Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorGuerrero Fajardo, Carlos Alberto
dc.contributor.advisorLópez Nieto, José Manuel
dc.contributor.authorCortés Ortiz, William Giovanni
dc.date.accessioned2020-07-21T22:57:50Z
dc.date.available2020-07-21T22:57:50Z
dc.date.issued2020-07-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77809
dc.description.abstractAntes de iniciar, es el momento de compartir que como suele ocurrir en la investigación científica, usualmente se inicia con una idea puntual y definida y durante la marcha está cambia un poco de rumbo. Así, a pesar de que el título y los objetivos del presente documento se centran en la oxidación catalítica de metano para obtener metanol, durante la lectura se encontrará información relacionada con la oxidación catalítica de metanol a los diferentes productos que se pueden obtener, como dimetil éter, formaldehído, dimetoximetano y óxidos de carbono. La razón de los anterior surgió durante el desarrollo del trabajo con base en la pregunta, ¿Qué pasará con el metanol que se forme a partir de la oxidación de metano? De esta manera, se decidió evaluar la inicialmente la oxidación catalítica de metanol con el fin de reconocer los productos a los cuales podría llegar la oxidación de metano si no se lograba “parar” la reacción en el producto intermedio buscado, el metanol. Dicho lo anterior, también es prudente hacer la salvedad de que a pesar de que inicialmente, con base en la experiencia de los trabajos adelantados al interior del grupo se definió usar materiales catalíticos con hierro y molibdeno sintetizados por el método sol-gel, durante el desarrollo del estudio se decidió buscar otras alternativas lo cual condujo a sintetizar materiales por el mismo método, pero incluyendo vanadio y un caso excepcional cambiando el método de síntesis, por impregnación. Así, además de lo propuesto en el título y objetivos el documento, este se extiende un poco más con el fin de querer comprender que ocurre en los procesos de oxidación catalítica empleando diferentes catalizadores. La oxidación catalítica de hidrocarburos es un proceso que se evalúa desde los inicios de la catálisis debido a la importancia de obtener productos de interés comercial que contribuyan con el desarrollo industrial y económico del mundo. En el presente documento se presentan los resultados de la síntesis y caracterización de materia-les catalíticos de hierro, molibdeno y vanadio, así como, los resultados de actividad catalítica en la oxidación de metano y metanol. Inicialmente se presenta una breve historia de la catálisis, así como de los procesos de oxidación selectiva de hidrocarburos. Se aborda los conceptos básicos involucrados en la catálisis heterogénea haciendo hincapié en el papel de los materiales cata-líticos en procesos químicos de oxidación. De la misma manera, se muestra los métodos de preparación denominados en la literatura como sol-gel e impregnación, identificando la influencia de cada etapa de preparación con las propiedades físicas y químicas de los materiales. Adicionalmente, se presenta los conceptos relevantes de algunas de las técnicas instrumentales empleadas para reconocer las propiedades físicas y químicas de los catalizadores, lo cual brinda información y permite el entendimiento de la composición y estructura de los materiales. Por otra parte, se presentan aspectos relacionados con la obtención de metanol a partir de gas de síntesis y se abordan algunas de las características más importantes de la oxidación catalítica de metanol, tales como condiciones de reacción, propiedades requeridas en los catalizadores y los productos de interés. Así mismo, se estudian las necesidades específicas requeridas para la oxidación selectiva de metano a metanol, partiendo de la premisa de la dificultad del proceso debido a la estabilidad de la molécula de metano. Adicionalmente se ilustran los tipos de materiales catalíticos empleados y los resultados de conversión y selectividad; de la misma manera, se abordan las reacciones que pueden ocurrir y los productos que se pueden formar durante el proceso de oxidación catalítica de metano a metanol o formaldehído con el fin de comprender las implicaciones experimentales que trae tal proceso. Posteriormente, se presentan los resultados obtenidos en la síntesis de materiales catalíticos de hierro, molibdeno, vanadio y la mezcla de los tres, soportados en sílice por el método sol-gel. Tales materiales son empleados en las reacciones de oxidación selectiva de metanol y metano. Dentro de los resultados, se evidencia que la sílice empleada como soporte presenta dos formas de cuarzo dependiendo de la temperatura de calcinación a la cual se someta, α-cuarzo y β-cuarzo. Por otra parte, se identifica que los materiales preparados con diferentes cargas de hierro (0,5, 1,5 y 5,0 % en masa) y calcinados a 450 y 750°C presentan, además de una banda característica de la sílice, una serie de picos asignados a especies de hierro tipo hematita α-Fe2O3 lo cual permite concluir que la transformación térmica del precursor de hierro (acetato de hierro heptahidratado) permitió la obtención de óxidos de hierro con estado de oxidación Fe3+. Una vez discutidos los resultados de la caracterización, se presenta los resultados de actividad catalítica en los procesos de oxidación de metanol y metano. Inicialmente se describe el sistema catalítico empleado, luego, se discuten los resultados cata-líticos obtenidos empleando catalizadores de hierro, molibdeno y vanadio soportados en óxido de silicio en función de la carga de metales, temperaturas de calcinación y condiciones de síntesis. Para la oxidación de metanol se observan valores de conversión alrededor del 90 % en mol con selectividades a diferentes productos de reacción como formaldehído, dimetil éter, formiato de metilo. En cuanto a la oxidación catalítica de metano, se observan valores de conversión alrededor de 3,0 % en mol con selectividades principalmente a formaldehído y óxidos de carbono. Por otra parte, se presenta una comparación de los resultados de actividad catalítica en los procesos de oxidación de metano y metanol. La comparación se hace empleando catalizadores de hierro, molibdeno y hierro-molibdeno, sintetizados por el mismo método sol-gel (modificando el pH). De esta manera, se presentan los resultados de caracterización de los catalizadores por diferentes métodos físicos y químicos, así como, los resultados de actividad catalítica en la oxidación de metano y metanol. Se observa que el control del pH durante la síntesis por el método sol-gel mejora la dispersión de los metales en la matriz de sílice. Finalmente, se presentan las conclusiones generales de acuerdo con los resultados obtenidos, así como, recomendaciones que permitan orientar las siguientes actividades a realizar, direccionadas hacia la síntesis de materiales catalíticos y la evaluación en procesos de oxidación de metano y metanol.
dc.description.abstractBefore starting, it is time to share that, as is often the case in scientific research, it usually starts with a specific and defined idea and during the march, it changes a bit. Thus, despite the fact that the title and objectives of this document focus on the catalytic oxidation of methane to obtain methanol, during the reading you will find information related to the catalytic oxidation of methanol to the different products that can be obtained, such as dimethyl ether, formaldehyde, dimethoxymethane, and carbon oxides. The reason for the above emerged during the development of the work based on the question: What will happen to the methanol that is formed from the oxidation of methane? In this way, it was decided to initially evaluate the catalytic oxidation of methanol in order to recognize the products to which the oxidation of methane could reach if it were not possible to “stop” the reaction in the desired inter-mediate product, methanol. Having said the above, it is also prudent to make the caveat that although initially, based on the experience of the work carried out within the group, it was defined to use catalytic materials with iron and molybdenum synthesized by the sol-gel method, but during the study, it was decided to look for other alternatives, which led to synthesizing materials by the same method but including vanadium and an exceptional case changing the synthesis method, by impregnation. Thus, in addition to what is proposed in the title and objectives of the document, it is extended a little more in order to understand what happens in catalytic oxidation processes using different catalysts. Catalytic oxidation of hydrocarbons is a process that is evaluated from the beginning of catalysis. Is used due to the importance of obtaining products of commercial interest that contribute to the industrial and economic development of the world. This document shows results in the synthesis and characterization of the catalytic materials of iron, molybdenum, and vanadium, as well as, results of the catalytic activity in the oxidation of methane and methanol. Initially, a brief history of catalysis is presented, as well as, the processes of selective oxidation of hydrocarbons. The basic concepts involved in heterogeneous catalysis are discussed, emphasizing the role of catalytic materials in chemical oxidation processes. In the same way, it shows the preparation methods denominated in the literature as sol-gel and impregnation, identifying the influence of each stage of preparation with the physical and chemical properties of the materials. Additionally, the relevant concepts of some of the instrumental techniques used to recognize the physical and chemical properties of the catalysts are presented, which provides information and allows the understanding of the composition and structure of the materials. On the other hand, aspects related to the production of methanol from synthesis gas are presented and some of the most important characteristics of the catalytic oxidation of methanol, such as reaction conditions, properties required in the catalysts, and the products of interest. Likewise, the specific needs required for the selective oxidation of methane to methanol are studied, starting from the premise of the difficulty of the process due to the stability of the methane molecule. Additionally, the types of catalytic materials used, and the conversion and selectivity results are illustrated. In the same way, the reactions that can occur and the products that can be formed during the process of catalytic oxidation of methane to methanol or formaldehyde are addressed in order to understand the experimental implications that such a process brings. Subsequently, the results obtained in the synthesis of catalytic materials of iron, molybdenum, vanadium, and the mixture of the three, supported in silica by the sol-gel method are presented. Such materials are used in the selective oxidation reactions of methanol and methane. Within the results, it is evident that the silica used as support has two forms of quartz depending on the calcination temperature to which it is subjected, α-quartz, and β-quartz. On the other hand, it is identified that materials prepared with different iron loads (0.5, 1.5 and 5.0 wt%) and calcined at 450 and 750 °C present, in addition to a characteristic band of silica, a series of peaks assigned to hematite iron species α-Fe2O3 which allows concluding that the thermal transformation of the iron precursor (iron acetate heptahydrate) allowed obtaining iron oxides with Fe3+ oxidation state. Once the results of the characterization have been discussed, the results of catalytic activity in the methanol and methane oxidation processes are presented. Initially, the catalytic system used is described, which is divided into three blocks: feeding, reaction, and analysis. Once the generalities of the processes have been described, the catalytic results obtained using catalytic materials of iron, molybdenum, and vanadium supported in silicon oxide as a function of the metal load, calcination temperatures, and synthesis conditions are discussed. For the oxidation of methanol, conversion values are observed around 90 mol % with selectivities to different reaction products such as formaldehyde, dimethyl ether, methyl formate. As for the catalytic oxidation of methane, conversion values are observed around 3.0 mol % with selectivities mainly to formaldehyde and carbon oxides. On the other hand, a comparison of the results of catalytic activity in the oxidation processes of methane and methanol is presented. The comparison is made using iron, molybdenum, and iron-molybdenum catalysts, synthesized by the same sol-gel method (modifying the pH). In this way, the results of the characterization of the catalysts by different physical and chemical methods are presented, as well as the results of catalytic activity in the oxidation of methane and methanol. It is observed that the pH control during the synthesis by the sol-gel method improves the dispersion of the metals in the silica matrix. Finally, the general conclusions are presented in accordance with the results obtained, as well as recommendations for orienting the following activities to be carried out, aimed at the synthesis of catalytic materials and the evaluation of methane and methanol oxidation processes.
dc.format.extent234
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleObtención de metanol a partir de la oxidación selectiva de metano empleando materiales catalíticos de hierro y molibdeno soportados en óxido de silicio
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectEvaluación de materiales catalíticos de hierro y molibdeno soportados en óxido de silicio en la oxidación selectiva de metano a metanol.
dc.description.additionalTrabajo realizado bajo con un convenio de cotutela con la Universidad Politécnica de Valencia.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupAprovechamiento Energético de Recursos Naturales
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesD. Burtron, “Development of the Science of Catalysis,” in Handbook of Heterogeneous Catalysis, Wiley, 2008, pp. 17–38.
dc.relation.referencesG. Somorjai, “Surfaces - An introduction,” in Introduction to Surface Chemistry and Catalysis, 1st ed., Wiley, 1994, pp. 1–36.
dc.relation.referencesU. Nieken and O. Watzenberger, “Periodic operation of the Deacon process,” Chem. Eng. Sci., vol. 54, no. 13–14, pp. 2619–2626, Jul. 1999.
dc.relation.referencesM.-Á. Gómez-García, I. Dobrosz-Gómez, E. GilPavas, and J. Rynkowski, “Simulation of an industrial adiabatic multi-bed catalytic reactor for sulfur dioxide oxidation using the Maxwell–Stefan model,” Chem. Eng. J., vol. 282, pp. 101–107, Dec. 2015.
dc.relation.referencesY. H. Hu and E. Ruckenstein, “Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming,” Adv. Catal., vol. 48, pp. 297–345, Jan. 2004.
dc.relation.referencesV. Sadykov et al., “Oxide catalysts for ammonia oxidation in nitric acid production: properties and perspectives,” Appl. Catal. A Gen., vol. 204, no. 1, pp. 59–87, Nov. 2000.
dc.relation.referencesA. Lattes, “De l’hydrogénation catalytique à la théorie chimique de la catalyse : Paul Sabatier, chimiste de génie, apôtre de la décentralisation,” Comptes Rendus l’Académie des Sci. - Ser. IIC - Chem., vol. 3, no. 9, pp. 705–709, Sep. 2000.
dc.relation.referencesR. Zimdahl, “Nitrogen,” Six Chem. That Chang. Agric., pp. 55–72, Jan. 2015.
dc.relation.referencesJ. M. López Nieto and B. Solsona, Gas phase heterogeneous partial oxidation reactions. 2018.
dc.relation.referencesR. K. Grasselli, “Fundamental principles of selective heterogeneous oxidation catalysis,” Top. Catal., vol. 21, no. 1–3, pp. 79–88, 2002.
dc.relation.referencesP. Mars and D. W. Van Krevelen, “Oxidations carried out by means of vanadium oxide catalysts,” Chem. Eng. Sci., vol. 3, pp. 41–59, 1954.
dc.relation.referencesB. M. Reddy, “Redox Properties of Metal Oxides,” in Chemistry and Applications, J. L. G. Fierro, Ed. CRC Press Taylor & Francis, 2005.
dc.relation.referencesB. K. Hodnett, Heterogeneous Catalytic Oxidation. London, United Kingdom: John Wiley & Sons Inc., 2000.
dc.relation.referencesA. J. Medford et al., “From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis q,” vol. 328, pp. 36–42, 2015.
dc.relation.referencesS. P. S. Andrew, “Theory and practice of the formulation of heterogeneous catalysts,” Chem. Eng. Sci., vol. 36, no. 9, pp. 1431–1445, 1981.
dc.relation.referencesC. Perego and P. Villa, “Catalyst preparation methods,” Catal. Today, vol. 34, pp. 281–305, 1997.
dc.relation.referencesB. Heinrichs, S. Lambert, N. Job, and J. P. Pirard, “Sol-Gel Synthesis of Supported Metals,” in Catalyst Preparation Science and Engineering, Taylor& Francis Group, 2007, pp. 163–208.
dc.relation.referencesN. R. Hunter, H. D. Gesser, L. A. Morton, and P. S. Yarlagadda, “Methanol Formation at High Pressure by the Catalyzed Oxidation of Natural Gas and by the Sensitized Oxidation of Methane,” Appl. Catal., vol. 57, pp. 45–54, 1990.
dc.relation.referencesS. Teichner and G. Gardes, “Methods for the Manufacture of Composite Catalysts Containing a Composition of a Transition Metal on a Support,” 3963646, 1976.
dc.relation.referencesM. Astier et al., “Preparation and Catalytic Properties of Supported Metal or Metal-Oxide on Inorganic Oxide Aerogels,” Stud. Surf. Sci. Catal., vol. 1, no. 3, pp. 315–330, 1976.
dc.relation.referencesS. Kistler, “Coherent Expanded-Aerogels,” J. Phys. Chem., vol. 36, no. 1, pp. 52–64, 1931.
dc.relation.referencesA. Kaiser, C. Gorsmann, and C. Schubert, “Influence of the Metal Complexation on Size and Composition of Cu/Ni Nano-Particles Prepared by Sol-Gel Processing,” J. Sol-Gel Sci. Technol., vol. 8, no. 1–3, pp. 795–799, 1997.
dc.relation.referencesB. Heinrichs, F. Noville, and J. P. Pirard, “Pd/SiO2-cogelled aerogel catalysts and impregnated aerogel and xerogel catalysts: Synthesis and characterization,” J. Catal., vol. 170, no. 2, pp. 366–376, 1997.
dc.relation.referencesS. Lambert, C. Cellier, P. Grange, J. P. Pirard, and B. Heinrichs, “Synthesis of Pd/SiO2, Ag/SiO2, and Cu/SiO 2 cogelled xerogel catalysts: Study of metal dispersion and catalytic activity,” J. Catal., vol. 221, no. 2, pp. 335–346, 2004.
dc.relation.referencesC. J. Brinker and G. Scherer, Sol-Gel Science The Physics and Chemistry of Sol–Gel Processing. Elsevier, 1990.
dc.relation.referencesD. Ward and E. Ko, “Preparing Catalytic Materials by the Sol-Gel Method,” Ind. Eng. Chem. Res., vol. 34, no. 2, pp. 421–433, 1995.
dc.relation.referencesM. Schneider and A. Baiker, “Titania-based aerogels,” Catal. Today, vol. 35, pp. 339–365, 1997.
dc.relation.referencesC. J. Brinker, “Hydrolysis and condensation of silicates: Effects on structure,” J. Non. Cryst. Solids, vol. 100, no. 1–3, pp. 31–50, 1988.
dc.relation.referencesA. J. Lecloux and J. P. Pirard, “High-temperature catalysts through sol – gel synthesis,” J. Non. Cryst. Solids, vol. 225, pp. 146–152, 1998.
dc.relation.referencesD. Dutoit, M. Scheneider, and A. Baiker, “Titania-Silica Mixed Oxides: I. Influence of Sol-Gel and Drying Conditions on Structural Properties,” J. Catal., vol. 153, no. 1, pp. 165–176, 1995.
dc.relation.referencesW. G. Cortés Ortiz, A. Baena Novoa, and C. A. Guerrero Fajardo, “Structuring-agent role in physical and chemical properties of Mo/SiO2 catalysts by sol-gel method,” J. Sol-Gel Sci. Technol., vol. 89, no. 2, pp. 416–425, 2019.
dc.relation.referencesJ. Geus, “Production of Supported Catalysts by Impregnation and (Viscous) Drying,” in Catalyst Preparation Science and Engineering, 2007, pp. 341–370.
dc.relation.references. B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 1,” Trans. Faraday Soc., vol. 63, pp. 1801–1806, 1967.
dc.relation.referencesP. B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 2,” Trans. Faraday Soc., vol. 63, pp. 1807–1814, 1967.
dc.relation.referencesP. B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 3,” Trans. Faraday Soc., vol. 63, pp. 1815–1823, 1967.
dc.relation.referencesS. Lee and R. Aris, “The Distribution of Active ingredients in Supported Catalysts Prepared by Impregnation,” Catal. Rev. Sci. Eng., vol. 27, no. 2, pp. 207–340, 1985.
dc.relation.referencesE. Gaigneaux, D. De Vos, P. Jacobs, and J. Martens, Scientific Bases for the Preparation of Heterogeneous Catalysts. Elsevier science, 2002.
dc.relation.referencesJ. Richardson and J. Harker, “Crystallisation,” in Coulson and Richardson’s Chemical Engineering, 5th ed., Elsevier science, 2002, pp. 827–897.
dc.relation.referencesG. Bergeret and P. Gallezot, “Determination of the atomic structure of solid catalysts by X-ray diffraction,” in Catalyst Characterization Physical Techniques for Solid Materials, 1st ed., B. Imelik and J. Vedrine, Eds. New York: Springer, 1994, pp. 417–442.
dc.relation.referencesY. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography. New York: Springer, 2011.
dc.relation.referencesW. F. Smith and J. Hashemi, Fundamentos de la Ciencia e Ingeniería de Materiales, 4th ed. McGraw Hill, 2006.
dc.relation.referencesG. Coudurier and F. Lefebvre, “Infrared Spectroscopy,” in Catalyst Characterization Physical Techniques for Solid Materials, B. Imelik and J. C. Vedrine, Eds. New York: Springer, 1994, pp. 11–43.
dc.relation.referencesE. Garbowsky and G. Coudurier, “Raman Spectroscopy,” in Catalyst Characterization Physical Techniques for Solid Materials, B. Imelik and J. C. Vedrine, Eds. New York: Springer, 1994, pp. 45–60.
dc.relation.referencesD. C. Boffito et al., “Spectroscopy,” in Experimental Methods and Instrumentation for Chemical Engineers, Second Edi., G. . Patience, Ed. Amsterdan: Elsevier B.V., 2018, pp. 339–383.
dc.relation.referencesE. Garbowsky and H. Praliaud, “Electronic spectroscopy,” in Catalyst Characterization Physical Techniques for Solid Materials, B. Imelik and J. C. Vedrine, Eds. Amsterdan: Springer, 1994, pp. 61–90.
dc.relation.referencesM. Fadoni and L. Lucarelli, “Temperature programmed desorption, reduction, oxidation and flow chemisorption for the characterisation of heterogeneous catalysts. Theoretical aspects, instrumentation and applications,” in Studies in Surface Science and Catalysis, vol. 120, A. Dabrowski, Ed. Elsevier, 1999, pp. 177–225.
dc.relation.referencesK. S. W. Sing, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity,” Pure Appl. Chem., vol. 54, no. 11, pp. 2201–2218, 1982.
dc.relation.referencesASTM, Standard Practice for Calculation of Pore Size Distributions of Catalysts and Catalyst Carriers from Nitrogen Desorption Isotherms. United States, 2012, pp. 1–6.
dc.relation.referencesJ. R. H. Ross, Heterogeneous Catalysis Fundamentals and Applications, 1st ed. Amsterdan: Elsevier, 2012.
dc.relation.referencesA. Yoshida, Y. Kaburagi, and Y. Hishiyama, “Scanning Electron Microscopy,” in Materials Science and Engineering of Carbon, Tsinghua University Press Limited, 2016, pp. 71–93.
dc.relation.referencesT. Kogure, “Electron Microscopy,” in Handbook of Clay Science, 2nd ed., vol. 5, Elsevier Ltd., 2013, pp. 275–317.
dc.relation.referencesM. Aziz and A. F. Ismail, “X-Ray Photoelectron Spectroscopy,” in Membrane Characterization, Elsevier B.V., 2017, pp. 81–93.
dc.relation.referencesS. T. Yong, C. W. Ooi, S. P. Chai, and X. S. Wu, “Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes,” Int. J. Hydrogen Energy, vol. 38, no. 22, pp. 9541–9552, 2013.
dc.relation.referencesA. Riaz, G. Zahedi, and J. Klemes, “A review of cleaner production methods for the manufacture of methanol,” J. Clean. Prod., vol. 57, pp. 19–37, 2013.
dc.relation.referencesM. J. da Silva, “Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM ),” Fuel Process. Technol., vol. 145, pp. 42–61, 2016.
dc.relation.referencesP. G. Cifre and O. Badr, “Renewable hydrogen utilisation for the production of methanol,” vol. 48, pp. 519–527, 2007.
dc.relation.referencesA. Alizadeh, N. Mostoufi, and F. Jalali-Farahani, “Multiobjective Dynamic Optimization of an Industrial Steam Reformer with Genetic Algorithms,” Int. J. Chem. React. Eng., vol. 5, no. 1, 2007.
dc.relation.referencesA. P. E. York, T. C. Xiao, M. L. H. Green, and J. B. Claridge, “Methane oxyforming for synthesis gas production,” Catal. Rev. - Sci. Eng., vol. 49, no. 4, pp. 511–560, 2007.
dc.relation.referencesH. al-Qahtani, “Effect of ageing on a steam reforming catalyst,” Chem. Eng. J., vol. 66, no. 1, pp. 51–56, Jan. 1997.
dc.relation.referencesJ.-P. Lange, “Methanol synthesis: a short review of technology improvements,” Catal. Today, vol. 64, no. 1–2, pp. 3–8, Jan. 2001.
dc.relation.referencesP. J. . Tijm, F. . Waller, and D. . Brown, “Methanol technology developments for the new millennium,” Appl. Catal. A Gen., vol. 221, no. 1–2, pp. 275–282, Nov. 2001.
dc.relation.referencesS. S. Öztürk, Y. T. Shah, and W.-D. Deckwer, “Comparison of gas and liquid phase methanol synthesis processes,” Chem. Eng. J., vol. 37, no. 3, pp. 177–192, Mar. 1988.
dc.relation.referencesR. Malhotra, Fossyl Energy: Selected Entries from the Encyclopedia of Sustainability Science and Technology. Oxford UK: Springer, 2012.
dc.relation.referencesR. Raudaskoski, E. Turpeinen, R. Lenkkeri, E. Pongrácz, and R. L. Keiski, “Catalytic activation of CO2: Use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts,” Catal. Today, vol. 144, no. 3–4, pp. 318–323, Jun. 2009.
dc.relation.referencesF. Manenti, S. Cieri, and M. Restelli, “Considerations on the steady-state modeling of methanol synthesis fixed-bed reactor,” Chem. Eng. Sci., vol. 66, no. 2, pp. 152–162, Jan. 2011.
dc.relation.referencesG. Zahedi, A. Jahanmiri, and M. R. Rahimpor, “A Neural Network Approach for Prediction of the CuO-ZnO-Al2O3 Catalyst Deactivation,” Int. J. Chem. React. Eng., vol. 3, no. 1, 2005.
dc.relation.referencesD. Delgado et al., “Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol,” Eur. J. Inorg. Chem., vol. 2018, no. 10, pp. 1204–1211, 2018.
dc.relation.referencesJ. M. Tatibouët, “Methanol oxidation as a catalytic surface probe,” Appl. Catal. A Gen., vol. 148, no. 2, pp. 213–252, 1997.
dc.relation.referencesH. Hu and I. E. Wachs, “Catalytic properties of supported molybdenum oxide catalysts: In situ Raman and methanol oxidation studies,” J. Phys. Chem., vol. 99, no. 27, pp. 10911–10922, 1995.
dc.relation.referencesY. C. Liu, G. L. Griffin, S. S. Chan, and I. E. Wachs, “Photo-oxidation of methanol using MoO3TiO2: Catalyst structure and reaction selectivity,” J. Catal., vol. 94, no. 1, pp. 108–119, Jul. 1985.
dc.relation.referencesJ. S. Chung, R. Miranda, and C. O. Bennett, “Mechanism of partial oxidation of methanol over MoO3,” J. Catal., vol. 114, no. 2, pp. 398–410, Dec. 1988.
dc.relation.referencesM. Ai, “Catalytic activity for the oxidation of methanol and the acid-base properties of metal oxides,” J. Catal., vol. 54, no. 3, pp. 426–435, Oct. 1978.
dc.relation.referencesN. Pernicone, F. Lazzerin, G. Liberti, and G. Lanzavecchia, “On the mechanism of CH3OH oxidation to CH2O over MoO3-Fe2(MoO4)3 catalyst,” J. Catal., vol. 14, no. 4, pp. 293–302, Aug. 1969.
dc.relation.referencesG. Busca, A. S. Elmi, and P. Forzatti, “Mechanism of selective methanol oxidation over vanadium oxide-titanium oxide catalysts: A FT-IR and flow reactor study,” J. Phys. Chem., vol. 91, no. 20, pp. 5263–5269, 1987.
dc.relation.referencesG. Busca, “On the mechanism of methanol oxidation over vanadia-based catalysts: a FT-IR study of the adsorption of methanol, formaldehyde and formic acid on vanad,” J. Mol. Catal., vol. 50, no. 2, pp. 241–249, Mar. 1989.
dc.relation.referencesA. S. Elmi, E. Tronconi, C. Cristiani, J. P. Gomez Martin, P. Forzatti, and G. Busca, “Mechanism and Active Sites for Methanol Oxidation to Methyl Formate over Coprecipitated Vanadium-Titanium Oxide Catalysts,” Ind. Eng. Chem. Res., vol. 28, no. 4, pp. 387–393, 1989.
dc.relation.referencesG. Busca, “Infrared studies of the reactive adsorption of organic molecules over metal oxides and of the mechanisms of their heterogeneously-catalyzed oxidation,” Catal. Today, vol. 27, no. 3–4, pp. 457–496, Feb. 1996.
dc.relation.referencesL. Kong et al., “Green and rapid synthesis of iron molybdate catalyst by mechanochemistry and their catalytic performance for the oxidation of methanol to formaldehyde,” Chem. Eng. J., vol. 364, pp. 390–400, May 2019.
dc.relation.referencesH. Adkins and W. R. Peterson, “The oxidation of methanol with air over iron, molybdenum, and iron-molybdenum oxides,” J. Am. Chem. Soc., vol. 53, no. 4, pp. 1512–1520, 1931.
dc.relation.referencesB. R. Yeo et al., “The surface of iron molybdate catalysts used for the selective oxidation of methanol,” Surf. Sci., vol. 648, pp. 163–169, 2016.
dc.relation.referencesT. C. R. Rocha et al., “The silver-oxygen system in catalysis: New insights by near ambient pressure X-ray photoelectron spectroscopy,” Phys. Chem. Chem. Phys., vol. 14, no. 13, pp. 4554–4564, 2012.
dc.relation.referencesB. M. Reddy, “Redox Properties of Metal Oxides,” in Metal Oxides Chemistry and Applications, J. L. G. Fierro, Ed. New York, EE.UU: Taylor & Francis Group, 2006, pp. 215–236.
dc.relation.referencesG. Deo and I. E. Wachs, “Reactivity of Supported Vanadium Oxide Catalysts: The Partial Oxidation of Methanol,” J. Catal., vol. 146, no. 2, pp. 323–334, Apr. 1994.
dc.relation.referencesD. Monti, A. Reller, and A. Baiker, “Methanol oxidation on K2SO4-promoted vanadium pentoxide: Activity, reducibility, and structure of catalysts,” J. Catal., vol. 93, no. 2, pp. 360–367, 1985.
dc.relation.referencesD. Gasser, “Methanol oxidation on vanadium oxide catalyst prepared by in situ activation of amorphous vanadium pentoxide precursor,” J. Catal., vol. 113, no. 2, pp. 325–333, 1988.
dc.relation.referencesL. Briand, L. Gambaro, and H. Thomas, “Promotion effects of titanium on partial oxidation of methanol over vanadium pentoxide catalysts,” J. Catal., vol. 161, no. 2, pp. 839–860, 1996.
dc.relation.referencesC. T. Wang, M. T. Chen, and D. L. Lai, “Surface characterization and reactivity of vanadium-tin oxide nanoparticles,” Appl. Surf. Sci., vol. 257, no. 11, pp. 5109–5114, 2011.
dc.relation.referencesD. P. Depuccio, L. Ruíz, E. Rodríguez, P. Botella, J. M. López Nieto, and C. C. Landry, “Investigating the Influence of Au Nanoparticles on Porous SiO2- WO3 and WO3 Methanol Transformation Catalysts,” J. Phys. Chem., vol. 120, pp. 27954–27963, 2016.
dc.relation.referencesG. C. Behera and K. Parida, “Selective gas phase oxidation of methanol to formaldehyde over aluminum promoted vanadium phosphate,” Chem. Eng. J., vol. 180, pp. 270–276, 2012.
dc.relation.referencesR. M. Navarro, M. A. Peña, and J. L. G. Fierro, “Methane Oxidation on Metal Oxides,” in Metal Oxides Chemistry and Applications, J. L. G. Fierro, Ed. New York, EE.UU: Taylor& Francis Group, 2006, pp. 463–482.
dc.relation.referencesW. Taifan and J. Baltrusaitis, “CH4 conversion to value added products: Potential, limitations and extensions of a single step heterogeneous catalysis,” Appl. Catal. B Environ., vol. 198, 2016.
dc.relation.referencesV. R. Choudhary, A. S. Mamman, and S. D. Sansare, “Selective Oxidation of Methane to CO and H, over Ni/MgO at Low Temperatures,” Angew. Chemie, no. 9, pp. 1189–1190, 1992.
dc.relation.referencesA. Ashcroft, A. Cheetham, and M. Green, “Partial oxidation of methane to synthesis gas using carbon dioxide,” Nature, vol. 352, pp. 225–226, 1991.
dc.relation.referencesJ. S. Lee and S. T. Oyama, “Catalysis Reviews : Science and Engineering Oxidative Coupling of Methane to Higher Hydrocarbons,” Catal. Rev. Sci. Eng., vol. 30, no. 2, pp. 249–280, 1988.
dc.relation.referencesR. Aiello, J. E. Fiscus, H.-C. zur Loye, and M. D. Amiridis, “Hydrogen production via the direct cracking of methane over Ni/SiO2: catalyst deactivation and regeneration,” Appl. Catal. A Gen., vol. 192, no. 2, pp. 227–234, Feb. 2000.
dc.relation.referencesT. Choudhary, C. Sivadinarayana, C. Chusuei, A. Klinghoffer, and D. Goodman, “Hydrogen Production via Catalytic Decomposition of Methane,” J. Catal., vol. 199, no. 1, pp. 9–18, Apr. 2001.
dc.relation.referencesM. M. Koranne, D. W. Goodman, and G. W. Zajac, “Direct conversion of methane to higher hydrocarbons via an oxygen free, low-temperature route,” Catal. Letters, vol. 30, no. 1–4, pp. 219–234, 1995.
dc.relation.referencesR. Burch, D. J. Crittle, and M. J. Hayes, “C–H bond activation in hydrocarbon oxidation on heterogeneous catalysts,” Catal. Today, vol. 47, no. 1–4, pp. 229–234, Jan. 1999.
dc.relation.referencesR. Burch and M. J. Hayes, “C-H bond activation in hydrocarbon oxidation on solid catalysts,” J. Mol. Catal. A Chem., vol. 100, no. 1–3, pp. 13–33, Nov. 1995.
dc.relation.referencesK. Campbell, E. Morales, and J. Lunsford, “Gas-Phase Coupling of Methyl Radicals during the,” J. Am. Chem. Soc., vol. 109, no. 25, pp. 7900–7901, 1987.
dc.relation.referencesP. Forzatti and G. Groppi, “Catalytic combustion for the production of energy,” Catal. Today, vol. 54, no. 1, pp. 165–180, Nov. 1999.
dc.relation.referencesH. D. Gesser and N. R. Hunter, “A review of C-1 conversion chemistry,” Catal. Today, vol. 42, no. 3, pp. 183–189, 1998.
dc.relation.referencesY. Wang and K. Otsuka, “Catalytic Oxidation of Methane to Methanol with H2-O2 Gas Mixture at Atmospheric Pressure,” J. Catal., vol. 155, no. 2, pp. 256–267, Sep. 1995.
dc.relation.referencesD. Klvana, J. Chaouki, C. Guy, and J. Kirchnerová, “Catalytic combustion: New catalysts for new technologies,” Combust. Sci. Technol., vol. 121, no. 1–6, pp. 51–65, 1996.
dc.relation.referencesR. J. Farrauto and R. M. Heck, “Environmental catalysis into the 21st century,” Catal. Today, vol. 55, no. 1–2, pp. 179–187, Jan. 2000.
dc.relation.referencesS. Abelló and D. Montané, “Exploring iron-based multifunctional catalysts for fischer-tropsch synthesis: A review,” ChemSusChem, vol. 4, no. 11, pp. 1538–1556, 2011.
dc.relation.referencesJ. Hargreaves, G. Hutchings, and R. Joyner, “Control of product selectivity in the partial oxidation of methane.,” Nature, vol. 348, pp. 428–429, 1990.
dc.relation.referencesR. Herman, Q. Sun, C. Shi, and K. Klier, “Development of active oxide catalysts for the direct oxidation of methane to formaldehyde,” Catal. Today, vol. 37, pp. 1–14, 1997.
dc.relation.referencesY. I. Pyatnitskii, “Contemporary methods for the direct catalytic conversion of methane.,” Theor. Exp. Chem., vol. 39, no. 4, pp. 201–218, 2003.
dc.relation.referencesK. Fujimoto, F. H. Ribeiro, M. Avalos-Borja, and E. Iglesia, “Structure and Reactivity of PdOx / ZrO2 Catalysts for Methane Oxidation at Low Temperatures,” J. Catal., vol. 179, pp. 431–442, 1998.
dc.relation.referencesJ. Lange, “Economics of alkane conversion,” in Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities, E. Derouane, V. Parmon, F. Lemos, and F. Ramoa, Eds. Dordrecht: Springer, 2005, pp. 51–83.
dc.relation.referencesS. H. Taylor, J. S. J. Hargreaves, G. J. Hutchings, R. W. Joyner, and C. W. Lembacher, “The partial oxidation of methane to methanol: An approach to catalyst design,” Catal. Today, vol. 42, no. 3, pp. 217–224, Jul. 1998.
dc.relation.referencesC. Hammond et al., “Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5,” Angew. Chemie, vol. 51, no. 21, pp. 5129–5133, 2012.
dc.relation.referencesO. Benlounes, S. Mansouri, C. Rabia, and S. Hocine, “Direct oxidation of methane to oxygenates over heteropolyanions,” J. Nat. Gas Chem., vol. 17, no. 3, pp. 309–312, Sep. 2008.
dc.relation.referencesC. Michel and E. J. Baerends, “What Singles out the FeO2+ Moiety? A Density-Functional Theory Study of the Methane-to-Methanol Reaction Catalyzed by the First Row Transition-Metal Oxide Dications MO (H2O)p2+,M=V - Cu,” Inorg. Chem., vol. 48, no. 8, pp. 3628–3638, 2009.
dc.relation.referencesN. R. Foster, “Direct catalytic oxidation of methane to methanol — A review,” Appl. Catal., vol. 19, no. 1, pp. 1–11, Jan. 1985.
dc.relation.referencesG. S. Walker, J. A. Lapszewicz, and G. A. Foulds, “Partial oxidation of methane to methanol - comparison of heterogeneous catalyst and homogeneous gas phase reactions,” Catal. Today, vol. 21, no. 94, pp. 519–526, 1994.
dc.relation.referencesR. Raja and P. Ratnasamy, “Direct conversion of methane to methanol,” Appl. Catal. a-General, vol. 158, pp. L7–L15, 1997.
dc.relation.referencesS. H. Taylor, J. S. J. Hargreaves, G. J. Hutchings, R. W. Joyner, and C. W. Lembacher, “The partial oxidation of methane to methanol: An approach to catalyst design,” Catal. Today, vol. 42, pp. 217–224, 1998.
dc.relation.referencesY. Hu, M. Anpo, and C. Wei, “Effect of the local structures of V-oxides in MCM-41 on the photocatalytic properties for the partial oxidation of methane to methanol,” J. Photochem. Photobiol. A Chem., vol. 264, pp. 48–55, 2013.
dc.relation.referencesS. Mansouri, O. Benlounes, C. Rabia, R. Thouvenot, M. M. Bettahar, and S. Hocine, “Partial oxidation of methane over modified Keggin-type polyoxotungstates,” J. Mol. Catal. A Chem., vol. 379, pp. 255–262, 2013.
dc.relation.referencesM. V. Parfenov, E. V. Starokon, L. V. Pirutko, and G. I. Panov, “Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite,” J. Catal., vol. 318, pp. 14–21, 2014.
dc.relation.referencesA. Parmaliana and F. Arena, “Working Mechanism of Oxide Catalysts in the Partial Oxidation of Methane to Formaldehyde. I. Catalytic Behaviour of SiO2, MoO3/SiO2, V2O5/SiO2, TiO2, and V2O5/TiO2Systems,” J. Catal., vol. 167, no. 1, pp. 57–65, Apr. 1997.
dc.relation.referencesC. A. Guerrero Fajardo, “Oxidación selectiva de metano hasta formaldehído.,” Universidad Nacional de Colombia y Laboratoire Des Matériaux, Surfaces Et Procédés Pour La Catalyse, 2008.
dc.relation.referencesC. A. Guerrero Fajardo, Y. N’Guyen, C. Courson, and A.-C. Roger, “Fe/SiO2 catalysts for the selective oxidation of methane to formaldehyde,” Ing. e Investig., vol. 26, no. 2, pp. 37–44, 2006.
dc.relation.referencesJ. D. Del Río, G. A. Durán, Á. Londoño Orjuela, F. J. Sánchez, and C. A. Guerrero Fajardo, “Partial oxidation of methane to formaldehyde on MoO3, Fe2O3 and ferromolybdenum catalysts,” Ing. e Investig., vol. 27, no. 1, pp. 19–24, 2007.
dc.relation.referencesC. A. Guerrero-Fajardo, D. Niznansky, Y. N’Guyen, C. Courson, and A.-C. Roger, “Methane selective oxidation to formaldehyde with Fe-catalysts supported on silica or incorporated into the support,” Catal. Commun., vol. 9, no. 5, pp. 864–869, 2008.
dc.relation.referencesC. Guerrero and J. Sánchez, “Síntesis de catalizadores de Fe-Mo soportados sobre sílice para la oxidación selectiva de metano hasta formaldehído,” Ing. e Investig., vol. 29, no. 1, pp. 53–59, 2009.
dc.relation.referencesC. Alberto, G. Fajardo, F. José, S. Castellanos, A. Roger, and C. Courson, “Síntesis sol-gel de catalizadores de hierro soportados sobre sílice y titania para la oxidación selectiva de metano hasta formaldehído Sol-gel synthesis of iron catalysers supported on silica and titanium for selectively oxidising methane to formaldehyde,” vol. 28, no. 1, pp. 72–80, 2008.
dc.relation.referencesR. Sanchis et al., “Porous clays heterostructures as supports of iron oxide for environmental catalysis,” Chem. Eng. J., vol. 334, no. November 2017, pp. 1159–1168, 2018.
dc.relation.referencesS. Benomar, A. Massó, B. Solsona, R. Issaadi, and J. López Nieto, “Vanadium Supported on Alumina and/or Zirconia Catalysts for the Selective Transformation of Ethane and Methanol,” Catalysts, vol. 8, no. 4, 2018.
dc.relation.referencesC. V. Loricera, M. C. Alvarez-Galvan, R. Guil-Lopez, A. A. Ismail, S. A. Al-Sayari, and J. L. G. Fierro, “Structure and Reactivity of sol–gel V/SiO2 Catalysts for the Direct Conversion of Methane to Formaldehyde,” Top. Catal., vol. 60, no. 15–16, pp. 1129–1139, 2017.
dc.relation.referencesJ. M. López Nieto and B. Solsona, “Gas phase heterogeneous partial oxidation reactions,” in Metal Oxides in Heterogeneous Catalysis, J. C. Vedrine, Ed. Amsterdan}: Elsevier, 2018, pp. 211–286.
dc.relation.referencesF. Ivars and J. M. López Nieto, “Light Alkanes Oxidation: Targets Reached and Current Challenges,” in Handbook of Advanced Methods and Processes in Oxidation Catalysis, 2014, pp. 767–834.
dc.relation.referencesM. Bowker, M. House, A. Alshehri, C. Brookes, E. K. Gibson, and P. P. Wells, “Selectivity determinants for dual function catalysts: applied to methanol selective oxidation on iron molybdate,” Catal. Struct. React., vol. 1, no. 2, pp. 95–100, 2015.
dc.relation.referencesF. Adam and A. Iqbal, “Silica supported amorphous molybdenum catalysts prepared via sol-gel method and its catalytic activity,” Microporous Mesoporous Mater., vol. 141, no. 1–3, pp. 119–127, 2011.
dc.relation.referencesA. F. Wright and M. S. Lehmann, “The structure of quartz at 25 and 590°C determined by neutron diffraction,” J. Solid State Chem., vol. 36, no. 3, pp. 371–380, Mar. 1981.
dc.relation.referencesA. Alayat, D. . Mcllroy, and A. McDonald, “Effect of synthesis and activation methods on the catalytic properties of silica nanospring (NS)-supported iron catalyst for Fischer-Tropsch synthesis,” Fuel Process. Technol., vol. 169, pp. 132–141, Jan. 2018.
dc.relation.referencesS. Liu, K. Yao, L.-H. Fu, and M.-G. Ma, “Selective synthesis of Fe 3 O 4 , γ-Fe 2 O 3 , and α-Fe 2 O 3 using cellulose-based composites as precursors,” RSC Adv., vol. 6, no. 3, pp. 2135–2140, 2016.
dc.relation.referencesX. Zhang, Y. Niu, X. Meng, Y. Li, and J. Zhao, “Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres,” CrystEngComm, vol. 15, no. 40, p. 8166, 2013.
dc.relation.referencesG. S. Parkinson, “Iron oxide surfaces,” Surf. Sci. Rep., vol. 71, no. 1, pp. 272–365, Mar. 2016.
dc.relation.referencesG. M. Pajonk, “Aerogel Synthesis,” in Catalyst Preparation Science and Engineering, J. Regalbuto, Ed. Boca Raton: Taylor & Francis Group, 2007, pp. 31–44.
dc.relation.referencesV. K. Vyas et al., “Assessment of nickel oxide substituted bioactive glass-ceramic on in vitro bioactivity and mechanical properties,” Boletín la Soc. Española Cerámica y Vidr., vol. 55, no. 6, pp. 228–238, Nov. 2016.
dc.relation.referencesY. Wang, S. Huang, S. Kang, C. Zhang, and X. Li, “Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(II) removal,” Mater. Chem. Phys., vol. 132, no. 2–3, pp. 1053–1059, 2012.
dc.relation.referencesK. Khalil and S. Makhlouf, “High surface area thermally stabilized porous iron oxide/silica nanocomposites via a formamide modified sol–gel process,” Appl. Surf. Sci., vol. 254, no. 13, pp. 3767–3773, Apr. 2008.
dc.relation.referencesC. J. Brinker and G. Scherer, “Structural Evolution during Consolidation,” in Sol-Gel Science, San Diego: Academic Press, 1990, pp. 514–615.
dc.relation.referencesM. Pudukudy and Z. Yaakob, “Methane decomposition over Ni, Co and Fe based monometallic catalysts,” Chem. Eng. J., vol. 262, pp. 1009–1021, 2015.
dc.relation.referencesZ. Zhan and H. C. Zeng, “A catalyst-free approach for sol–gel synthesis of highly mixed ZrO2–SiO2 oxides,” J. Non. Cryst. Solids, vol. 243, pp. 26–38, 1999.
dc.relation.referencesR. Neumann and M. Levin-Elad, “Metal Oxide (TiO2, MoO3, WO3) Substituted Silicate Xerogels as Catalysts for the Oxidation of Hydrocarbons with Hydrogen Peroxide,” J. Catal., vol. 166, no. 2, pp. 206–217, Mar. 1997.
dc.relation.referencesR. Ahlawat, N. Rani, and B. Goswami, “Synthesis and characterizations of Eu2O3 nanocrystallites and its effect on optical investigations of Eu3+, Eu2+: SiO2 nanopowder,” J. Alloys Compd., vol. 743, pp. 126–135, 2018.
dc.relation.referencesT. Mahmood, S. U. Din, A. Naeem, S. Mustafa, M. WAseem, and M. Hamayun, “Adsorption of arsenate from aqueous solution on binary mixed oxide of iron and silicon,” Chem. Eng. J., vol. 192, pp. 90–98, Jun. 2012.
dc.relation.referencesA. H. Fakeeha, A. A. Ibrahim, W. U. Khan, K. Seshan, R. L. Al Otaibi, and A. S. Al-Fatesh, “Hydrogen production via catalytic methane decomposition over alumina supported iron catalyst,” Arab. J. Chem., vol. 11, no. 3, pp. 405–414, 2015.
dc.relation.referencesB. Gu et al., “Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas,” J. Energy Chem., vol. 26, no. 4, pp. 608–615, 2017.
dc.relation.referencesT. Tański, W. Matysiak, Ł. Krzemiński, P. Jarka, and K. Gołombek, “Optical properties of thin fibrous PVP/SiO 2 composite mats prepared via the sol-gel and electrospinning methods,” Appl. Surf. Sci., vol. 424, pp. 184–189, 2017.
dc.relation.referencesC. J. Brinker and G. W. Scherer, “Surface Chemistry and Chemical Modification,” in Sol-Gel Science, United states: Academic Press Inc., 1990, pp. 616–672.
dc.relation.referencesT. Herranz, S. Rojas, F. J. Pérez-Alonso, M. Ojeda, P. Terreros, and J. L. G. Fierro, “Carbon oxide hydrogenation over silica-supported iron-based catalysts: Influence of the preparation route,” Appl. Catal. A Gen., vol. 308, pp. 19–30, Jul. 2006.
dc.relation.referencesT. Tsoncheva et al., “Formation of catalytic active sites in iron modified activated carbons from agriculture residues,” Microporous Mesoporous Mater., vol. 217, pp. 87–95, 2015.
dc.relation.references“Enhanced adsorption of acetylsalicylic acid over hydrothermally synthesized iron oxide-mesoporous silica MCM-41 composites,” J. Taiwan Inst. Chem. Eng., vol. 65, pp. 591–598, Aug. 2016.
dc.relation.referencesS. Buttha, S. Youngme, J. Wittayakun, and S. Loiha, “Formation of iron active species on HZSM-5 catalysts by varying iron precursors for phenol hydroxylation,” Mol. Catal., vol. 461, no. June, pp. 26–33, 2018.
dc.relation.referencesJ. Pérez-Ramírez, “Active iron sites associated with the reaction mechanism of N2 O conversions over steam-activated FeMFI zeolites,” J. Catal., vol. 227, no. 2, pp. 512–522, 2004.
dc.relation.referencesM. S. Kumar, M. Schwidder, W. Grünert, and A. Brückner, “On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: New insights by a combined EPR and UV/VIS spectroscopic approach,” J. Catal., vol. 227, no. 2, pp. 384–397, 2004.
dc.relation.referencesP. M. Cuesta Zapata, M. S. Nazzarro, M. L. Parentis, E. E. Gonzo, and N. A. Bonini, “Effect of hydrothermal treatment on Cr-SiO2mesoporous materials,” Chem. Eng. Sci., vol. 101, pp. 374–381, 2013.
dc.relation.referencesK. S. W. Sing, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional),” Pure Appl. Chem., vol. 54, no. 11, 1982.
dc.relation.referencesJ. Feng, Y. Xiao, Y. Jiang, and J. Feng, “Synthesis, structure, and properties of silicon oxycarbide aerogels derived from tetraethylortosilicate/polydimethylsiloxane,” Ceram. Int., vol. 41, pp. 5281–5286, 2015.
dc.relation.referencesJ. B. Pang, K. Y. Qiu, and Y. Wei, “Preparation of mesoporous silica materials with non-surfactant hydroxy-carboxylic acid compounds as templates via sol ± gel process,” vol. 283, pp. 101–108, 2001.
dc.relation.referencesK. Khoabane, E. M. Mokoena, and N. J. Coville, “Synthesis and study of ammonium oxalate sol-gel templated silica gels,” Microporous Mesoporous Mater., vol. 83, no. 1–3, pp. 67–75, 2005.
dc.relation.referencesE. Paparazzo, XPS studies of Fe/Al2O3 and Fe82B18/Al2O3 small particle systems. Elsevier B.V., 2013.
dc.relation.referencesA. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre, “Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds,” Surf. Interface Anal., vol. 36, no. 12, pp. 1564–1574, 2004.
dc.relation.referencesG. . Bukhtiyarova, V. . Bukhtiyarov, N. . Sakaeva, V. . Kaichev, and B. . Zolotovskii, “XPS study of the silica-supported Fe-containing catalysts for deep or partial H2S oxidation,” J. Mol. Catal. A Chem., vol. 158, no. 1, pp. 251–255, Sep. 2000.
dc.relation.referencesJ. D. Desai, H. M. Pathan, S.-K. Min, K.-D. Jung, and O. S. Joo, “FT-IR, XPS and PEC characterization of spray deposited hematite thin films,” Appl. Surf. Sci., vol. 252, no. 5, pp. 1870–1875, Dec. 2005.
dc.relation.referencesG. F. Moreira, E. R. Peçanha, M. B. M. Monte, L. S. Leal, and F. Stavale, “XPS study on the mechanism of starch-hematite surface chemical complexation,” Miner. Eng., vol. 110, no. April, pp. 96–103, 2017.
dc.relation.references“Assessment of nickel oxide substituted bioactive glass-ceramic on in vitro bioactivity and mechanical properties,” Boletín la Soc. Española Cerámica y Vidr., vol. 55, no. 6, pp. 228–238, Nov. 2016.
dc.relation.referencesN. Maheswari and G. Muralidharan, “Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices,” Appl. S, vol. 416, pp. 461–469, 2017.
dc.relation.referencesM. A. Bañares and J. L. G. Fierro, “Methane-Selective Oxidation of Silica-Supported Molybdenum ( VI ) Catalysts Structure and Catalytic Performance,” in Catalytic selective oxidation, no. Vi, Washington, DC: American Chemical Society, 1993, pp. 354–367.
dc.relation.referencesC. C. Williams, J. G. Ekerdt, J. M. Jehng, F. D. Hardcastle, and I. E. Wachs, “A Raman and ultraviolet diffuse reflectance spectroscopic investigation of alumina-supported molybdenum oxide,” J. Phys. Chem., vol. 95, no. 22, pp. 8791–8797, 1991.
dc.relation.referencesN. Kakuta and Y. Udagawa, “Molybdenum Oxide Structure on Silica-Supported Catalysts Studied by Raman Spectroscopy and Extended X-ray Absorption Fine Structure Spectroscopy,” J. Phys. Chem., vol. 92, no. 4, pp. 2583–2587, 1988.
dc.relation.referencesC. Balachandran, J. F. Muñoz, and T. Arnold, “Characterization of alkali silica reaction gels using Raman spectroscopy,” Cem. Concr. Res., vol. 92, pp. 66–74, 2017.
dc.relation.referencesA. A. Ibrahim, A. H. Fakeeha, A. S. Al-Fatesh, A. E. Abasaeed, and W. U. Khan, “Methane decomposition over iron catalyst for hydrogen production,” Int. J. Hydrogen Energy, vol. 40, no. 24, pp. 7593–7600, 2015.
dc.relation.referencesL. Feng, X. Li, D. B. Dadyburjor, and E. L. Kugler, “A temperature-programmed-reduction study on alkali-promoted, carbon-supported molybdenum catalysts,” J. Catal., vol. 190, no. 1, pp. 1–13, 2000.
dc.relation.referencesM. A. Banares, H. Hu, and I. E. Wachs, “Molybdena on silica catalysts: Role of preparation methods on the structure-selvtivity properties fo the oxidation of methanol,” J. Catal., vol. 150, pp. 407–420, 1994.
dc.relation.referencesS. Rajagopal, H. . Marini, A. Marzari, and R. Miranda, “Silica-Alumina-Supported Acidic Molybdenum Catalysts - TPR and XRD Characterization,” J. Catal., vol. 147, pp. 417–428, 1994.
dc.relation.referencesC.-B. Wang, R. G. Herman, C. Shi, Q. Sun, and J. E. Roberts, “V2O5-SiO2 xerogels for methane oxidation to oxygenates: preparation, characterization, and catalytic properties,” Appl. Catal. A Gen., vol. 247, no. 2, pp. 321–333, Jul. 2003.
dc.relation.referencesC. V. Loricera, M. C. Alvarez-Galvan, R. Guil-Lopez, A. A. Ismail, S. A. Al-Sayari, and J. L. G. Fierro, “Structure and Reactivity of sol–gel V/SiO2Catalysts for the Direct Conversion of Methane to Formaldehyde,” Top. Catal., vol. 60, no. 15–16, pp. 1129–1139, 2017.
dc.relation.referencesD. E. Keller, T. Visser, F. Soulimani, D. C. Koningsberger, and B. M. Weckhuysen, “Hydration effects on the molecular structure of silica-supported vanadium oxide catalysts: A combined IR, Raman, UV-vis and EXAFS study,” Vib. Spectrosc., vol. 43, no. 1, pp. 140–151, 2007.
dc.relation.referencesJ. He, Y. Li, D. An, Q. Zhang, and Y. Wang, “Selective oxidation of methane to formaldehyde by oxygen over silica-supported iron catalysts,” J. Nat. Gas Chem., vol. 18, no. 3, pp. 288–294, 2009.
dc.relation.referencesC. G. Hill and J. H. Wilson III, “Raman spectroscopy of iron molybdate catalyst systems Part II . Preparation of supported catalysts,” J. Mol. Catal., vol. 67, pp. 57–77, 1991.
dc.relation.referencesD. Jing and M. Skoglundh, “Controlling Selectivity in Direct Conversion of Methane into Formaldehyde/Methanol over Iron Molybdate via Periodic Operation Conditions,” Energy Fuels, vol. 26, pp. 1984–1987, 2012.
dc.relation.referencesS. Lai et al., “Performance of Fe-ZSM-5 for selective catalytic reduction of NOx with NH3: Effect of the atmosphere during the preparation of catalysts,” J. Mol. Catal. A Chem., vol. 424, pp. 232–240, Dec. 2016.
dc.relation.referencesY. Miao, G. Lu, X. Liu, Y. Guo, Y. Wang, and Y. Guo, “The molybdenum species of MoO3/SiO2 and their catalytic activities for the epoxidation of propylene with cumene hydroperoxide,” J. Ind. Eng. Chem., vol. 16, no. 1, pp. 45–50, Jan. 2010.
dc.relation.referencesA. Duan et al., “Characterization and activity of Mo supported catalysts for diesel deep hydrodesulphurization,” Catal. Today, vol. 119, no. 1–4, pp. 13–18, Jan. 2007.
dc.relation.referencesL. Meng, X. Zhu, and E. J. M. Hensen, “Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol,” ACS Catal., vol. 7, no. 4, pp. 2709–2719, 2017.
dc.relation.referencesM. F. Cardinal, M. Lovino, and D. L. Bernik, “Comparative study of the porosity induced by CTAB and Tween as silica templates,” Mater. Sci. Eng. C, vol. 27, no. 1, pp. 75–79, Jan. 2007.
dc.relation.referencesJ. Cecilia, M. Soriano, A. Natoli, E. Rodríguez-Castellón, and J. López Nieto, “Selective Oxidation of Hydrogen Sulfide to Sulfur Using Vanadium Oxide Supported on Porous Clay Heterostructures (PCHs) Formed by Pillars Silica, Silica-Zirconia or Silica-Titania,” Materials (Basel)., vol. 11, no. 9, p. 1562, 2018.
dc.relation.referencesB. Solsona, T. Blasco, J. . Lopez Nieto, M. . Peña, F. Rey, and A. Vidal-Moya, “Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes,” J. Catal., vol. 203, pp. 443–452, 2001.
dc.relation.references“Quartz Mineral Data.” [Online]. Available: http://webmineral.com/data/Quartz.shtml#.XOityIhKjIU. [Accessed: 24-May-2019].
dc.relation.references“Hematite Mineral Data.” [Online]. Available: http://webmineral.com/data/Hematite.shtml#.XOisR4hKjIU. [Accessed: 24-May-2019].
dc.relation.references“Molybdite Mineral Data.” [Online]. Available: http://webmineral.com/data/Molybdite.shtml#.XOitI4hKjIU. [Accessed: 24-May-2019].
dc.relation.references“Shcherbinaite Mineral Data.” [Online]. Available: http://webmineral.com/data/Shcherbinaite.shtml#.XOitb4hKjIU. [Accessed: 24-May-2019].
dc.relation.referencesD. A. Skoog, F. J. . Holler, and S. R. Crouch, Principios de análisis instrumental, Sexta. México: CENAGE Learning, 2008.
dc.relation.referencesA. Bakhtyari and M. R. Rahimpour, “Methanol to Dimethyl Ether,” in Methanol, 1st ed., Elsevier B.V., 2018, pp. 281–312.
dc.relation.referencesZ. Azizi, M. Rezaeimanesh, T. Tohidian, and M. R. Rahimpour, “Dimethyl ether: A review of technologies and production challenges,” Chem. Eng. Process. Process Intensif., vol. 82, pp. 150–172, Aug. 2014.
dc.relation.referencesB. T. H. Adkins and P. D. Perkins, “The behavior of methanol over alumunum and zinc oxides,” J. Phys. Chem., vol. 32, no. 2, pp. 221–224, 1928.
dc.relation.referencesC. D. Chang, “Hydrocarbons from methanol,” Catal. Rev. - Sci. Eng., vol. 25, no. 1, pp. 1–118, 1983.
dc.relation.referencesT. Mole and J. A. Whiteside, “Conversion of methanol to ethylene over ZSM-5 zeolite in the presence of deuterated water,” J. Catal., vol. 75, no. 2, pp. 284–290, Jun. 1982.
dc.relation.referencesJ. Spivey, “Review: Dehydratation catalysts for the methanol/dimethyl ether reaction,” Chem. Eng. Commun., vol. 110, no. 1, pp. 123–142, 1991.
dc.relation.referencesJ. Bandiera and C. Naccache, “Kinetics of methanol dehydration on dealuminated H-mordenite: Model with acid and basic active centres,” Appl. Catal., vol. 69, no. 1, pp. 139–148, Jan. 1991.
dc.relation.referencesL. Kubelková, J. Nováková, and K. Nedomová, “Reactivity of surface species on zeolites in methanol conversion,” J. Catal., vol. 124, no. 2, pp. 441–450, Aug. 1990.
dc.relation.referencesS. R. Blaszkowski and R. A. Van Santent, “Density Functional Theory Calculations of the Activation of Methanol by a Brensted Zeolitic Proton,” J. Phys. Chem., vol. 99, pp. 11728–11738, 1995.
dc.relation.referencesS. R. Blaszkowski and R. A. van Santen, “The Mechanism of Dimethyl Ether Formation from Methanol Catalyzed by Zeolitic Protons,” J. Am. Chem. Soc., vol. 188, no. 21, pp. 5152–5153, 1996.
dc.relation.referencesF. Yaripour, F. Baghaei, I. Schmidt, and J. Perregaard, “Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts,” Catal. Commun., vol. 6, no. 2, pp. 147–152, Feb. 2005.
dc.relation.referencesY. Fu, T. Hong, J. Chen, A. Auroux, and J. Shen, “Surface acidity and the dehydration of methanol to dimethyl ether,” Thermochim. Acta, vol. 434, no. 1–2, pp. 22–26, Aug. 2005.
dc.relation.referencesA. J. Nagy, G. Mestl, D. Herein, G. Weinberg, E. Kitzelmann, and R. Schlögl, “The correlation of subsurface oxygen diffusion with variations of silver morphology in the silver-oxygen system,” J. Catal., vol. 182, no. 2, pp. 417–429, 1999.
dc.relation.referencesH. Schubert, U. Tegtmeyer, D. Herein, X. Bao, M. Muhler, and R. Schlögl, “On the relation between catalytic performance and microstructure of polycrystalline silver in the partial oxidation of methanol,” Catal. Letters, vol. 33, no. 3–4, pp. 305–319, 1995.
dc.relation.referencesG. J. Millar and M. Collins, “Industrial Production of Formaldehyde using Polycrystalline Silver Catalyst,” Ind. Eng. Chem. Res., vol. 56, no. 33, pp. 9247–9265, 2017.
dc.relation.referencesI. E. Wachs and R. J. Madix, “The Oxidation of Methanol on Ag (110) Catalyst,” Surf. Sci., vol. 76, pp. 531–558, 1978.
dc.relation.referencesD. Delgado et al., “Tungsten-titanium mixed oxide bronzes: Synthesis, characterization and catalytic behavior in methanol transformation,” Appl. Catal. A Gen., May 2019.
dc.relation.referencesM. Soriano, A. Chieregato, S. Zamora, F. Basile, F. Cavani, and J. M. López Nieto, “Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols : Glycerol and Methanol,” Top. Catal., vol. 59, pp. 178–185, 2016.
dc.relation.referencesI. A. Fisher and A. T. Bell, “A Mechanistic Study of Methanol Decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2,” Journ, vol. 184, pp. 357–376, 1999.
dc.relation.referencesM. Manzoli, A. Chiorino, and F. Boccuzzi, “Decomposition and combined reforming of methanol to hydrogen: A FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO2,” Appl. Catal. B Environ., vol. 57, no. 3, pp. 201–209, 2005.
dc.relation.referencesG. Busca, J. Lamotte, J. ciaude Lavalley, and V. Lorenzelli, “FT-IR Study of the Adsorption and Transformation of Formaldehyde on Oxide Surfaces,” J. Am. Chem. Soc., vol. 109, no. 17, pp. 5197–5202, 1987.
dc.relation.referencesG. A. M. Hussein, N. Sheppard, M. I. Zaki, and R. B. Fahim, “Infrared spectroscopic studies of the reactions of alcohols over group IVB metal oxide catalysts. Part 1. - Propan-2-ol over TiO2, ZrO2 and HfO2,” J. Chem. Soc. Faraday Trans., vol. 87, no. 16, pp. 2655–2659, 1991.
dc.relation.referencesN. W. Cant, S. P. Tonner, D. L. Trimm, and M. S. Wainwright, “Isotopic labeling studies of the mechanism of dehydrogenation of methanol to methyl formate over copper-based catalysts,” J. Catal., vol. 91, no. 2, pp. 197–207, 1985.
dc.relation.referencesR. Zhang, Y. Sun, and S. Peng, “In situ FTIR studies of methanol adsorption and dehydrogenation over Cu/SiO2 catalyst,” Fuel, vol. 81, no. 11–12, pp. 1619–1624, 2002.
dc.relation.referencesA. A. Pechenkin, S. D. Badmaev, V. D. Belyaev, and V. A. Sobyanin, “Performance of bifunctional CuO-CeO2/γ-Al2O3 catalyst in dimethoxymethane steam reforming to hydrogen-rich gas for fuel cell feeding,” Appl. Catal. B Environ., vol. 166–167, pp. 535–543, 2015.
dc.relation.referencesY. Meng, T. Wang, S. Chen, Y. Zhao, X. Ma, and J. Gong, “Selective oxidation of methanol to dimethoxymethane on V2O5-MoO3 /γ-Al2O3 catalysts,” Appl. Catal. B Environ., vol. 160–161, no. 1, pp. 161–172, 2014.
dc.relation.referencesH. Liu and E. Iglesia, “Selective One-Step Synthesis of Dimethoxymethane via Methanol or Dimethyl Ether Oxidation on H3+nVnMo 12-nPO40 Keggin Structures,” J. Phys. Chem. B, vol. 107, no. 39, pp. 10840–10847, 2003.
dc.relation.referencesH. Zhao, S. Bennici, J. Shen, and A. Auroux, “Nature of surface sites of V2O5–TiO2/SO42- catalysts and reactivity in selective oxidation of methanol to dimethoxymethane,” J. Catal., vol. 272, no. 1, pp. 176–189, May 2010.
dc.relation.referencesJ. Y. Bo, S. Zhang, and K. H. Lim, “Steam reforming of formaldehyde on Cu(100) surface: A density functional study,” Catal. Letters, vol. 129, no. 3–4, pp. 444–448, 2009.
dc.relation.referencesS. Braun, L. G. Appel, V. L. Camorim, and M. Schmal, “Thermal spreading of MoO3 onto silica supports,” J. Phys. Chem. B, vol. 104, no. 28, pp. 6584–6590, 2000.
dc.relation.referencesJ. Tatibouet, “A structure-sensitive oxidation reaction: Methanol on molybdenum trioxide catalysts,” J. Catal., vol. 72, no. 2, pp. 375–378, 2004.
dc.relation.referencesT.-J. Yang and J. H. Lunsford, “Partial oxidation of methanol to formaldehyde over molybdenum oxide on silica,” J. Catal., vol. 103, no. 1, pp. 55–64, Jan. 1987.
dc.relation.referencesM. Massa, R. Häggblad, S. Hansen, and A. Andersson, “Oxidation of methanol to formaldehyde on cation vacant Fe-V-Mo-oxide,” Appl. Catal. A Gen., vol. 408, no. 1–2, pp. 63–72, 2011.
dc.relation.referencesB. M. Weckhuysen and D. E. Keller, “Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis,” Catal. Today, vol. 78, pp. 25–46, 2003.
dc.relation.referencesI. E. Wachs, G. Deo, M. V. Juskelis, and B. M. Weckhuysen, “Methanol oxidation over supported vanadium oxide catalysts: New fundamental insights about oxidation reactions over metal oxide catalysts from transient and steady state kinetics,” Stud. Surf. Sci. Catal., vol. 109, pp. 305–314, Jan. 1997.
dc.relation.referencesI. E. Wachs et al., “Selective Catalytic Reduction of NO with NH3 over Supported Vanadia Catalysts,” J. Catal., vol. 161, no. 1, pp. 211–221, Jun. 1996.
dc.relation.referencesI. E. Wachs et al., “Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships,” J. Catal., vol. 170, no. 1, pp. 75–88, Aug. 1997.
dc.relation.referencesJ. T. Grant, J. M. Venegas, W. P. McDermott, and I. Hermans, “Aerobic Oxidations of Light Alkanes over Solid Metal Oxide Catalysts,” Chem. Rev., vol. 118, no. 5, pp. 2769–2815, 2018.
dc.relation.referencesM. J. Cheng and W. A. Goddard, “The critical role of phosphate in vanadium phosphate oxide for the catalytic activation and functionalization of n-butane to maleic anhydride,” J. Am. Chem. Soc., vol. 135, no. 12, pp. 4600–4603, 2013.
dc.relation.referencesI. E. Wachs, J.-M. Jehng, G. Deo, B. M. Weckhuysen, V. V. Guliants, and J. B. Benziger, “In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions,” Catal. Today, vol. 32, no. 1–4, pp. 47–55, Dec. 1996.
dc.relation.referencesP. Schwach, X. Pan, and X. Bao, “Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects,” Chem. Rev., vol. 117, no. 13, pp. 8497–8520, 2017.
dc.relation.referencesE. Kleimenov et al., “XPS investigations of VPO catalysts under reaction conditions,” Surf. Sci., vol. 575, no. 1–2, pp. 181–188, Jan. 2005.
dc.relation.referencesD. Lesser, G. Mestl, and T. Turek, “Transient behavior of vanadyl pyrophosphate catalysts during the partial oxidation of n‑butane in industrial-sized, fixed bed reactors,” Appl. Catal. A Gen., vol. 510, pp. 1–10, Jan. 2016.
dc.relation.referencesV. R. Choudhary and V. H. Rane, “Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons,” J. Catal., vol. 130, no. 2, pp. 411–422, Aug. 1991.
dc.relation.referencesV. Arutyunov, “Direct Methane to Methanol : Historical and Kinetics Aspects,” in Methanol: Science and Engineering, Elsevier B.V., 2018, pp. 129–172.
dc.relation.referencesM. Ravi, M. Ranocchiari, and J. A. van Bokhoven, “The Direct Catalytic Oxidation of Methane to Methanol—A Critical Assessment,” Angew. Chemie - Int. Ed., vol. 56, no. 52, pp. 16464–16483, 2017.
dc.relation.referencesM. C. Alvarez-Galvan, N. Mota, M. Ojeda, S. Rojas, R. M. Navarro, and J. L. G. Fierro, “Direct methane conversion routes to chemicals and fuels,” Catal. Today, vol. 171, no. 1, pp. 15–23, Aug. 2011.
dc.relation.referencesT. Blasco, P. Concepcion, J. M. Lopez Nieto, and J. Perez Pariente, “Preparation, Characterization, and Catalytic Properties of VAPO-5 for the Oxydehydrogenation of Propane,” J. Catal., vol. 152, no. 1, pp. 1–17, Mar. 1995.
dc.relation.referencesM. Eichelbaum et al., “The electronic factor in alkane oxidation catalysis,” Angew. Chemie - Int. Ed., vol. 54, no. 10, pp. 2922–2926, 2015.
dc.relation.referencesZ. Zhang, X. E. Verykios, and M. Baerns, “Effect of Electronic Properties of Catalysts for the Oxidative Coupling of Methane on Their Selectivity and Activity,” Catal. Rev., vol. 36, no. 3, pp. 507–556, 2007.
dc.relation.referencesE. N. Voskresenskaya, A. G. Anshits, and V. Roguleva, “Oxidant activation over structural defects of oxide catalysts in oxidative methane coupling,” Catal. Rev., vol. 37, no. 1, pp. 101–143, 1995.
dc.relation.referencesN. Dietl, M. Schlangen, and H. Schwarz, “Thermal hydrogen-atom transfer from methane: The role of radicals and spin states in oxo-cluster chemistry,” Angew. Chemie - Int. Ed., vol. 51, no. 23, pp. 5544–5555, 2012.
dc.relation.referencesP. Käßner and M. Baerns, “Comparative characterization of basicity and acidity of metal oxide catalysts for the oxidative coupling of methane by different methods,” Appl. Catal. A Gen., vol. 139, no. 1–2, pp. 107–129, 1996.
dc.relation.referencesR. Polnišer, M. Štolcová, M. Hronec, and M. Mikula, “Structure and reactivity of copper iron pyrophosphate catalysts for selective oxidation of methane to formaldehyde and methanol,” Appl. Catal. A Gen., vol. 400, pp. 122–130, 2011.
dc.relation.referencesJ. Xu et al., “Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor,” Catal. Today, vol. 270, pp. 93–100, 2016.
dc.relation.referencesM. Brown and N. Parkyns, “Progress in the partial oxidation of methane to methanol and formaldehyde,” Catal. Today, vol. 8, pp. 305–335, 1991.
dc.relation.referencesE. V. Starokon, M. V. Parfenov, S. S. Arzumanov, L. V. Pirutko, A. G. Stepanov, and G. I. Panov, “Oxidation of methane to methanol on the surface of FeZSM-5 zeolite,” J. Catal., vol. 300, pp. 47–54, 2013.
dc.relation.referencesN. La Salvia, D. Delgado, L. Ruiz-Rodríguez, L. Nadji, A. Massó, and J. M. López Nieto, “V- and Nb-containing tungsten bronzes catalysts for the aerobic transformation of ethanol and glycerol. Bulk and supported materials,” Catal. Today, vol. 296, pp. 2–9, Nov. 2017.
dc.relation.referencesK. Chen, S. Xie, A. T. Bell, and E. Iglesia, “Structure and properties of oxidative dehydrogenation catalysts based on MoO3/Al2O3,” J. Catal., vol. 198, no. 2, pp. 232–242, 2001.
dc.relation.referencesY. Lou, Q. Tang, H. Wang, B. Chia, Y. Wang, and Y. Yang, “Selective oxidation of methane to formaldehyde by oxygen over SBA-15-supported molybdenum oxides,” Appl. Catal. A Gen., vol. 350, no. 1, pp. 118–125, Nov. 2008.
dc.relation.referencesY. V. Plyuto, I. V. Babich, I. V. Plyuto, A. D. Van Langeveld, and J. A. Moulijn, “XPS studies of MoO3/Al2O3 and MoO3/SiO2 systems,” Appl. Surf. Sci., vol. 119, no. 1–2, pp. 11–18, Sep. 1997.
dc.relation.referencesK.-W. Park, J. H. Jung, H.-J. Seo, and O.-Y. Kwon, “Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane,” Microporous Mesoporous Mater., vol. 121, no. 1–3, pp. 219–225, May 2009.
dc.relation.referencesF. G. E. Nogueira, J. H. Lopes, A. C. Silva, R. M. Lago, J. D. Fabris, and L. C. A. Oliveira, “Catalysts based on clay and iron oxide for oxidation of toluene,” Appl. Clay Sci., vol. 51, no. 3, pp. 385–389, Feb. 2011.
dc.relation.referencesC. Brookes et al., “The Nature of the Molybdenum Surface in Iron Molybdate. the Active Phase in Selective Methanol Oxidation,” J. Phys. Chem. C, vol. 118, no. 45, pp. 26155–26161, 2014.
dc.relation.referencesP. Mills and J. L. Sullivan, “A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy,” J. Phys. D. Appl. Phys., vol. 16, no. 5, pp. 723–732, May 1983.
dc.relation.referencesC. Brookes, M. Bowker, and P. P. Wells, “Catalysts for the selective oxidation of methanol,” Catalysts, vol. 6, no. 7, 2016.
dc.relation.referencesK. Routray, W. Zhou, C. J. Kiely, W. Grünert, and I. E. Wachs, “Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde,” J. Catal., vol. 275, no. 1, pp. 84–98, 2010.
dc.relation.referencesK. Routray and I. Wachs, “Role of Excess MoO3 in Iron-Molybdate Methanol Oxidation Catalysts,” Am. Chem. Soc, p. 233, 2007.
dc.relation.referencesJ. He, Y. Li, A. Dongli, Q. Zhang, and Y. Wang, “Selective oxidation of methane to formaldehyde by oxygen over silica-supported iron catalysts,” J. Nat. Gas Chem., vol. 18, no. 3, pp. 288–294, Sep. 2009.
dc.relation.referencesT. Kobayashi, N. Guilhaume, J. Miki, N. Kitamura, and M. Haruta, “Oxidation of methane to formaldehyde over FeSiO2 and SnW mixed oxides,” Catal. Today, vol. 32, no. 1–4, pp. 171–175, Dec. 1996.
dc.relation.referencesF. Arena et al., “Structure and reactivity in the selective oxidation of methane to formaldehyde of low-loaded FeOx/SiO2 catalysts,” J. Catal., vol. 231, no. 2, pp. 365–380, Apr. 2005.
dc.relation.referencesA. Parmaliana, F. Arena, V. Sokolovskii, F. Frusteri, and N. Giordano, “A comparative study of the partial oxidation of methane to formaldehyde on bulk and silica supported MoO3 and V2O5 catalysts,” Catal. Today, vol. 28, no. 4, pp. 363–371, Sep. 1996.
dc.relation.referencesW. Yang, X. Wang, Q. Guo, Q. Zhang, and Y. Wang, “Superior catalytic performance of phosphorus-modified molybdenum oxide clusters encapsulated inside SBA-15 in the partial oxidation of methane,” New J. Chem., vol. 27, no. 9, pp. 1301–1303, 2003.
dc.relation.referencesY. Lou, Q. Tang, H. Wang, B. Chia, Y. Wang, and Y. Yang, “Selective oxidation of methane to formaldehyde by oxygen over SBA-15-supported molybdenum oxides,” Appl. Catal. A Gen., vol. 350, no. 1, pp. 118–125, Nov. 2008.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalMetano
dc.subject.proposalMethane
dc.subject.proposalMetanol
dc.subject.proposalMethanol
dc.subject.proposalCatalytic oxidation
dc.subject.proposalOxidación catalítica
dc.subject.proposalSol-gel
dc.subject.proposalSol-gel
dc.subject.proposalHetereogeneous catalysis
dc.subject.proposalCatálisis heterogénea
dc.subject.proposalFormaldehyde
dc.subject.proposalFormaldehído
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito