Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCuca Suárez, Luis Enrique
dc.contributor.authorPlazas González, Erika Andrea
dc.date.accessioned2020-07-23T21:19:36Z
dc.date.available2020-07-23T21:19:36Z
dc.date.issued2020-07-22
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77833
dc.description.abstractLos trastornos neurodegenerativos multifactoriales, como la enfermedad de Alzheimer (EA), son un problema creciente de salud pública mundial debido al aumento de su incidencia y la baja efectividad de los tratamientos actuales. Dado que la farmacoterapia basada en un blanco molecular ha sido insuficiente en el descubrimiento de agentes para el tratamiento o cura de enfermedades complejas, el enfoque multi-diana se ha posicionado como una de las estrategias más promisorias en la búsqueda de nuevos candidatos a fármacos. En el presente trabajo se realizó una búsqueda racional de alcaloides isoquinolínicos con potencial inhibitorio frente a colinesterasas en especies del género Zanthoxylum; y la determinación de la actividad multi-diana frente a mecanismos claves asociados a la patogénesis de la EA, como el agotamiento de neurotransmisores, la agregación de beta-amiloide (Aβ1-42) y el estrés oxidativo. Inicialmente, se realizó un perfilado metabolómico (LC-MS) de extractos alcaloidales de especies del género Zanthoxylum (Rutaceae), con el fin de identificar posibles alcaloides inhibidores de colinesterasas, priorizar los extractos más promisorios y hacer la selección de una especie para continuar con el aislamiento bio-dirigido de los metabolitos de interés. Para este propósito, se analizaron 41 extractos alcaloidales de nueve especies de Zanthoxylum por HPLC-UV-HRMS y se determinó la actividad inhibitoria frente a colinesterasas (AChE/BChE). Haciendo uso de un análisis bioquimiométrico, se seleccionaron 11 alcaloides biomarcadores, los cuales fueron identificados tentativamente por dereplicación manual. Los extractos con mayor actividad inhibitoria frente a las enzimas (Z. schreberi y Z. monophylum) mostraron alta presencia de dos biomarcadores identificados tentativamente como berberina y queleritrina, los cuales han sido ampliamente reportados como inhibidores de colinesterasas y monoamino oxidasas. Por lo tanto, se realizó un estudio químico dirigido del extracto de corteza de Z. schreberi en búsqueda de berberina y queleritrina, a fin de validar los resultados del modelo estadístico y hacer la priorización de los extractos con mayor potencial inhibitorio y baja presencia de estos alcaloides. Los resultados del estudio bio-dirigido de Z. schreberi permitieron confirmar la predicción realizada por el modelo bioquimiométrico y hacer la selección de la especie Z. rigidum para continuar con la búsqueda racional de alcaloides inhibidores de colinesterasas con potencial multi-diana. Por medio del estudio bio-dirigido del extracto de raíz de Z. rigidum se aislaron ocho alcaloides isoquinolínicos y uno quinolónico, a los cuales se les evaluó la actividad inhibitoria frente a colinesterasas (AChE y BChE), monoamino oxidasas (MAO-A y B) y en la agregación de Aβ1-42. En el estudio preliminar de actividad biológica se encontró que dos alcaloides benzofenantridínicos, nitidina (EP4) y avicina (EP12), presentaron el mayor potencial inhibitorio frente a todos blancos moleculares, por lo cual fueron seleccionados para continuar con la caracterización multi-diana. Estas benzofenantridinas poseen actividad inhibitoria frente a la dupla de colinesterasas con valores de IC50 en el rango micromolar, siendo más activos frente a AChE. En el análisis cinético con las colinesterasas los dos alcaloides mostraron mecanismos de inhibición mixta y contantes (Ki) menores a 1 µM. La avicina presentó mayor potencial inhibitorio de las colinesterasas con valores de Ki de 0,063 µM (EeAChE), 0,511 µM (HrAChE) y 0,123 µM (EqBChE). Asimismo, avicina y nitidina poseen actividad antiagregante de Aβ1–42 con IC50 de 5,6 y 1,9 µM, respectivamente. Adicionalmente, los dos alcaloides presentaron inhibición selectiva de la monoamino oxidasa A, con valores de IC50 menores a 2 µM e índices de selectividad superiores a 100. En el estudio cinético con MAO A los dos compuestos mostraron mecanismo de inhibición mixta y constantes de inhibición (Ki) en el rango nanomolar. Estos resultados sugieren que las benzofenantridinas avicina (EP12) y nitidina (EP4) poseen un alto potencial multi-diana, por lo tanto, representan un importante punto de partida en la búsqueda y desarrollo de moléculas con potencial terapéutico para la enfermedad de Alzheimer.
dc.description.abstractMultifactorial neurodegenerative disorders such as Alzheimer's disease (AD) are considered a growing public health problem due the rising incidence and low effectiveness of current treatment. Since pharmacotherapy based on a single target has been insufficient for drug development in complex diseases, the emerging multi-target approach is a promising strategy in the search of new anti-AD drug candidates. Herein the rational search and isolation of anti-cholinergic isoquinoline alkaloids from Zanthoxylum genus and the multi-target activity on key mechanisms associated with AD’s pathogenesis, i.e. cholinergic and monoaminergic depletion, β-amyloid (Aβ) aggregation, and oxidative stress were investigated. Initially, a LC-MS-based metabolomic approach of Zanthoxylum species was performed to identify potential anti-cholinesterase alkaloids predictors, rank the most promising extracts and selected one to carry out bio-directed isolation of potential bioactive alkaloids. 41 alkaloid extracts of nine Zanthoxylum species were analyzed by HPLC-UV-HRMS and inhibitory activity against cholinesterase (AChE/BChE). 11 alkaloid biomarkers were selected using a biochemometric analysis, and tentatively identified by manual dereplication approach. The most active extracts against cholinesterase (Z. schreberi and Z. monophylum) showed higher concentration of two biomarkers tentatively identified as berberine and chelerythrine, which have been reported as cholinesterase and monoamine oxidase inhibitors. Thus, a targeted isolation of berberine and chelerythrine from the bark extract of Z. schreberi was performed, in order to validate the results of the statistical model and select those extracts with the highest inhibitory activity and lowest concentration of these biomarkers. The findings in bio-guided isolation of Z. schreberi support the biochemometric model prediction and allowed us to select the species Z. rigidum to continue the rational search of anticholinesterase-multimodal alkaloids. Alkaloid isolation from root extract of Zanthoxylum rigidum was carried out using multi-step chromatography and monitoring by TLC-bioautography against acetylcholinesterase (AChE) giving eight purified isoquinoline and one quinolone alkaloids. Isolated compounds were tested for inhibitory activity against cholinesterase (AChE and BChE), monoamine oxidase (MAO-A and B) and Aβ aggregation. Our study revealed two benzophenanthridine alkaloids, nitidine (EP4) and avicine (EP12), as the most promising multi-target candidates. Both benzophenanthridines presented dual cholinesterase inhibition with IC50 values in micromolar range, being more active against AChE than BChE. Kinetic analysis with cholinesterase showed both compounds are reversible-mixed inhibitors, where avicine presented highest potency with Ki values of 0.063 µM (EeAChE), 0.511 µM (HrAChE) and 0.123 µM (EqBChE). Likewise, avicine and nitidine presented moderate Aβ1–42 anti-aggregation activity with IC50 values of 5.6 y 1.9 µM, respectively. In addition, both benzophenanthridines are MAO-A selective inhibitors, with IC50 values lower than 2 µM and selective index higher than 100. In the kinetic analysis with MAO A both alkaloids showed mixed-type inhibition and Ki values in the nanomolar range. Our findings suggest that avicine and nitidine are promising natural compounds and multifunctional candidates, representing a suitable starting point for the development of new therapeutic agents for Alzheimer’s disease.
dc.description.sponsorshipColciencias
dc.format.extent207
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleBúsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer
dc.typeTrabajo de grado - Doctorado
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Bioprospección en agentes terapéuticos
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.researchgroupGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAdalbert, R., Gilley, J., Coleman, M.P., 2007. Aβ, tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol. Med. 13, 135–142. https://doi.org/10.1016/j.molmed.2007.02.004
dc.relation.referencesAdsersen, A., Gauguin, B., Gudiksen, L., Jäger, A.K., 2006. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 104, 418–422. https://doi.org/10.1016/j.jep.2005.09.032
dc.relation.referencesAffini, A., Hagenow, S., Zivkovic, A., Marco-Contelles, J., Stark, H., 2018. Novel indanone derivatives as MAO B/H3R dual-targeting ligands for treatment of Parkinson’s disease. Eur. J. Med. Chem. 148, 487–497. https://doi.org/10.1016/j.ejmech.2018.02.015
dc.relation.referencesAgis-torres, A., Söllhuber, M., Fernandez, M., 2014. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr. Neuropharmacol. 12, 2–36. https://doi.org/10.2174/1570159X113116660047
dc.relation.referencesAhmed, T., Gilani, A.-H., Abdollahi, M., Daglia, M., Nabavi, S., Nabavi, S.M., 2015. Berberine and neurodegeneration: A review of literature. Pharmacol. Reports 67, 970–979. https://doi.org/doi.org/10.1016/j.pharep.2015.03.002
dc.relation.referencesAniszewski, T., 2015. Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition, Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition. Elsevier. https://doi.org/10.1016/C2011-0-04166-2
dc.relation.referencesAtri, A., 2019. The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. 103, 263–293. https://doi.org/doi.org/10.1016/j.mcna.2018.10.009
dc.relation.referencesBaek, M. Y., Park, H. J., Kim, G. M., Lee, D. Y., Lee, G. Y., Moon, S. J., Baek, N.I., 2013. Insecticidal alkaloids from the seeds of Macleaya cordata on cotton aphid (Aphis gossypii). J. Korean Soc. Appl. Biol. Chem. 56, 135–140. https://doi.org/10.1007/s13765-013-3013-0
dc.relation.referencesBautista-Aguilera, Ó.M., Budni, J., Mina, F., Medeiros, E.B., Deuther-Conrad, W., Entrena, J.M., Moraleda, I., Iriepa, I., López-Muñoz, F., Marco-Contelles, J., 2018. Contilisant, a Tetratarget Small Molecule for Alzheimer’s Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile. J. Med. Chem. 61, 6937–6943. https://doi.org/10.1021/acs.jmedchem.8b00848
dc.relation.referencesBean, M., 2002. Enzyme Kinetics Principles and methods, Psychiatric Annals.
dc.relation.referencesBennett, D., Yu, L., De Jager, P., 2014. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer’s disease. Biochem. Pharmacol. 88, 617–630. https://doi.org/10.1016/j.bcp.2014.01.037
dc.relation.referencesBiancalana, M., Koide, S., 2010. Molecular mechanism of Thioflavin-T binding to amyloid fibril. Biochim. Biophys. Acta 1804, 1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001
dc.relation.referencesBinutu, O.A., Cordell, G.A., 2000. Constituents of Zanthoxylum Sprucei. Pharm. Biol. 38, 210–213. https://doi.org/10.1076/1388-0209(200007)3831-SFT210
dc.relation.referencesBird, D.A., Facchini, P.J., 2001. Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Plant 213, 888–897. https://doi.org/10.1007/s004250100582
dc.relation.referencesBird, M.J., Thorburn, D.R., Frazier, A.E., 2014. Modelling biochemical features of mitochondrial neuropathology. Biochim. Biophys. Acta. https://doi.org/10.1016/j.bbagen.2013.10.017
dc.relation.referencesBitzinger, D.I., Gruber, M., Tümmler, S., Michels, B., Bundscherer, A., Hopf, S., Trabold, B., Graf, B.M., Zausig, Y.A., 2016. Species and concentration dependent differences of acetyl and butyrylcholinesterase sensitivity to physostigmine and neostigmine. Neuropharmacology 109, 1–6. https://doi.org/10.1016/j.neuropharm.2016.01.005
dc.relation.referencesBräse, S. (Ed)., 2015. Privileged Scaffolds in Medicinal Chemistry, RSC Drug D. ed. https://doi.org/10.1039/9781782622246
dc.relation.referencesBritton, E.R., Kellogg, J.J., Kvalheim, O.M., Cech, N.B., 2018. Biochemometrics to Identify Synergists and Additives from Botanical Medicines: A Case Study with Hydrastis canadensis (Goldenseal). J. Nat. Prod. 81, 484–493. https://doi.org/10.1021/acs.jnatprod.7b00654
dc.relation.referencesBrunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targeting
dc.relation.referencesBrunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targeting
dc.relation.referencesCai, Z., 2014. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (Review). Mol. Med. Rep. 9, 1533–1541. https://doi.org/10.3892/mmr.2014.2040
dc.relation.referencesCarpinella, M.C., Andrione, D.G., Ruiz, G., Palacios, S.M., 2010. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phyther. Res. 24, 259–263. https://doi.org/10.1002/ptr.2923
dc.relation.referencesCarradori, S., D’Ascenzio, M., Chimenti, P., Secci, D., Bolasco, A., 2014. Selective MAO-B inhibitors: A lesson from natural products. Mol. Divers. https://doi.org/10.1007/s11030-013-9490-6
dc.relation.referencesCheignon, C., Tomas, M., Faller, P., Hureau, C., Collin, F., 2018. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464. https://doi.org/10.1016/j.redox.2017.10.014
dc.relation.referencesChen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., Xu, E., 2017. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205–1235. https://doi.org/10.1038/aps.2017.28
dc.relation.referencesChen, Z., Zhong, C., 2014. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 30, 271–281. https://doi.org/10.1007/s12264-013-1423-y
dc.relation.referencesCheung, J., Rudolph, M.J., Burshteyn, F., Cassidy, M.S., Gary, E.N., Love, J., Franklin, M.C., Height, J.J., 2012. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 55, 10282–10286. https://doi.org/10.1021/jm300871x
dc.relation.referencesChia, Y.C., Chang, F.R., Li, C.M., Wu, Y.C., 1998. Protoberberine alkaloids from Fissistigma balansae. Phytochemistry. https://doi.org/10.1016/S0031-9422(97)00775-9
dc.relation.referencesChu, M., Chen, X., Wang, J., Guo, L., Wang, Q., Gao, Z., Kang, J., Zhang, M., Feng, J., Guo, Q., Li, B., Zhang, C., 2018. Polypharmacology of Berberine Based on Multi-Target Binding Motifs. Front. Pharmacol. 9, 801. https://doi.org/10.3389/fphar.2018.00801
dc.relation.referencesCollaborators, G. 2016 D., 2019. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 88–106. https://doi.org/10.1016/S1474-4422(18)30403-4
dc.relation.referencesCosta, R.S., Lins, M.O., Le, M., Barros, T.F., Velozo, E.S., 2017. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multiresistant Staphylococcus aureus. Rev. Bras. Farmacogn. 27, 195–198. https://doi.org/10.1016/j.bjp.2016.11.001
dc.relation.referencesCruz, M.I., Cidade, H., Pinto, M., 2017. Dual/multitargeted xanthone derivatives for Alzheimer’s disease: where do we stand? Future Med. Chem. 9, 1611–1630.
dc.relation.referencesDawkins, E., Small, D., 2014. Insights into the physiological function of the β‐amyloid precursor protein: beyond Alzheimer’s disease. J. Neurochem. 129, 756–769. https://doi.org/10.1111/jnc.12675
dc.relation.referencesDinamarca, M., Sagal, J., Quintanilla, R., Godoy, J., Arrázola, M., Inestrosa, N., 2010. Amyloid-beta-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Abeta peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 5, 4. https://doi.org/10.1186/1750-1326-5-4.
dc.relation.referencesDoncheva, T., Yordanova, G., Vutov, V., Kostova, N., Philipov, S., 2015. Comparative study of alkaloid profile of Corydalis slivenensis Vel. And Corydalis solida L. Comptes Rendus L’Academie Bulg. des Sci. 68, 843.
dc.relation.referencesDong, S., Duan, Y., Hu, Y., Zhao, Z., 2012. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl. Neurodegener. 1, 18. https://doi.org/10.1186/2047-9158-1-18
dc.relation.referencesDreyer, D., Brenner, R., 1980. Alkaloids of some Mexican Zanthoxylum species. Phytochemistry 19, 935–939. https://doi.org/10.1016/0031-9422(80)85141-7
dc.relation.referencesDundar, Y., Kuyrukcu, O., Eren, G., Senol, S., Onkol, T., Orhan, I., 2019. Novel pyridazinone derivatives as butyrylcholinesterase inhibitors. Bioorg. Chem. 92, 103304. https://doi.org/10.1016/j.bioorg.2019.103304
dc.relation.referencesDvir, H., Silman, I., Harel, M., Rosenberry, T., Sussman, J., 2010. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 187, 10–22. https://doi.org/10.1016/j.cbi.2010.01.042
dc.relation.referencesEdmondson, D., Mattevi, A., Binda, C., Li, M., Hubalek, F., 2004. Structure and Mechanism of Monoamine Oxidase. Curr. Med. Chem. 11, 1983–1993. https://doi.org/10.2174/0929867043364784
dc.relation.referencesEsteban, G., Allan, J., Samadi, A., Mattevi, A., Unzeta, M., Marco-Contelles, J., Binda, C., Ramsay, R.R., 2014. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer’s disease. Biochim. Biophys. Acta - Proteins Proteomics. https://doi.org/10.1016/j.bbapap.2014.03.006
dc.relation.referencesFazel, N., Uriarte, E., Rastrelli, L., Modak, B., Sobarzo-Sánchez, E., 2016. Aporphines and Parkinson’s Disease: Medical Tools for the Future. Curr. Top. Med. Chem. 16, 1906–1909. https://doi.org/10.2174/1568026616666160204122935
dc.relation.referencesFeng, X., Liang, N., Zhu, D., Gao, Q., Peng, L., Dong, H., Yue, Q., Liu, H., Bao, L., Zhang, J., Hao, J., Gao, Y., Yu, X., Sun, J., 2013. Resveratrol Inhibits β-Amyloid-Induced Neuronal Apoptosis through Regulation of SIRT1-ROCK1 Signaling Pathway. PLoS One 8, e59888. https://doi.org/10.1371/journal.pone.0059888
dc.relation.referencesFernandes, C., Vieira, P., Silva, V., Dall’Oglio, E., Silva, L., Sousa, P., 2009. 6-Acetonyl-N-methyl-dihydrodecarine, a new alkaloid from Zanthoxylum riedelianum. J. Braz. Chem. Soc 20, 379–382. https://doi.org/dx.doi.org/10.1590/S0103-50532009000200025
dc.relation.referencesFerrari, G.V. De, Mallender, W.D., Inestrosa, N.C., Rosenberry, T.L., 2001. Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J. Biol. Chem. 276, 23282–23287. https://doi.org/10.1074/jbc.M009596200
dc.relation.referencesGao, C., Du, Y., Wang, X., Cao, H., Lin, B., Liu, Y., Di, X., 2018. Hexahydrobenzophenanthridine alkaloids from Corydalis bungeana Turcz. and their anti-inflammatory activity. Bioorganic Med. Chem. Lett. 28, 2265–2269. https://doi.org/10.1016/j.bmcl.2018.05.039
dc.relation.referencesGareri, P., Putignano, D., Castagna, A., Cotroneo, A., De Palo, G., Fabbo, A., Simone, M., 2014. Retrospective study on the benefits of combined Memantine and cholinEsterase inhibitor treatMent in AGEd Patients affected with Alzheimer’s Disease: the MEMAGE study. J. Alzheimer’s Dis. 41, 633–640. https://doi.org/10.3233/JAD-132735
dc.relation.referencesGeldenhuys, W., Schyf, C., 2013. Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opin. Drug Discov. 8, 115–129. https://doi.org/10.1517/17460441.2013.744746
dc.relation.referencesGreenblatt, H., Dvir, H., Silman, I., Sussman, J., 2003. Acetylcholinesterase. J. Mol. Neurosci. 20, 369–383. https://doi.org/10.1385/JMN:20:3:369
dc.relation.referencesGuzior, N., Wieckowska, A., Panek, D., Malawska, B., 2015. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem. 22, 373–404.
dc.relation.referencesHagel, J., Facchini, P., 2013. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell. Physiol. 54, 647–672. https://doi.org/10.1093/pcp/pct020
dc.relation.referencesHamouda, A., Kimm, T., Cohen, J., 2013. Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. J. Neurosci. 33, 485–494. https://doi.org/10.1523/JNEUROSCI.3483-12.2013
dc.relation.referencesHarvey, A., Edrada-Ebel, R., Quinn, R., 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129. https://doi.org/10.1038/nrd4510
dc.relation.referencesHoldgate, G.A., Meek, T.D., Grimley, R.L., 2018. Mechanistic enzymology in drug discovery: A fresh perspective. Nat. Rev. Drug Discov. https://doi.org/10.1038/nrd.2017.219
dc.relation.referencesHuang, L., Luo, Z., He, F., Shi, A., Qin, F., Li, X., 2010b. Berberine derivatives, with substituted amino groups linked at the 9-position, as inhibitors of acetylcholinesterase/butyrylcholinesterase. Bioorganic Med. Chem. Lett. 20, 6649–6652. https://doi.org/10.1016/j.bmcl.2010.09.013
dc.relation.referencesInestrosa, N., Dinamarca, M., Alvarez, A., 2008. Amyloid–cholinesterase interactions Implications for Alzheimer’s disease. FEBS J. 275, 625–632. https://doi.org/10.1111/j.1742-4658.2007.06238.x
dc.relation.referencesIngkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T., Thongnoi, W., 2003. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol. https://doi.org/10.1016/j.jep.2003.08.008
dc.relation.referencesjackisch, R., Förster, S., Kammerer, M., Rothmaier, A., Ehret, A., Zentner, J., Feuerstein, T., 2009. Inhibitory potency of choline esterase inhibitors on acetylcholine release and choline esterase activity in fresh specimens of human and rat neocortex. J. Alzheimer’s Dis. 16, 635–647. https://doi.org/10.3233/JAD-2009-1008
dc.relation.referencesJeon, Y., Jung, J., Kang, M., Chung, I.-K., Lee, W., 2002. NMR studies on antitumor drug candidates, berberine and berberrubine. Bull. Korean Chem. Soc. 23, 391–394. https://doi.org/10.5012/bkcs.2002.23.3.391
dc.relation.referencesJin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D., Selkoe, D., 2011. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. 108, 5819–5824. https://doi.org/10.1073/pnas.1017033108
dc.relation.referencesamigauchi, M., Yoshida, M., Noda, Y., Nishijo, J., In, Y., Tomoo, K., Ohishi, H., Ishida, T., 2003. Difference between Enzymatic and Chemical N-methylations of Protoberberine-Type Alkaloid, Dependent on the Stereoisomer of (−)-N-methyl-7, 8, 13, 13a-tetrahydroberberinium Salt. ulletin Chem. Soc. Japan 76, 587–593. https://doi.org/doi.org/10.1246/bcsj.76.587
dc.relation.referencesKepp, K.P., 2012. Bioinorganic chemistry of Alzheimer’s disease. Chem. Rev. 112, 5193–5239. https://doi.org/10.1021/cr300009x
dc.relation.referencesKhanna, I., 2012. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov. Today 17, 1088–1102. https://doi.org/10.1016/j.drudis.2012.05.007
dc.relation.referencesKong, L., Cheng, C., Tan, R., 2001. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med. 67, 74–76.
dc.relation.referencesKrane, B., Fagbule, M., Shamma, M., Gözler, M., 1984. The Benzophenanthridine Alkaloids. J. Nat. Prod. 4, 1–43.
dc.relation.referencesKumar, R., Nordberg, A., Darreh-Shori, T., 2016. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs. Brain 139, 174–192. https://doi.org/10.1093/brain/awv318
dc.relation.referencesLane, R., Potkin, S., Enz, A., 2016. Targeting Acetylcholinesterase and butyrylcholinesterase in dementia Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 9, 101–124. https://doi.org/10.1017/S1461145705005833
dc.relation.referencesLeon, R., Garcia, A., Marco‐Contelles, J., 2013. Recent advances in the multitarget‐directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev. 33, 139–189. https://doi.org/10.1002/med.20248
dc.relation.referencesLiscombe, D., Macleod, B., Loukanina, N., Nandi, O., Facchini, P., 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66, 1374–1393. https://doi.org/10.1016/j.phytochem.2005.04.029
dc.relation.referencesMacalino, S.J.Y., Gosu, V., Hong, S., Choi, S., 2015. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38, 1686–1701. https://doi.org/10.1007/s12272-015-0640-5
dc.relation.referencesMaity, S., Gundampati, R.K., Kumar, T.K.S., 2019. NMR methods to characterize protein-ligand interactions. Nat. Prod. Commun. 14, 1934578X19849296. https://doi.org/10.1177/1934578X19849296
dc.relation.referencesMallya, R., Malim, F., Naik, A., Bhitre, M., 2019. Evaluation of Anthelmintic Potential of Leaves and Fruits of Zanthoxylum rhetsa. Pharmacogn. J. 11, 475–478. https://doi.org/10.5530/pj.2019.11.75
dc.relation.referencesMarco-Contelles, J., 2019. Facts, Results, and Perspectives of the Current Alzheimer’s Disease Research. ACS Chem. Neurosci. 10, 1127–1128. https://doi.org/10.1021/acschemneuro.9b00034
dc.relation.referencesMathew, M., Subramanian, S., 2014. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS One 9, In vitro screening for anti-cholinesterase and ant. https://doi.org/10.1371/journal.pone.0086804
dc.relation.referencesMishra, P., Kumar, A., Panda, G., 2019. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998-2018). Bioorg. Med. Chem. 27, 895–930. https://doi.org/10.1016/j.bmc.2019.01.025
dc.relation.referencesMohamed, T., Shakeri, A., Rao, P., 2016. Amyloid cascade in Alzheimer’s disease: recent advances in medicinal chemistry. Eur. J. Med. Chem. 113, 258–272. https://doi.org/10.1016/j.ejmech.2016.02.049
dc.relation.referencesNantongo, J., Odoi, J., Abigaba, G., Gwali, S., 2018. Variability of phenolic and alkaloid content in different plant parts of Carissa edulis Vahl and Zanthoxylum chalybeum Engl. BMC Res. Notes
dc.relation.referencesNg, Y., Cho, T., Or, T., Ip, N., 2015. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int. 89, 260–270. https://doi.org/10.1016/j.neuint.2015.07.018
dc.relation.referencesO’Keefe, B., Beecher, C., 1994. Isolation and characterization of S-adenosyl-L-methionine: tetrahydroberberine-cis-N-methyltransferase from suspension cultures of Sanguinaria canadensis L. Plant Physiol. 105, 395–403. https://doi.org/137.189.171.235
dc.relation.referencesOset-Gasque, M., Marco-Contelles, J., 2018. Alzheimer’s Disease, the “one-Molecule, One-Target” Paradigm, and the Multitarget Directed Ligand Approach. ACS Chem. Neurosci. 9, 401–403. https://doi.org/10.1021/acschemneuro.8b00069
dc.relation.referencesPadilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7
dc.relation.referencesPadilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7
dc.relation.referencesPatiño, O., Cuca, L., 2011. Monophyllidin, a new alkaloid L-proline derivative from Zanthoxylum monophyllum. Phytochem. Lett. 4, 22–25. https://doi.org/10.1016/j.phytol.2010.10.002
dc.relation.referencesPatiño, O., Prieto, J., Lozano, J., Lesmes, L., Cuca, L., 2011. Propiedades antibacterianas in vitro de metabolitos secundarios aislados de dos especies del género Zanthoxylum (Rutaceae). Rev. Cuba. Farm. 45, 431–438.
dc.relation.referencesPerrett, S., Whitfield, P.J., 1995. Atanine (3-dimethylallyl-4-methoxy-2-quinolone), an alkaloid with anthelmintic activity from the Chinese medicinal plant, Evodia rutaecarpa. Planta Med. https://doi.org/10.1055/s-2006-958073
dc.relation.referencesingali, S., Donahue, J., Payton-stewart, F., 2015. Tetrahydroberberine, a pharmacologically active naturally occurring alkaloid. Acta Crystallogr. Sect. C Struct. Chem. 71, 262–265. https://doi.org/10.1107/S2053229615004076
dc.relation.referencesPluskal, T., Castillo, S., Villar-Briones, A., Orešič, M., 2010. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395. https://doi.org/10.1186/1471-2105-11-395
dc.relation.referencesPorat, Y., Abramowitz, A., Gazit, E., 2006. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.x
dc.relation.referencesQing, Z., Cheng, P., Liu, X., Liu, Y., Zeng, J., 2015. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. J. Pharm. Biomed. Anal. 103, 26–34. https://doi.org/10.1016/j.jpba.2014.11.002
dc.relation.referencesR-antagonismus, M.H., Ismaili, L., Joffrin, P., Jimeno, M.L., Kalinowsky, L., Proschak, E., Iriepa, I., Moraleda, I., Schwed, J.S., Martínez, A.R., López-muçoz, F., Chioua, M., Egea, J., Ramsay, R.R., Marco-contelles, J., Stark, H., 2017. Multipotente Liganden mit kombinierter Cholinesterase- und Monoaminooxidase-Inhibition sowie Histamin-H 3 R-Antagonismus bei neurodegenerativen Erkrankungen 1–6. https://doi.org/10.1002/ange.201706072
dc.relation.referencesRamsay, R., Albreht, A., 2018. Kinetics, mechanism, and inhibition of monoamine oxidase. J. Neural Transm. 125, 1659–1683. https://doi.org/10.1007/s00702-018-1861-9
dc.relation.referencesRamsay, R., Nikolic, M., Nikolic, K., Uliassi, E., Bolognesi, M., 2018. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 7, 3. https://doi.org/10.1186/s40169-017-0181-2
dc.relation.referencesRamsay, R.R., Majekova, M., Medina, M., Valoti, M., 2016. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci. 10. https://doi.org/10.3389/fnins.2016.00375
dc.relation.referencesRenaud, J., Delsuc, M.-A., 2009. Biophysical techniques for ligand screening and drug design. Curr. Opin. Pharmacol. 9, 622–628. https://doi.org/10.1016/j.coph.2009.06.008
dc.relation.referencesRoher, A.E., Kokjohn, T.A., Clarke, S.G., Sierks, M.R., Maarouf, C.L., Serrano, G.E., Sabbagh, M.S., Beach, T.G., 2017. APP/Aβ structural diversity and Alzheimer’s disease pathogenesis. Neurochem. Int. 110, 1–13. https://doi.org/10.1016/j.neuint.2017.08.007
dc.relation.referencesSandjo, L., Kuete, V., Tchangna, R., Efferth, T., Ngadjui, B., 2014. Cytotoxic Benzophenanthridine and Furoquinoline Alkaloids from Zanthoxylum buesgenii (Rutaceae). Chem. Cent. J. 8, 61. https://doi.org/10.1186/s13065-014-0061-4
dc.relation.referencesSchliebs, R., Arendt, T., 2011. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555–563. https://doi.org/10.1016/j.bbr.2010.11.058 Schliebs, R., Arendt, T., 2006. Review The significance of the cholinergic system in the brain during aging and in Alzheimer ’ s disease 1625–1644. https://doi.org/10.1007/s00702-006-0579-2
dc.relation.referencesSilva, T., Reis, J., Teixeira, J., Borges, F., 2014. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev. 15, 116–145. https://doi.org/10.1016/j.arr.2014.03.008
dc.relation.referencesSingh, A., Bajpai, V., Srivastava, M., Arya, K., Kumar, B., 2014. apid profiling and structural characterization of bioactive compounds and their distribution in different parts of Berberis petiolaris Wall. ex G. Don applying hyphenated mass spectrometric techniques. Rapid Commun. Mass Spectrom. 28, 2089–2100. https://doi.org/10.1002/rcm.7001
dc.relation.referencesSugino, H., Watanabe, A., Amada, N., Yamamoto, M., Ohgi, Y., Kostic, D., Sanchez, R., 2015. Global Trends in Alzheimer Disease Clinical Development : Increasing the Probability of Success. Clin. Ther. 37, 1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006
dc.relation.referencesSwerdlow, R.H., 2007. Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2, 347–359.
dc.relation.referencesTalevi, A., 2015. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 6, 205. https://doi.org/10.3389/fphar.2015.00205
dc.relation.referencesTalić, S., Dragičević, I., Ćorajević, L., Martinović, A., 2014. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of extracts from medicinal plants. Bull. Chem. Technol. Bosnia Herzegovina 43, 11–14.
dc.relation.referencesTavares, L., Graciane, Z., Weber, D., Neto, A., Mostardeiro, C., Cruz, I., Oliveira, R., Ilha, V., Dalcol, I., Morel, A., 2014. Structure-activity relationship of benzophenanthridine alkaloids from Zanthoxylum rhoifolium having antimicrobial activity. PLoS One 9, e97000. https://doi.org/10.1371/journal.pone.0097000
dc.relation.referencesTsai, S., Lee, S., 2010. Characterization of acetylcholinesterase inhibitory constituents from Annona glabra assisted by HPLC microfractionation. J. Nat. Prod. 73, 1632–1635. https://doi.org/10.1021/np100247r
dc.relation.referencesViegas, A., Manso, J., Nobrega, F., Cabrita, E., 2011. Saturation-transfer difference (STD) NMR: a simple and fast method for ligand screening and characterization of protein binding. J. Chem. Educ. 88, 990–994. https://doi.org/10.1021/ed101169t
dc.relation.referencesVinutha, B., Prashanth, D., Salma, K., Sreeja, S., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., Deepak, M., 2007. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 109, 359–363. https://doi.org/10.1016/j.jep.2006.06.014
dc.relation.referencesWang, Y., Liu, D., Wyss, D.F., 2015. Competition STD NMR for the detection of high-affinity ligands and NMR-based screening 485–489. https://doi.org/10.1002/mrc.1381
dc.relation.referencesWei, X., Shen, H., Wang, L., Meng, Q., Liu, W., 2016. Analyses of total alkaloid extract of corydalis yanhusuo by comprehensive RP× RP liquid chromatography with pH difference. J. Anal. Methods Chem. 2016, 1–8. https://doi.org/10.1155/2016/9752735
dc.relation.referencesWeinreb, O., Amit, T., Bar-Am, O., Youdim, M., 2012. Ladostigil: A Novel Multimodal Neuroprotective Drug with Cholinesterase and Brain-Selective Monoamine Oxidase Inhibitory Activities for Alzheimers Disease Treatment. Curr. Drug Targets 13, 483–494. https://doi.org/10.2174/138945012799499794
dc.relation.referencesWiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E., Edlund, U., Shockcor, J., Gottfries, J., Moritz, T., Trygg, J., 2008. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115–122. https://doi.org/10.1021/ac0713510
dc.relation.referencesWilliams, P., Sorribas, A., Howes, M.J.R., 2011. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep. 28, 48–77. https://doi.org/10.1039/c0np00027b
dc.relation.referencesProd. Rep. 36, 855–868. https://doi.org/10.1039/c9np00004f Wolfender, J., Marti, G., Thomas, A., Bertrand, S., 2015. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.11.043
dc.relation.referencesWszelaki, N., Kuciun, A., Kiss, A., 2010. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm. 60, 119–128. https://doi.org/10.2478/v10007-010-0006-y
dc.relation.referencesXiao, J., Tundis, R., 2013. Natural products for Alzheimer’s disease therapy: basic and application. J. Pharm. Pharmacol. 65, 1679–1680. https://doi.org/10.1111/jphp.12186
dc.relation.referencesYang, S., Liu, Y., Wang, J., Wang, Y., Pan, W., Sheng, W., 2014. Isoquinoline alkaloids from Zanthoxylum simulans and their biological evaluation 1–4. https://doi.org/10.1038/ja.2014.139
dc.relation.referencesYeong, K., Liew, W., Murugaiyah, V., Ang, C., Osman, H., Tan, S., 2017. Ethyl nitrobenzoate: A novel scaffold for cholinesterase inhibition. Bioorg. Chem. 70, 27–33. https://doi.org/10.1016/j.bioorg.2016.11.005
dc.relation.referencesYuliana, N., Khatib, A., Choi, Y., Verpoorte, R., 2011. Metabolomics for bioactivity assessment of natural products. Phyther. Res. 25, 157–169. https://doi.org/10.1002/ptr.3258
dc.relation.referencesZheng, H., Fridkin, M., Youdim, M., 2014. From single target to multitarget/network therapeutics in Alzheimer’s therapy. Pharmaceuticals 7, 113–135. https://doi.org/10.3390/ph7020113
dc.relation.referencesZuo, Z., Zheng, Y., Liang, Z., Liu, Y., Tang, Q., Liu, X., Zhao, Z., 2017. Tissue-specific metabolite profiling of benzylisoquinoline alkaloids in the root of Macleaya cordata by combining laser microdissection with ultra-high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom 31, 397–410. https://doi.org/10.1002/rcm.7804
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBenzophenanthridines
dc.subject.proposalBenzofenantridinas
dc.subject.proposalMetabolómica
dc.subject.proposalMetabolomics
dc.subject.proposalAnálisis estadístico multivariado
dc.subject.proposalMultivariate statistical analyses
dc.subject.proposalEnzyme inhibitors
dc.subject.proposalInhibidores enzimáticos
dc.subject.proposalCholinesterase
dc.subject.proposalColinesterasas
dc.subject.proposalMonoamino oxidasas
dc.subject.proposalMonoamine oxidase
dc.subject.proposalβ-Amyloid
dc.subject.proposalβ-amiloide
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito