Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCamargo Rojas, Diana Alexandra
dc.contributor.authorCañón Becerra, Brian Alejandro
dc.date.accessioned2020-07-24T04:17:41Z
dc.date.available2020-07-24T04:17:41Z
dc.date.issued2020-07-07
dc.identifier.citationCañon, B. Camargo, D. Aplicabilidad del software move2perform para identificar riesgo de lesión sin contacto de miembro inferior en deportistas de la Universidad Nacional de Colombia. Bogotá. 2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77838
dc.description.abstractObjetivo: Determinar la aplicabilidad del software move2perform para identificar riesgo de lesión sin contacto de miembros inferiores en deportistas masculinos de fútbol, levantamiento de pesas y atletismo de las selecciones de la Universidad Nacional de Colombia. Metodología: Estudio cuantitativo de cohorte prospectivo, en una cohorte de 22 sujetos de 3 selecciones masculinas, se inicia con un mes de recolección de la información de las variables. Luego se realizó una vigilancia de las lesiones de miembro inferior durante 3 meses, al finalizar este periodo se insertaron los datos en el software, el cual arroja la categorización de riesgo de lesión y finalmente se compara con la lesión real. Resultados: El 64% de los deportistas se ubicaron en la categoría de déficit sustancial y presentan 2,71 (RR) veces más probabilidad de sufrir una lesión sin contacto en el miembro inferior. Para el FMS se calculó un RR=1,32 tanto para el puntaje compuesto ≤14 como para la asimetría en ≥2 subpruebas. Para el YBT el RR del alcance anterior fue de 1,17; para el alcance postero medial de 1,07 y para el alcance postero lateral igual a 0,81. El software presento una sensibilidad del 100% y una especificidad del 21,4% Conclusión: El software es de fácil aplicación y de bajo costo, siendo una herramienta que puede incluirse en los programas de prevención de lesiones, aunque no es específico para la detección de lesiones, si es sensible y detecta un riesgo de 2,71 veces más de lesionarse en aquellos deportistas con riesgo sustancial.
dc.description.abstractObjective: To determine the applicability of the move2perform software to identify risk of contactless injury of lower limbs in male soccer athletes, weightlifting and athletics of the selections of the National University of Colombia. Methodology: Quantitative study of prospective cohort, carried out in a cohort of 22 subjects of 3 male selections, begins with a month of information collection of the variables necessary for the software. Then a monitoring of the lower limb lesions was performed for 3 months, at the end of this period the data is inserted into the software, which yields the categorization of risk of injury and finally compares with the actual lesion. Results: 64% of athletes were in the category of substantial deficit and are 2.71 (RR) times more likely to suffer a contactless injury in the lower limb. For the FMS a RR = 1.32 was calculated for both the composite score ≤14 and for the asymmetry in ≥2 subtests. For the YBT the RR of the previous scope was 1.17; for the posteromedial reach of 1.07 and for the posterolateral reach equal to 0.81. The software presented a sensitivity of 100% and a specificity of 21.4% Conclusion: The software is easy to apply and inexpensive, being a tool that can be included in injury prevention programs, although it is not specific for injury detection, if it is sensitive and detects a risk of 2.71 times of being injured in those athletes with substantial risk.
dc.format.extent100
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología
dc.titleAplicabilidad del software move2perform para identificar riesgo de lesión sin contacto de miembro inferior en deportistas de la Universidad Nacional de Colombia
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Fisioterapia del Deporte y la Actividad Física. Línea de Investigación: Prevención de lesiones.
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Fisioterapia del Deporte y la Actividad Física
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Hergenroeder AC. Prevention of Sports Injuries. Pediatrics [Internet]. 1998 Jun 1;101(6):1057 LP-1063. Available from: http://pediatrics.aappublications.org/content/101/6/1057.abstract 2. Dick R, Agel J, Marshall SW. National Collegiate Athletic Association Injury Surveillance System Commentaries: Introduction and Methods. J Athl Train [Internet]. 2007;42(2):173–82. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1941300/ 3. Hootman JM, Dick R, Agel J. Epidemiology of Collegiate Injuries for 15 Sports: Summary and Recommendations for Injury Prevention Initiatives. J Athl Train [Internet]. 2007;42(2):311–9. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1941297/ 4. Casáis L. Revisión: Revisión de las estrategias para la prevención de lesiones en el deporte desde la actividad física. Apunt Med l’Esport [Internet]. 2008 Jan 1;43:30– 40. Available from: http://10.0.3.248/S1886-6581(08)70066-5 5. Arroyo M, R G, MC G, L D. Influencia de los desequilibrios musculares de la pelvis sobre la pubalgia en los deportistas. Cuestiones de Fisioterapia. 2004;(25):57–66. 6. Lehr M., Plisky P., Butler R., Fink M., Kiesel K., Underwood F. Field‐expedient screening and injury risk algorithm categories as predictors of noncontact lower extremity injury. Scand J Med Sci Sports [Internet]. 2013 Mar 20;23(4):e225–32. Available from: https://doi.org/10.1111/sms.12062 7. RAE. Real academia española [Internet]. 2019. Available from: https://www.rae.es/ 8. Rivera M S, Letelier S LM. Aplicabilidad de un estudio sobre tests diagnósticos . Vol. 139, Revista médica de Chile . scielocl ; 2011. p. 672–5. 9. Move2Perform. move2perform [Internet]. Evansville U.S. 2018. Available from: https://www.move2perform.com/ 10. OMS. Factor de riesgo [Internet]. Organización Mundial de la Salud. 2019. Available from: https://www.who.int/topics/risk_factors/es/ 11. Timpka T, Jacobsson J, Bickenbach J, Finch CF, Ekberg J, Nordenfelt L. What is a sports injury? Sports Med. 2014 Apr;44(4):423–8. 12. Tortora GJ, Derrickson B. Principios de anatomia y fisiologia / Principles of Anatomy and Physiology [Internet]. Editorial Medica Panamericana Sa de; 2006. Available from: https://books.google.com.co/books?id=1w3IGQAACAAJ 13. Real academia española. Definicón futbol [Internet]. 2019. Available from: https://dle.rae.es/fútbol 14. Real academia española. Definición Atletismo [Internet]. 2019. Available from: https://dle.rae.es/atletismo 15. Real academia española. Definición levantamiento de pesas [Internet]. 2019. Available from: https://dle.rae.es/halterofilia 16. Lazcano-Ponce E, FernÃ!`ndez E, Salazar-MartÃ\-nez E, HernÃ!`ndez-Ãvila M. Estudios de cohorte: MetodologÃ\-a, sesgos y aplicaciÃ\textthreesuperiorn. Rev Cuba Hig y Epidemiol [Internet]. 2007;45:0. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561- 30032007000300010&nrm=iso 17. Cos F, Cos MÁ, Buenaventura L, Pruna R, Ekstrand J. Artículo especial: Modelos de análisis para la prevención de lesiones en el deporte. Estudio epidemiológico de lesiones: el modelo Union of European Football Associations en el fútbol. Anal Model Prev Sport Inj Epidemiol study Inj UEFA Model Footb [Internet]. 2010 Jan 1;45:95– 102. Available from: http://10.0.3.248/j.apunts.2010.02.007 18. van Mechelen W, Hlobil H, Kemper HCG. Incidence, Severity, Aetiology and Prevention of Sports Injuries. Sport Med [Internet]. 1992;14(2):82–99. Available from: https:/19. Finch C. A new framework for research leading to sports injury prevention. J Sci Med Sport. 2006 May;9(1–2):3–9; discussion 10. 20. Van Tiggelen D, Wickes S, Stevens V, Roosen P, Witvrouw E. Effective prevention of sports injuries: a model integrating efficacy, efficiency, compliance and risk-taking behaviour. Br J Sports Med. 2008 Aug;42(8):648–52. 21. H. Meeuwisse W. Assessing Causation in Sport Injury: A Multifactorial Model. Vol. 4, Clinical Journal of Sport Medicine. 1994. 22. Martínez AF, Márquez JC de la C, Martín BC, Alonso SS, Campos JC de la C. ARTÍCULO ESPECIAL: Predicción de lesiones deportivas mediante modelos matemáticos. Apunt Med l’Esport [Internet]. 2008 Jan 1;43:41–4. Available from: http://www.raco.cat/index.php/Apunts/article/view/119742/300154 23. Steele VA, White JA. Injury prediction in female gymnasts. Br J Sports Med [Internet]. 1986 Mar;20(1):31–3. Available from: http://bjsm.bmj.com/content/bjsports/20/1/31.full.pdf 24. Shambaugh JP, Klein A, Herbert JH. Structural measures as predictors of injury in basketball players. Med Sci Sports Exerc [Internet]. 1991 Jan 1;23(5):522–7. Available from: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct =true&db=edselc&AN=edselc.2-52.0-0025732950&lang=es&site=eds-live 25. Salazar S. Aplicación del índice de Shambaugh en jugadores/as de baloncesto cadetes y júnior en relación con la exposición práctica. Universidad de Granada; 2000. 26. Fernández A. Predicción de lesiones en jóvenes atletas mediante ecuaciones de regresión logística. Universidad de Granada; 2004. 27. Soderman K, Alfredson H, Pietila T, Werner S. Risk factors for leg injuries in female soccer players: a prospective investigation during one out-door season. Knee Surg Sports Traumatol Arthrosc. 2001 Sep;9(5):313–21. 28. Stewart DR, Burden SB. Does generalised ligamentous laxity increase seasonal /doi.org/10.2165/00007256- 199214020-00002 incidence of injuries in male first division club rugby players? Br J Sports Med [Internet]. 2004 Aug;38(4):457–60. Available from: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct =true&db=mdc&AN=15273185&lang=es&site=eds-live 29. Hewett TE, Myer GD, Ford KR, Heidt RS, Colosimo AJ, McLean SG, et al. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am J Sports Med [Internet]. 2005 Apr 1;33(4):492–501. Available from: https://doi.org/10.1177/0363546504269591 30. Plisky P, Phillip J, Mitchel J, Thomas W, Frank B. Star Excursion Balance Test as a Predictor of Lower Extremity Injury in High School Basketball Players. J Orthop Sport Phys Ther [Internet]. 2006 Dec 1;36(12):911–9. Available from: https://doi.org/10.2519/jospt.2006.2244 31. Carvalho ACA, Junior LCH, Costa LOP, Lopes AD. The association between runners’ lower limb alignment with running-related injuries: a systematic review. Br J Sports Med [Internet]. 2011 Apr;45(4):339. Available from: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct =true&db=a9h&AN=66325698&lang=es&site=eds-live 32. Konopinski MD, Jones GJ, Johnson MI. The Effect of Hypermobility on the Incidence of Injuries in Elite-Level Professional Soccer Players. Am J Sports Med [Internet]. 2011 Dec 16;40(4):763–9. Available from: https://doi.org/10.1177/0363546511430198 33. Myer GD, Ford KR, Paterno M V, Nick TG, Hewett TE. The Effects of Generalized Joint Laxity on Risk of Anterior Cruciate Ligament Injury in Young Female Athletes. Am J Sports Med [Internet]. 2008 Jun 1;36(6):1073–80. Available from: https://doi.org/10.1177/0363546507313572 34. Aasa U, Svartholm I, Andersson F, Berglund L. Injuries among weightlifters and powerlifters: a systematic review. Br J Sports Med. 2017 Feb;51(4):211–9. 35. Raske A, Norlin R. Injury incidence and prevalence among elite weight and power lifters. Am J Sports Med. 2002;30(2):248–56. 36. Kulund DN, Dewey JB, Brubaker CE, Roberts JR. Olympic Weight-Lifting Injuries. Phys Sportsmed. 1978 Nov;6(11):111–9. 37. Calhoon G, Fry AC. Injury rates and profiles of elite competitive weightlifters. J Athl Train. 1999 Jul;34(3):232–8. 38. Green CM, Comfort P. The Affect of Grip Width on Bench Press Performance and Risk of Injury. Strength Cond J [Internet]. 2007;29(5). Available from: https://journals.lww.com/nscascj/Fulltext/2007/10000/The_Affect_of_Grip_Width_on_Bench_Press.1.aspx 39. Cholewicki J, McGill SM, Norman RW. Lumbar spine loads during the lifting of extremely heavy weights. Med Sci Sports Exerc. 1991 Oct;23(10):1179–86. 40. Edouard P, Navarro L, Branco P, Gremeaux V, Timpka T, Junge A. Injury frequency and characteristics (location, type, cause and severity) differed significantly among athletics ('track and field’) disciplines during 14 international championships (2007- 2018): implications for medical service planning. Br J Sports Med. 2019 Nov; 41. Feddermann-Demont N, Junge A, Edouard P, Branco P, Alonso J-M. Injuries in 13 international Athletics championships between 2007-2012. Br J Sports Med. 2014 Apr;48(7):513–22. 42. Mellinger S, Neurohr GA. Evidence based treatment options for common knee injuries in runners. Ann Transl Med. 2019 Oct;7(Suppl 7):S249. 43. Edouard P, Branco P, Alonso J-M. Muscle injury is the principal injury type and hamstring muscle injury is the first injury diagnosis during top-level international athletics championships between 2007 and 2015. Br J Sports Med. 2016 May;50(10):619–30. 44. Hofstede H, Franke TPC, van Eijk RPA, Backx FJG, Kemler E, Huisstede BMA. In training for a marathon: Runners and running-related injury prevention. Phys Ther Sport. 2019 Nov;41:80–6. 45. Morley JJ, Traum E. The effects of dorso-lumbar motion restriction on energy use and center of mass movement during running. J Bodyw Mov Ther. 2019. Oct;23(4):873–80. 46. Wickstrom W, Spreco A, Bargoria V, Elinder F, Hansson P-O, Dahlstrom O, et al. Perceptions of Overuse Injury Among Swedish Ultramarathon and Marathon Runners: Cross-Sectional Study Based on the Illness Perception Questionnaire Revised (IPQ-R). Front Psychol. 2019;10:2406. 47. Chandran A, Barron MJ, Westerman BJ, DiPietro L. Time Trends in Incidence and Severity of Injury Among Collegiate Soccer Players in the United States: NCAA Injury Surveillance System, 1990-1996 and 2004-2009. Am J Sports Med. 2016 Dec;44(12):3237–42. 48. Netto DC, Arliani GG, Thiele ES, Cat MNL, Cohen M, Pagura JR. Prospective Evaluation of Injuries occurred during the Brazilian Soccer Championship in 2016. Rev Bras Ortop. 2019 May;54(3):329–34. 49. Klein C, Luig P, Henke T, Platen P. Injury burden differs considerably between single teams from German professional male football (soccer): surveillance of three consecutive seasons. Knee Surg Sports Traumatol Arthrosc. 2019 Jul; 50. Ekstrand J. The UEFA Elite Club Injury Study was initiated by and is funded and supported by UEFA. UEFA Med Comm [Internet]. 2015;35. Available from: https://www.uefa.com/MultimediaFiles/Download/uefaorg/Medical/02/40/27/65/240 2765_DOWNLOAD.pdf 51. Schwartzkopf-Phifer K, English RA, Mattacola CG, Dressler E V, Kiesel KB. THE EFFECT of ONE-ON-ONE INTERVENTION in ATHLETES with MULTIPLE RISK FACTORS for INJURY. Int J Sports Phys Ther [Internet]. 2019 Jun;14(3):384–402. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31681498 52. Tas S, Ozkan O, Karacoban L, Donmez G, Cetin A, Korkusuz F. Knee muscle and tendon stiffness in professional soccer players: a shear-wave elastography study. J Sports Med Phys Fitness. 2019 Oct; 53. Gee SM, Tennent DJ, Cameron KL, Posner MA. The Burden of Meniscus Injury in Young and Physically Active Populations. Clin Sports Med. 2020 Jan;39(1):13–27. 54. Ekstrand J, Krutsch W, Spreco A, van Zoest W, Roberts C, Meyer T, et al. Time. before return to play for the most common injuries in professional football: a 16-year follow-up of the UEFA Elite Club Injury Study. Br J Sports Med. 2019 Jun; 55. Jacobs SJ, Berson BL. Injuries to runners: a study of entrants to a 10,000 meter race. Am J Sports Med. 1986;14(2):151–5. 56. Koplan JP, Powell KE, Sikes RK, Shirley RW, Campbell CC. An epidemiologic study of the benefits and risks of running. JAMA. 1982 Dec;248(23):3118–21. 57. Taimela S, Kujala UM, Osterman K. Intrinsic Risk Factors and Athletic Injuries. Sport Med [Internet]. 1990;9(4):205–15. Available from: https://doi.org/10.2165/00007256- 199009040-00002 58. Shellock FG, Prentice WE. Warming-up and stretching for improved physical performance and prevention of sports-related injuries. Sports Med. 1985;2(4):267– 78. 59. Worrell TW, Perrin DH, Gansneder BM, Gieck JH. Comparison of isokinetic strength and flexibility measures between hamstring injured and noninjured athletes. J Orthop Sports Phys Ther. 1991;13(3):118–25. 60. Nicholas JA. Injuries to knee ligaments. Relationship to looseness and tightness in football players. JAMA. 1970 Jun;212(13):2236–9. 61. Godshall RW. The predictability of athletic injuries: an eight-year study. J Sports Med. 1975;3(1):50–4. 62. Kalenak A, Morehouse CA. Knee stability and knee ligament injuries. JAMA. 1975 Dec;234(11):1143–5. 63. Klein KK. Developmental Asymmetries and Knee Injury. Phys Sportsmed [Internet]. 1983 Aug 1;11(8):67–71. Available from: http://dx.doi.org/10.1080/00913847.1983.11708603 64. Warren BL. Anatomical factors associated with predicting plantar fasciitis in longdistance runners. Med Sci Sports Exerc [Internet]. 1984;16(1):60–3. Available from: http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=6708780&lang= es&site=ehost-live 65. Messier SP, Pittala KA. Etiologic factors associated with selected running injuries. Med Sci Sports Exerc. 1988 Oct;20(5):501–5. 66. Bonci CM. Assessment and Evaluation of Predisposing Factors to Anterior Cruciate Ligament Injury. J Athl Train [Internet]. 1999;34(2):155–64. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1322905/ 67. Emery CA, Meeuwisse WH, Hartmann SE. Evaluation of Risk Factors for Injury in Adolescent Soccer. Am J Sports Med [Internet]. 2005 Dec 1;33(12):1882–91. Available from: https://doi.org/10.1177/0363546505279576 68. Hägglund M, Waldén M, Ekstrand J. Previous injury as a risk factor for injury in elite football: a prospective study over two consecutive seasons. Br J Sports Med [Internet]. 2006 Aug 23;40(9):767 LP-772. Available from: http://bjsm.bmj.com/content/40/9/767.abstract 69. Waldén M, Hägglund M, Ekstrand J. High risk of new knee injury in elite footballers with previous anterior cruciate ligament injury. Br J Sports Med [Internet]. 2006 Jan 23;40(2):158 LP-162. Available from: http://bjsm.bmj.com/content/40/2/158.abstract 70. Kiesel K, Plisky PJ, Voight ML. Can Serious Injury in Professional Football be Predicted by a Preseason Functional Movement Screen? N Am J Sports Phys Ther [Internet]. 2007 Aug;2(3):147–58. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953296/ 71. Hotta T, Nishiguchi S, Fukutani N, Tashiro Y, Adachi D, Morino S, et al. Functional Movement Screen for Predicting Running Injuries in 18- to 24-Year-Old Competitive Male Runners. J strength Cond Res. 2015 Oct;29(10):2808–15. 72. Chalmers S, Fuller JT, Debenedictis TA, Townsley S, Lynagh M, Gleeson C, et al. Asymmetry during preseason Functional Movement Screen testing is associated with injury during a junior Australian football season. J Sci Med Sport. 2017 Jul;20(7):653–7. 73. Pfeifer CE, Sacko RS, Ortaglia A, Monsma E V, Beattie PF, Goins J, et al. FUNCTIONAL MOVEMENT SCREENTM in YOUTH SPORT PARTICIPANTS: EVALUATING the PROFICIENCY BARRIER for INJURY. Int J Sports Phys Ther [Internet]. 2019 Jun;14(3):436–44. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31681502 74. Fuller JT, Lynagh M, Tarca B, Zacharia A, Townsley A, Gleeson C, et al. Functional Movement Screen Pain Location and Impact on Scoring Has Limited Value for Junior Australian Football Injury Risk Estimation. J Orthop Sport Phys Ther [Internet]. 2019 Sep 17;1–24. Available from: https://doi.org/10.2519/jospt.2020.9168 75. Smith CA, Chimera NJ, Warren M. Association of y balance test reach asymmetry and injury in division I athletes. Med Sci Sports Exerc. 2015 Jan;47(1):136–41. 76. Brumitt J, Nelson K, Duey D, Jeppson M, Hammer L. Preseason Y Balance Test Scores are not Associated with Noncontact Time-Loss Lower Quadrant Injury in Male Collegiate Basketball Players. Sport (Basel, Switzerland) [Internet]. 2018 Dec 24;7(1):4. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30586865 77. Ruffe NJ, Sorce SR, Rosenthal MD, Rauh MJ. LOWER QUARTER- AND UPPER QUARTER Y BALANCE TESTS AS PREDICTORS OF RUNNING-RELATED INJURIES IN HIGH SCHOOL CROSS-COUNTRY RUNNERS. Int J Sports Phys Ther [Internet]. 2019 Sep;14(5):695–706. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31598407 78. Ryu CH, Park J, Kang M, Oh JH, Kim YK, Kim Y Il, et al. Differences in lower quarter Y-balance test with player position and ankle injuries in professional baseball players. J Orthop Surg (Hong Kong). 2019;27(1):2309499019832421. 79. Linek P, Booysen N, Sikora D, Stokes M. Functional movement screen and Y balance tests in adolescent footballers with hip/groin symptoms. Phys Ther Sport. 2019 Sep;39:99–106. 80. Dahle L, Mueller M, Delitto A, Diamond J. Visual Assessment of Foot Type and Relationship of Foot Type to Lower Extremity Injury. J Orthop Sport Phys Ther [Internet]. 1991 Aug 1;14(2):70–4. Available from: https://doi.org/10.2519/jospt.1991.14.2.70. 81. Krivickas LS, Feinberg JH. Lower extremity injuries in college athletes: Relation between ligamentous laxity and lower extremity muscle tightness. Arch Phys Med Rehabil [Internet]. 1996 Nov 1;77(11):1139–43. Available from: http://dx.doi.org/10.1016/S0003-9993(96)90137-9 82. Cholewicki J, Silfies SP, Shah RA, Greene HS, Reeves NP, Alvi K, et al. Delayed Trunk Muscle Reflex Responses Increase the Risk of Low Back Injuries. Spine (Phila Pa 1976) [Internet]. 2005;30(23). Available from: https://journals.lww.com/spinejournal/Fulltext/2005/12010/Delayed_Trunk_Muscle_ Reflex_Responses_Increase_the.6.aspx 83. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in Neuromuscular Control of the Trunk Predict Knee Injury Risk: Prospective Biomechanical-Epidemiologic Study. Am J Sports Med [Internet]. 2007 Jul 1;35(7):1123–30. Available from: https://doi.org/10.1177/0363546507301585 84. Chorba RS, Chorba DJ, Bouillon LE, Overmyer CA, Landis JA. Use of a Functional Movement Screening Tool to Determine Injury Risk in Female Collegiate Athletes. N Am J Sports Phys Ther [Internet]. 2010 Jun;5(2):47–54. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953387/ 85. Ekstrand, Jan. Hägglund M, Waldén M. Injury incidence and injury patterns in professional football - the UEFA injury study. Br J Sport Med VO - 45 [Internet]. 2011;(7):553. Available from: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct =true&db=edsswe&AN=edsswe.oai.DiVA.org.liu.52238&lang=es&site=eds-live 86. Escorcia Gómez DC. Perfil epidemiológico de lesiones deportivas en la Universidad Nacional: una perspectiva desde el modelo multinivel de los determinantes en salud [Internet]. Universidad Nacional de Colombia; 2015. Available from: http://www.bdigital.unal.edu.co/51641/1/dianacarolinaescorciagomez.2015.pdf 87. Casals M, Finch CF. Sports Biostatistician: a critical member of all sports science and medicine teams for injury prevention. Br J Sports Med. 2018 Nov;52(22):1457– 61. 88. Alfonso-Mora ML, López Rodríguez LM, Rodríguez Velasco CF, Romero Mazuera JA. Reproducibilidad del test Functional Movement Screen en futbolistas aficionados. Rev Andaluza Med del Deport [Internet]. 2017;10(2):74–8. Available from: http://www.sciencedirect.com/science/article/pii/S1888754616300934 89. Plisky PJ, Gorman PP, Butler RJ, Kiesel KB, Underwood FB, Elkins B. The Reliability of an Instrumented Device for Measuring Components of the Star Excursion Balance Test. N Am J Sports Phys Ther [Internet]. 2009 May;4(2):92–9. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953327/ 90. Butler RJ, Lehr ME, Fink ML, Kiesel KB, Plisky PJ. Dynamic balance performance and noncontact lower extremity injury in college football players: an initial study. Sports Health [Internet]. 2013 Sep;5(5):417–22. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24427412 91. Clarsen B, Myklebust G, Bahr R. Development and validation of a new method for the registration of overuse injuries in sports injury epidemiology: the Oslo Sports Trauma Research Centre (OSTRC) overuse injury questionnaire. Br J Sports Med. 2013 May;47(8):495–502. 92. Julio V, Mariela V, Cecilia Á, Alicia S. Niveles de atención, de prevención y atención primaria de la salud / Levels of care, prevention and primary health care [Internet]. Archivos de Medicina Interna VO - 33. Montevideo: Prensa Medica Latinoamericana; 2011. p. 7. Available from: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct =true&db=edssci&AN=edssci.S1688.423X2011000100003&lang=es&site=eds-live 93. García PB, Burillo P. La situación actual del deporte universitario en España para el alumnado universitario. Sport TK-Revista Euroam Ciencias del Deport. 2018;7(1):87–96. 94. Bartoll ÓC, Domingo CH. El modelo español de deporte en la universidad: fundamentación, descripción y orientaciones para su gestión ética. Retos Nuevas tendencias en Educ Física, Deport y Recreación. 2014;(26):128–33. 95. Peña JCM, Briceño OBS. Resiliencia y lesiones en deportistas universitarios. Rev Psicol la salud. 2019;7(1):134–51. 96. DeHaven KE, Lintner DM. Athletic injuries: Comparison by age, sport, and gender. Am J Sports Med [Internet]. 1986 May 1;14(3):218–24. Available from: https://doi.org/10.1177/036354658601400307 97. Tahirbegolli B, Dincer S, Gozubuyuk OB, Degirmenci U, Yildiz S, Vehid S. Athlete presentations and injury frequency by sport at a sports medicine university clinic. J Sports Med Phys Fitness. 2018 Nov;58(11):1676–80. 98. Perez D. EPIDEMIOLOGÍA DE LA LESIÓN DEPORTIVA [Internet]. UNIVERSIDAD POLITÉCNICA DE MADRID; 2015. Available from: http://oa.upm.es/36508/1/TFG_DANIEL_PEREZ_DEL_POZO.pdf 99. Gn B, Cena E, An B, Al B, Corsini A, Bisciotti GN, et al. ANTERIOR CRUCIATE LIGAMENT INJURY RISK FACTORS IN FOOTBALL: A NARRATIVE REVIEW ANTERIOR CRUCIATE LIGAMENT INJURY RISK FACTORS IN FOOTBALL: A NARRATIVE REVIEW. 2019 Sep 3;9563. 100. Walden M, Krosshaug T, Bjorneboe J, Andersen TE, Faul O, Hagglund M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Br J Sports Med. 2015 Nov;49(22):1452–60. 101. Koga H, Nakamae A, Shima Y, Iwasa J, Myklebust G, Engebretsen L, et al. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med. 2010 Nov;38(11):2218–25. 102. Hewett TE, Ford KR, Hoogenboom BJ, Myer GD. Understanding and preventing acl injuries: current biomechanical and epidemiologic considerations - update 2010. Vol. 5, North American journal of sports physical therapy : NAJSPT. United States; 2010. p. 234–51. 103. OSORIO CIRO JA, CLAVIJO RODRIGUEZ MP, ARANGO V. E, PATIÑO GIRALDO S, GALLEGO CHING IC. Lesiones deportivas. Iatreia. 20(2):167–77. 104. Velazquez-Rueda ML, Martinez-Avila JP, Perez-Serna AG, Gomez-Garcia F. [Risk factors and frequency in re-ruptures of the anterior cruciate ligament in adults]. Acta Ortop Mex. 2016;30(2):61–6. 105. Grier TL, Canham-Chervak M, Anderson MK, Bushman TT, Jones BH. Effects of Physical Training and Fitness on Running Injuries in Physically Active Young Men. J strength Cond Res. 2017 Jan;31(1):207–16. 106. Nunns M, House C, Rice H, Mostazir M, Davey T, Stiles V, et al. Four biomechanical and anthropometric measures predict tibial stress fracture: a prospective study of 1065 Royal Marines. Br J Sports Med. 2016 Oct;50(19):1206–10. 107. Bennett JE, Reinking MF, Rauh MJ. The relationship between isotonic plantar flexor endurance, navicular drop, and exercise-related leg pain in a cohort of collegiate cross-country runners. Int J Sports Phys Ther. 2012 Jun;7(3):267–78. 108. Bennett JE, Reinking MF, Pluemer B, Pentel A, Seaton M, Killian C. Factors contributing to the development of medial tibial stress syndrome in high school runners. J Orthop Sports Phys Ther. 2001 Sep;31(9):504–10. 109. Rauh MJ, Macera CA, Trone DW, Reis JP, Shaffer RA. Selected static anatomic measures predict overuse injuries in female recruits. Mil Med. 2010 May;175(5):329– 35. 110. Rauh MJ, Koepsell TD, Rivara FP, Rice SG, Margherita AJ. Quadriceps angle and risk of injury among high school cross-country runners. J Orthop Sports Phys Ther. 2007 Dec;37(12):725–33. 111. Moen MH, Bongers T, Bakker EW, Zimmermann WO, Weir A, Tol JL, et al. Risk factors and prognostic indicators for medial tibial stress syndrome. Scand J Med Sci Sports. 2012 Feb;22(1):34–9. 112. Rauh MJ. LEG-LENGTH INEQUALITY AND RUNNING-RELATED INJURY AMONG HIGH SCHOOL RUNNERS. Int J Sports Phys Ther. 2018 Aug;13(4):643– 51. 113. Gehring D, Melnyk M, Gollhofer A. Gender and fatigue have influence on knee joint control strategies during landing. Clin Biomech (Bristol, Avon). 2009 Jan;24(1):82– 7. 114. Dvorak J, Junge A, Chomiak J, Graf-Baumann T, Peterson L, Rösch D, et al. Risk factor analysis for injuries in football players. Possibilities for a prevention program. Am J Sports Med [Internet]. 2000;28(5 Suppl):S69–74. Available from: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct =true&db=mnh&AN=11032110&lang=es&site=eds-live 115. Fong S, Guo X, Liu K. Task-Specific Balance Training Improves the Sensory Organisation of Balance Control in Children with Developmental Coordination Disorder: A Randomised Controlled Trial. Sci Rep [Internet]. 2016;6(20945). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750073/ 116. Manso A, Malavasi M, Caovilla H. Vestibular rehabilitation with visual stimuli in peripheral vestibular disorders. Braz J Otorhinolaryngol [Internet]. 2016;82(2):232– 41. Available from: http://www.sciencedirect.com/science/article/pii/S1808869415002633?via%3Dihub #! 117. Pollock AS, Durward BR, Rowe PJ, Paul JP. What is balance? Clin Rehabil. 2000 Aug;14(4):402–6. 118. Hrysomallis C. Balance ability and athletic performance. Sports Med. 2011 Mar;41(3):221–32. 119. Sibley KM, Beauchamp MK, Van Ooteghem K, Straus SE, Jaglal SB. Using the systems framework for postural control to analyze the components of balance evaluated in standardized balance measures: a scoping review. Arch Phys Med Rehabil. 2015 Jan;96(1):122–132.e29. 120. Hodges PW. Pain and motor control: From the laboratory to rehabilitation. J Electromyogr Kinesiol [Internet]. 2011;21(2):220–8. Available from: http://www.sciencedirect.com/science/article/pii/S1050641111000058 121. Vera-García FJ, Barbado D, Moreno-Pérez V, Hernández-Sánchez S, Juan-Recio C, Elvira JLL. Core stability: concepto y aportaciones al entrenamiento y la prevención de lesiones . Vol. 8, Revista Andaluza de Medicina del Deporte . scieloes ; 2015. p. 79–85. 122. Gonell A, Romero J, Soler L. RELATIONSHIP BETWEEN THE Y BALANCE TEST SCORES AND SOFT TISSUE INJURY INCIDENCE IN A SOCCER TEAM. Int J . Sports Phys Ther. 2015;10(7):955–66. 123. Cook G. Movement: Functional movement systems: Screening, assessment, corrective strategies. BookBaby; 2010. 124. Runge Larsen L, Kristensen PL, Junge T, Fuglkjær Møller S, Juul-Kristensen B, Wedderkopp N. Motor performance as risk factor for lower extremity injuries in children. Med Sci Sport Exerc. 2016;48(6):1136–43. 125. Gribble PA, Hertel J, Plisky P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. J Athl Train [Internet]. 2012;47(3):339–57. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22892416 126. Trojian TH, McKeag DB. Single leg balance test to identify risk of ankle sprains. Br J Sports Med. 2006;40(7):610–3. 127. Dinc E, Kilinc B, Bulat M, Erten Y, Bayraktar B. Effects of special exercise programs on functional movement screen scores and injury prevention in preprofessional young football players. J Exerc Rehabil [Internet]. 2017;13(5):535–40. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5667599/ 128. Moran RW, Schneiders AG, Mason J, Sullivan SJ. Do Functional Movement Screen (FMS) composite scores predict subsequent injury? A systematic review with metaanalysis. Br J Sport Med. 2017;51(23):1661–9. 129. Whittaker JL, Booysen N, de la Motte S, Dennett L, Lewis CL, Wilson D, et al. Predicting sport and occupational lower extremity injury risk through movement quality screening: a systematic review. Br J Sport Med. 2017;51(7):580–5. 130. Bonazza NA, Smuin D, Onks CA, Silvis ML, Dhawan A. Reliability, validity, and injury predictive value of the functional movement screen: a systematic review and metaanalysis. Am J Sports Med. 2017;45(3):725–32. 131. Wright AA, Dischiavi SL, Smoliga JM, Taylor JB, Hegedus EJ. Association of Lower Quarter Y-Balance Test with lower extremity injury in NCAA Division 1 athletes: an independent validation study. Physiotherapy [Internet]. 2017;103(2):231–6. Available from: http://www.sciencedirect.com/science/article/pii/S0031940616300311 132. Benis R, Bonato M, Torre A. Elite Female Basketball Players’ Body-Weight Neuromuscular Training and Performance on the Y-Balance Test. J Athl Train [Internet]. 2016;51(9):688–695. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139785/ 133. Stiffler MR, Bell DR, Sanfilippo JL, Hetzel SJ, Pickett KA, Heiderscheit BC. Star excursion balance test anterior asymmetry is associated with injury status in division I collegiate athletes. J Orthop Sport Phys Ther. 2017;47(5):339–46. 134. Wasserman EB, Herzog MM, Collins CL, Morris SN, Marshall SW. Fundamentals of Sports Analytics. Clin Sports Med. 2018 Jul;37(3):387–400. 135. Sikka RS, Baer M, Raja A, Stuart M, Tompkins M. Analytics in Sports Medicine: Implications and Responsibilities That Accompany the Era of Big Data. J Bone Joint Surg Am. 2019 Feb;101(3):276–83. 136. Stein M, Janetzko H, Seebacher D, Jäger A, Nagel M, Hölsch J, et al. How to Make Sense of Team Sport Data: From Acquisition to Data Modeling and Research Aspects. 2017 Jan 1;2:2. 137. Barboza SD, Bolling CS, Nauta J, Mechelen W van, Verhagen E. Acceptability and perceptions of end-users towards an online sports-health surveillance system. BMJ Open Sport & Exerc Med [Internet]. 2017 Oct 1;3(1):e000275. Available from: http://bmjopensem.bmj.com/content/3/1/e000275.abstract 138. Matthews R, Chalmers I, Rothwell P. Douglas G Altman: statistician, researcher, and driving force behind global initiatives to improve the reliability of health research. BMJ [Internet]. 2018 Jun 12;361:k2588. Available from: http://www.bmj.com/content/361/bmj.k2588.abstract 139. Minick KI, Kiesel KB, Burton L, Taylor A, Plisky P, Butler RJ. Interrater Reliability of the Functional Movement Screen. J Strength Cond Res [Internet]. 2010;24(2). Available from: https://journals.lww.com/nscajscr/Fulltext/2010/02000/Interrater_Reliability_of_the_Functional_Movement.27.asp x 140. Butler RJ, Southers C, Gorman PP, Kiesel KB, Plisky PJ. Differences in Soccer Players’ Dynamic Balance Across Levels of Competition. J Athl Train [Internet]. 2012 Nov 1;47(6):616–20. Available from: https://doi.org/10.4085/1062-6050-47.5.14 141. Cook G, Burton L, Hoogenboom B. Pre-Participation Screening: The Use of Fundamental Movements as an Assessment of Function – Part 2. North Am J Sport Phys Ther NAJSPT [Internet]. 2006;1(3):132–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953359/ 142. Cook G, Burton L, Hoogenboom B. Pre-Participation Screening: The Use of Fundamental Movements as an Assessment of Function – Part 1. N Am J Sports Phys Ther [Internet]. 2006 May;1(2):62–72. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953313/ 143. Kraus K, Schutz E, Taylor WR, Doyscher R. Efficacy of the functional movement screen: a review. J strength Cond Res. 2014 Dec;28(12):3571–84. 144. Teyhen D, Shaffer S, Lorenson C, Halfpap J, Donfry D, Walker M, et al. The Functional Movement Screen: A Reliability Study. J Orthop Sport Phys Ther [Internet]. 2012 Jun 1;42(6):530–40. Available from: https://doi.org/10.2519/jospt.2012.3838 145. Mesa L, Rivera M, Romero J. Descripción general de la Inferencia Bayesiana y sus aplicaciones en los procesos de gestión. Lab Model y simulación Univ del Rosario [Internet]. 2011;2(2027–7709):20. Available from: https://www.urosario.edu.co/Administracion/documentos/investigacion/laboratorio/ miller_2_2.pdf 146. Veale JP, Pearce AJ, Buttifant D, Carlson JS. Anthropometric profiling of elite junior and senior Australian football players. Int J Sports Physiol Perform. 2010 Dec;5(4):509–20. 147. Espar F. EL CONCEPTO DE TÁCTICA INDIVIDUAL EN LOS DEPORTES COLECTIVOS. Educ Fis y Deport. 1997;51(Barcelona):16–22. 148. Cometti G. El entrenamiento de la velocidad. Barcelona: Editorial Paidotribo; 2002. 149. Rosa A, Saorín G. Parámetros fisiológicos de la prueba de los 100 metros lisos de atletismo. EFDeportes.com, Rev Digit. 2014;18(Buenos Aires):189. 150. Quiroga J. La técnica de los ejercicios de fuerza. Sport Train. 2008;(España):38–43.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposallesión sin contacto
dc.subject.proposalnon contact injury
dc.subject.proposalMove2perform
dc.subject.proposalMove2perform
dc.subject.proposalrisk of injury
dc.subject.proposalriesgo de lesión
dc.subject.proposallower limb
dc.subject.proposalmiembro inferior
dc.type.coarhttp://purl.org/coar/resource_type/c_8042
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito