc.relation.referencesJuhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev [Internet]. 2008/10/29. 2009 Mar;33(2):376–93. Available from: https://pubmed.ncbi.nlm.nih.gov/19178566
dc.relation.referencesMorales-Espinosa R, Soberón-Chávez G, Delgado-Sapién G, Sandner-Miranda L, Méndez JL, González-Valencia G, et al. Genetic and phenotypic characterization of a Pseudomonas aeruginosa population with high frequency of genomic islands. PLoS One [Internet]. 2012/05/25. 2012;7(5):e37459–e37459. Available from: https://pubmed.ncbi.nlm.nih.gov/22662157
dc.relation.referencesBattle SE, Rello J, Hauser AR. Genomic islands of Pseudomonas aeruginosa. FEMS Microbiol Lett [Internet]. 2009 Jan 1;290(1):70–8. Available from: https://doi.org/10.1111/j.1574-6968.2008.01406.x
dc.relation.referencesBennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol. 2008 Mar;153 Suppl(Suppl 1):S347-57.
dc.relation.referencesBonnin RA, Poirel L, Nordmann P, Eikmeyer FG, Wibberg D, Pühler A, et al. Complete sequence of broad-host-range plasmid pNOR-2000 harbouring the metallo-β-lactamase gene blaVIM-2 from Pseudomonas aeruginosa. J Antimicrob Chemother. 2013 May;68(5):1060–5
dc.relation.referencesLi H, Toleman MA, Bennett PM, Jones RN, Walsh TR. Complete Sequence of p07-406, a 24,179-base-pair plasmid harboring the blaVIM-7 metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother. 2008 Sep;52(9):3099–105.
dc.relation.referencesRodríguez-Andrade E, Hernández-Ramírez KC, Díaz-Peréz SP, Díaz-Magaña A, Chávez-Moctezuma MP, Meza-Carmen V, et al. Genes from pUM505 plasmid contribute to Pseudomonas aeruginosa virulence. Antonie Van Leeuwenhoek. 2016 Mar;109(3):389–96.
dc.relation.referencesHerschleb J, Ananiev G, Schwartz DC. Pulsed-field gel electrophoresis. Nat Protoc. 2007;2(3):677–84.
dc.relation.referencesAbril Riaño DJ. Análisis de las plataformas genéticas de movilización de genes de resistencia en el clon de Pseudomonas aeruginosa ST235 causante de infecciones en Colombia [Internet]. Universidad Nacional de Colombia - Sede Bogotá; 2017 Apr. Available from: http://bdigital.unal.edu.co/57072/
dc.relation.referencesMonteiro J, Widen RH, Pignatari ACC, Kubasek C, Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother. 2012 Apr;67(4):906–9.
dc.relation.referencesCurran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol. 2004 Dec;42(12):5644–9.
dc.relation.referencesLi H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010 Mar;26(5):589–95.
dc.relation.referencesMilne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, et al. Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform. 2013 Mar;14(2):193–202.
dc.relation.referencesKrumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics. 2007 Apr;23(8):1026–8.
dc.relation.referencesSeemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014 Jul;30(14):2068–9.
dc.relation.referencesZankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012 Nov;67(11):2640–4.
dc.relation.referencesMcArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013 Jul;57(7):3348–57.
dc.relation.referencesGupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother [Internet]. 2014;58(1):212–20. Available from: http://europepmc.org/abstract/MED/24145532
dc.relation.referencesArndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res [Internet]. 2016/05/03. 2016 Jul 8;44(W1):W16–21. Available from: https://pubmed.ncbi.nlm.nih.gov/27141966
dc.relation.referencesLangille MGI, Brinkman FSL. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics [Internet]. 2009/01/16. 2009 Mar 1;25(5):664–5. Available from: https://pubmed.ncbi.nlm.nih.gov/19151094
dc.relation.referencesSullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics [Internet]. 2011/01/28. 2011 Apr 1;27(7):1009–10. Available from: https://pubmed.ncbi.nlm.nih.gov/21278367
dc.relation.referencesCuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob Agents Chemother. 2011 Nov;55(11):5370–3.
dc.relation.referencesNaas T, Cuzon G, Truong H-V, Nordmann P. Role of ISKpn7 and deletions in blaKPC gene expression. Antimicrob Agents Chemother. 2012 Sep;56(9):4753–9
dc.relation.referencesCheruvanky A, Stoesser N, Sheppard AE, Crook DW, Hoffman PS, Weddle E, et al. Enhanced Klebsiella pneumoniae Carbapenemase Expression from a Novel Tn4401 Deletion. Antimicrob Agents Chemother. 2017 Jun;61(6).
dc.relation.referencesHernández-Gómez C, Blanco VM, Motoa G, Correa A, Maya JJ, de la Cadena E, et al. Evolución de la resistencia antimicrobiana de bacilos Gram negativos en unidades de cuidados intensivos en Colombia. Biomédica [Internet]. 2014 Apr 1;34(Sup1 SE-Artículos originales):91–100. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/1667
dc.relation.referencesPragasam AK, Yesurajan F, Doss C GP, George B, Devanga Ragupathi NK, Walia K, et al. Draft Genome Sequence of Extremely Drug-Resistant Pseudomonas aeruginosa (ST357) Strain CMC_VB_PA_B22862 Isolated from a Community-Acquired Bloodstream Infection. Genome Announc. 2016 Oct;4(5).
dc.relation.referencesBonnin RA, Bogaerts P, Girlich D, Huang T-D, Dortet L, Glupczynski Y, et al. Molecular Characterization of OXA-198 Carbapenemase-Producing Pseudomonas aeruginosa Clinical Isolates. Antimicrob Agents Chemother. 2018 Jun;62(6).
dc.relation.referencesShankar C, Mathur P, Venkatesan M, Pragasam AK, Anandan S, Khurana S, et al. Rapidly disseminating blaOXA-232 carrying Klebsiella pneumoniae belonging to ST231 in India: multiple and varied mobile genetic elements. BMC Microbiol. 2019 Jun;19(1):137.
dc.relation.referencesDoi Y. Treatment Options for Carbapenem-resistant Gram- negative Bacterial Infections. Clinical Infectious Diseases. 2019;69(S7): S565–75.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPseudomonas aeruginosa
dc.subject.proposalPseudomonas aeruginosa
dc.subject.proposalblaKPC-3
dc.subject.proposalblaKPC-3
dc.subject.proposalCarbapenems
dc.subject.proposalCarbapenémicos
dc.subject.proposalResistencia
dc.subject.proposalResistance
dc.subject.proposalGenetic variability
dc.subject.proposalVariabilidad genética
dc.subject.proposalColombia.
dc.subject.proposalColombia
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito