Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorDíaz Tatis, Paula Alejandra
dc.contributor.advisorLópez Carrascal, Camilo Ernesto
dc.contributor.authorSánchez Ferro, Juan Sebastian
dc.date.accessioned2020-07-24T23:36:55Z
dc.date.available2020-07-24T23:36:55Z
dc.date.issued2020-02-07
dc.identifier.citationSánchez-Ferro, J. (2020). Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis. Tesis de Maestría en Ciencias - Biología UNAL. Universidad Nacional de Colombia - Sede Bogotá.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77853
dc.description.abstractCassava bacterial blight caused by Xanthomonas axonopodis pv. manihotis (Xam), is the main bacterial disease that affects Cassava crops. Xam virulence has been attributed to TALEs (Transcription Activator-Like Effectors), that bind to promoter elements of the host target genes to induce their expression. The TALome characterization of diverse Colombian strains of Xam have led to the identification of TAL14, TAL20, and TAL22 as the most recurrent TAL effectors in the pathogen populations in the country. With the purpose to develop a biotechnological tool for producing broad-spectrum resistance against Xam, this study generated a genetic construction of a trap promotor containing EBEs (Effector Binding Elements) for TALEs 14, 20 and 22. The EBE sequences were inserted in the minimal Bs3 promoter (pBs3min) using site-directed mutagenesis, to construct the TriEBE promoter EBETAL14Xam and EBETAL22Xam were cloned flanking EBETAL20Xam. The reporter gene GUSplus and 35s terminator were inserted flanking the promoters, the resulting vectors were used to transform Agrobacterium tumefaciens and perform the functional evaluation in Nicotiana tabacum. Finally, the promoters activation was evidenced because of TAL14 and TAL20 presence in co-infiltrated leaves. These results suggest that trap promoters developed in the present research can be activated by any Xam strain with TAL14 or TAL20 in its TALome, therefore representing a novel recognition cassette for most strains of the pathogen in Colombia.
dc.description.abstractLa bacteriosis vascular de la yuca, causada por Xanthomonas axonopodis pv. manihotis (Xam), es la principal enfermedad bacteriana que afecta al cultivo de yuca. La virulencia de Xam ha sido atribuida principalmente a los TALEs (Transcription Activator-Like Effectors), los cuales se unen a elementos en el promotor de genes blanco del hospedero para inducir su expresión. La caracterización del TALoma en diversas cepas colombianas de Xam ha llevado a la identificación de los efectores TAL14, TAL20 y TAL22 como los más frecuentes en las poblaciones del patógeno. Con el fin de desarrollar una herramienta para producir resistencia de amplio espectro a Xam, en este trabajo se generó una construcción genética de un promotor trampa conteniendo los EBEs (Effector Binding Elements) para los TALEs 14, 20 y 22. Los EBEs fueron insertados por mutagénesis dirigida en el promotor mínimo de Bs3 (pBs3min) y para la construcción de un promotor TriEBE se clonaron EBETAL14Xam y EBETAL22Xam alrededor del EBETAL20Xam. Las secuencias del gen GUSplus y el terminador 35s fueron clonadas flanqueando los promotores. La expresión transitoria de los constructos en Nicotiana tabacum mediada por Agrobacterium tumefaciens evidenció la activación de los promotores debido a la presencia de los TALEs 14 y 20 en hojas coinfiltradas con los promotores junto los efectores. Estos resultados indican que los promotores trampa generados en este estudio tienen la capacidad de ser activados por cualquier cepa de Xam que presente TAL14 o TAL20 en su TALoma, planteándose como un cassette de reconocimiento para la mayoría de las cepas del patógeno en el país.
dc.description.sponsorshipUniversidad Antonio Nariño - Sede Bogotá
dc.format.extent135
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología
dc.titleConstrucción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.description.project“Construcción de promotores sintéticos activados por efectores TAL como una herramienta biotecnológica para el mejoramiento de la resistencia a la bacteriosis vascular de la yuca”, Convenio Proyecto #4.229
dc.description.additionalMagíster en Ciencias-Biología. Línea de Investigación: Fitopatología molecular.
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biología
dc.contributor.researchgroupManihot Biotec
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAcosta, L., & Camacho, H. (2005). Conservación de la biomasas de tuca (Manihot esculanta Crantz), en la várzea del Amazonas colombiano: Tecnología tradicional ticuna aplicada en el presente.
dc.relation.referencesAguilera, M. (2012). La yuca en el Caribe colombiano: De cultivo ancestral a agroindustrial. Documentos de trabajo sobre Economía Regional. Retrieved from http://www.banrep.gov.co/docum/Lectura_finanzas/pdf/dtser_158.pdf
dc.relation.referencesAllem, A. C. (2002). The Origins and Taxonomy of Cassava. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/cabi_04ch1.pdf
dc.relation.referencesAn, S.-Q., Potnis, N., Dow, M., Vorhölter, F.-J., He, Y.-Q., Becker, A., … Tang, J.-L. (2019). Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiology Reviews, (May), 1–32. https://doi.org/10.1093/femsre/fuz024
dc.relation.referencesAntoine, F., & Wydra, K. (2015). Physical and chemical treatments for the control of Xanthomonas axonopodis pv . manihotis in cassava seeds. Journal of Experimental Biology and Agricultural Sciences, 3(1), 54–59.
dc.relation.referencesArrieta-Ortiz, M. L., Rodríguez-R, L. M., Pérez-Quintero, Á. L., Poulin, L., Díaz, A. C., Rojas, N. A., … Bernal, A. (2013). Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis strain CIO151. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0079704
dc.relation.referencesBanito, A., Kpémoua, K., Bissang, B., & Wydra, K. (2010). Assessment of cassava root and stem rots in ecozones of togo and evaluation of the pathogen virulence. Pakistan Journal of Botany, 42(3), 2059–2068.
dc.relation.referencesBarak, J. D., Vancheva, T., Lefeuvre, P., Jones, J. B., Timilsina, S., Minsavage, G. V., … Koebnik, R. (2016). Whole-genome sequences of xanthomonas euvesicatoria strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Frontiers in Plant Science, 7(DECEMBER2016). https://doi.org/10.3389/fpls.2016.01805
dc.relation.referencesBart, R., Cohn, M., McCallum, E. J., Shybut, M., Petriello, A., Krasileva, K., … Chen, J. (2012). High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences, 109(32), 13130–13130. https://doi.org/10.1073/pnas.1211014109
dc.relation.referencesBart, R., Wilson, M. C., Mutka, A. M., Hummel, A. W., Berry, J., Chauhan, R. D., … Bart, R. S. (2017). Rapid report Gene expression atlas for the food security crop cassava. https://doi.org/10.1111/nph.14443
dc.relation.referencesBiłas, R., Szafran, K., Hnatuszko-Konka, K., & Kononowicz, A. K. (2016). Cis-regulatory elements used to control gene expression in plants. Plant Cell, Tissue and Organ Culture, 127(2), 269–287. https://doi.org/10.1007/s11240-016-1057-7
dc.relation.referencesBlanvillain-Baufumé, S., Reschke, M., Solé, M., Auguy, F., Doucoure, H., Szurek, B., … Koebnik, R. (2017). Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnology Journal, 15(3), 306–317. https://doi.org/10.1111/pbi.12613
dc.relation.referencesBoch, J., Bonas, U., & Lahaye, T. (2014). TAL effectors – pathogen strategies and plant resistance engineering. New Phytologist, 204(4), 823–832. https://doi.org/10.1111/nph.13015
dc.relation.referencesBoch, J., Scholze, H., Schornack, S., Landgraf, A., S, H., Kay, S., … Bonas, U. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science, 326, 1509–1512. https://doi.org/10.1126/science.1178811
dc.relation.referencesBüttner, D. (2016). Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiology Reviews, 40(6), 894–937. https://doi.org/10.1093/femsre/fuw026
dc.relation.referencesBüttner, D., & Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 34(2), 107–133. https://doi.org/10.1111/j.1574-6976.2009.00192.x
dc.relation.referencesCastiblanco, L. F., Gil, J., Rojas, A., Osorio, D., Gutiérrez, S., Muñoz-Bodnar, A., … Bernal, A. J. (2013). TALE1 from Xanthomonas axonopodis pv. Manihotis acts as a transcriptional activator in plant cells and is important for pathogenicity in cassava plants. Molecular Plant Pathology, 14(1), 84–95. https://doi.org/10.1111/j.1364-3703.2012.00830.x
dc.relation.referencesCesbron, S., Briand, M., Essakhi, S., Gironde, S., Boureau, T., Manceau, C., … Jacques, M. A. (2015). Comparative genomics of pathogenic and nonpathogenic strains ofxanthomonas arboricola unveil molecular and evolutionary events linked to pathoadaptation. Frontiers in Plant Science, 6(DEC). https://doi.org/10.3389/fpls.2015.01126
dc.relation.referencesChacón, J., Madriñán, S., Debouck, D., Rodriguez, F., & Tohme, J. (2008). Phylogenetic patterns in the genus Manihot (Euphorbiaceae) inferred from analyses of nuclear and chloroplast DNA regions. Molecular Phylogenetics and Evolution, 49(1), 260–267. https://doi.org/10.1016/j.ympev.2008.07.015
dc.relation.referencesChavarriaga, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., … Tohme, J. (2016). The potential of using biotechnology to improve cassava: a review. In Vitro Cellular and Developmental Biology - Plant, 52(5), 461–478. https://doi.org/10.1007/s11627-016-9776-3
dc.relation.referencesChege, M. N., Wamunyokoli, F., Kamau, J., & Nyaboga, E. N. (2017). Phenotypic and genotypic diversity of Xanthomonas axonopodis pv . manihotis causing bacterial blight disease of cassava in Kenya. Journal of Applied Biology & Biotechnology, 5(02), 38–44. https://doi.org/10.7324/JABB.2017.50206
dc.relation.referencesChen, L. Q., Hou, B. H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X. Q., … Frommer, W. B. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468(7323), 527–532. https://doi.org/10.1038/nature09606
dc.relation.referencesCohn, M. (2015). Characterization of the Transcription Activator-Like Effectors of Xanthomonas axonopodis pv. manihotis and identification of susceptibility targets in the host cassava. University of California.
dc.relation.referencesCohn, M., Bart, R. S., Shybut, M., Dahlbeck, D., Gomez, M., Morbitzer, R., … Staskawicz, B. J. (2014). Xanthomonas axonopodis Virulence Is Promoted by a Transcription Activator-Like Effector–Mediated Induction of a SWEET Sugar Transporter in Cassava. Molecular Plant-Microbe Interactions, 27(11), 1186–1198. https://doi.org/10.1094/MPMI-06-14-0161-R
dc.relation.referencesCohn, M., Morbitzer, R., Lahaye, T., & Staskawicz, B. J. (2016). Comparison of gene activation by two TAL effectors from X anthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava. Molecular Plant Pathology, 17(6), 875–889. https://doi.org/10.1111/mpp.12337
dc.relation.referencesConstantin, E. C., Cleenwerck, I., Maes, M., Baeyen, S., Van Malderghem, C., De Vos, P., & Cottyn, B. (2016). Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology, 65(5), 792–806. https://doi.org/10.1111/ppa.12461
dc.relation.referencesContreras, E., & Lopez, C. (2008). Expresión de dos genes candidatos a resistencia contra la bacteriosis vascular en yuca. Acta Biológica Colombiana, 13(2), 175–187.
dc.relation.referencesContreras, E., & López, C. (2011). Identificación de polimorfismos en RXam2, un gen candidato de resistencia a la bacteriosis vascular de yuca. Revista Colombiana de Biotecnología, 13(2), 63–69.
dc.relation.referencesCuculis, L., Abil, Z., Zhao, H., & Schroeder, C. M. (2016). TALE proteins search DNA using a rotationally decoupled mechanism. Nature Chemical Biology, 12(10), 831–837. https://doi.org/10.1038/nchembio.2152
dc.relation.referencesDANE. (2011). Encuesta Nacional Agropecuaria. Bogotá DC.
dc.relation.referencesDANE. (2012). Encuesta Nacional Agropecuaria. Bogotá DC.
dc.relation.referencesDANE. (2013). Encuesta Nacional Agropecuaria. Bogotá DC.
dc.relation.referencesDANE. (2014). Encuesta Nacional Agropecuaria. Bogotá DC.
dc.relation.referencesDANE. (2015). Encuesta Nacional Agropecuaria. Bogotá DC.
dc.relation.referencesDANE. (2016a). El cultivo de la yuca (Manihot esculenta Crantz). Boletín Mensual INSUMOS Y FACTORES ASOCIADOS A LA PRODUCCIÓN AGROPECUARIA, 46, 1–7. Retrieved from https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_abr_2016.pdf
dc.relation.referencesDANE. (2016b). Encuesta Nacional Agropecuaria. Bogotá DC.
dc.relation.referencesDANE. (2017). Encuesta Nacional Agropecuaria. Bogotá DC.
dc.relation.referencesDANE. (2018). Pobreza multidimensional nacional. Bogotá DC.
dc.relation.referencesDeng, D., Yan, C., Pan, X., Mahfouz, M., Wang, J., Zhu, J., & Shi, Y. (2012). Structural Basis for Sequence-Specific Recognition of, 335(February), 11–14.
dc.relation.referencesDíaz, P. (2016). Transference of RXam2 and Bs2 genes to confer resistance against cassava bacterial blight ( CBB ). Universidad Nacional de Colombia.
dc.relation.referencesDíaz, P., Herrera Corzo, M., Ochoa Cabezas, J. C., Medina Cipagauta, A., Prías, M. A., Verdier, V., … López, C. (2018). The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis. Planta, 247(4), 1031–1042. https://doi.org/10.1007/s00425-018-2863-4
dc.relation.referencesDixon, A., Ngeve, J., & Nukenine, E. (2002). Genotype× environment Effects on Severity of Cassava Bacterial Blight Disease caused by Xanthomonas axonopodis pv. manihotis. European Journal of Plant Pathology, 108(8), 763–770.
dc.relation.referencesDoucouré, H., Pérez-Quintero, A. L., Reshetnyak, G., Tekete, C., Auguy, F., Thomas, E., … Cunnac, S. (2018). Functional and genome sequence-driven characterization of tal effector gene repertoires reveals novel variants with altered specificities in closely related malian Xanthomonas oryzae pv. oryzae strains. Frontiers in Microbiology, 9(AUG), 1–17. https://doi.org/10.3389/fmicb.2018.01657
dc.relation.referencesDoyle, E. L., Booher, N. J., Standage, D. S., Voytas, D. F., Brendel, V. P., Vandyk, J. K., & Bogdanove, A. J. (2012). TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: Tools for TAL effector design and target prediction. Nucleic Acids Research, 40(W1), 117–122. https://doi.org/10.1093/nar/gks608
dc.relation.referencesErkes, A., Mücke, S., Reschke, M., Boch, J., & Grau, J. (2019). PrediTALE: A novel model learned from quantitative data allows for new perspectives on TALE targeting. PLoS Computational Biology, 15(7), 1–28. https://doi.org/10.1371/journal.pcbi.1007206
dc.relation.referencesErkes, A., Reschke, M., Boch, J., & Grau, J. (2017). Evolution of transcription activator-like effectors in Xanthomonas oryzae. Genome Biology and Evolution, 9(6), 1599–1699. https://doi.org/10.1093/gbe/evx108
dc.relation.referencesFAO. (2013). FAOSTAT Database. Food Supply - Crops Primary Equivalent. Retrieved August 26, 2019, from http://www.fao.org/faostat/en/#data/CC
dc.relation.referencesFAO. (2017). FAOSTAT Database. Crops. Retrieved August 26, 2019, from http://www.fao.org/faostat/en/#data/QC
dc.relation.referencesFAO. (2018). Food Outlook Biannual Report on Global Food Markets - November 2018. Fao. https://doi.org/ISSN 1560-8182
dc.relation.referencesFregene, M., Angel, F., Gomez, R., Rodriguez, F., Chavarriaga, P., Roca, W., … Bonierbale, M. (1997). A molecular genetic map of cassava ( Manihot esculenta Crantz). TAG Theoretical and Applied Genetics, 95(3), 431–441. https://doi.org/10.1007/s001220050580
dc.relation.referencesGil, J., & López, C. (2019). El dominio STK de la proteína de resistencia a la bacteriosis vascular de yuca RXAM1 interactúa con una E3 Ubiquitin Ligasa. Acta Biológica Colombiana, 24(1), 139–149. https://doi.org/10.15446/abc.v24n1.70821
dc.relation.referencesGómez, F., Soto, J., Restrepo, S., Bernal, A., López-Kleine, L., & López, C. (2018). Gene co-expression network for Xanthomonas-challenged cassava reveals key regulatory elements of immunity processes. European Journal of Plant Pathology, 153(4), 1083–1104. https://doi.org/10.1007/s10658-018-01628-4
dc.relation.referencesGonzalez, C., Restrepo, S., Tohme, J., & Verdier, V. (2002). Characterization of pathogenic and nonpathogenic strains of Xanthomonas axonopodis pv. manihotis by PCR-based DNA fingerprinting techniques. FEMS Microbiology Letters, 215(1), 23–31. https://doi.org/10.1016/S0378-1097(02)00913-8
dc.relation.referencesGrau, J., Wolf, A., Reschke, M., Bonas, U., Posch, S., & Boch, J. (2013). Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites. PLoS Computational Biology, 9(3). https://doi.org/10.1371/journal.pcbi.1002962
dc.relation.referencesGust, A. A., & Felix, G. (2014). Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases. Current Opinion in Plant Biology, 21, 104–111. https://doi.org/10.1016/j.pbi.2014.07.007
dc.relation.referencesHerrera, B., Hyman, G., & Bellotti, A. (2011). Threats to cassava production: Known and potential geographic distribution of four key biotic constraints. Food Security, 3(3), 329–345. https://doi.org/10.1007/s12571-011-0141-4
dc.relation.referencesHillocks, R. J., & Wydra, K. (2002). Bacterial, Fungal, and nematode Disease. Cassava: Biology, Production and Utilization, 261–280.
dc.relation.referencesHoweler, R., Lutaladio, N., & Thomas, G. (2013). Save and Grow: Cassava. A Guide to Sustainable Production Intensification. Rome: Food and Agriculture Organization of the United Nations.
dc.relation.referencesHui, S., Liu, H., Zhang, M., Chen, D., Li, Q., Tian, J., … Yuan, M. (2019). The host basal transcription factor IIA subunits coordinate for facilitating infection of TALEs-carrying bacterial pathogens in rice. Plant Science, 284(March), 48–56. https://doi.org/10.1016/j.plantsci.2019.04.004
dc.relation.referencesHummel, A. W., Doyle, E. L., & Bogdanove, A. J. (2012). Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytologist, 195, 883–893.
dc.relation.referencesHutin, M., Pérez-Quintero, A. L., Lopez, C., & Szurek, B. (2015). MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Frontiers in Plant Science, 6(July). https://doi.org/10.3389/fpls.2015.00535
dc.relation.referencesIsendahl, C. (2011). The Domestication and Early Spread of Manioc ( Manihot Esculenta Crantz): A Brief Synthesis . Latin American Antiquity, 22(4), 452–468. https://doi.org/10.7183/1045-6635.22.4.452
dc.relation.referencesJacobs, J. M., Pesce, C., Lefeuvre, P., & Koebnik, R. (2015). Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in xanthomonas. Frontiers in Plant Science, 6(June), 1–13. https://doi.org/10.3389/fpls.2015.00431
dc.relation.referencesJacques, M. A., Arlat, M., Boulanger, A., Boureau, T., Cesbron, S., Chen, N. W. G., … Verni, C. (2016). Using Ecology , Physiology , and Genomics to Understand Host Specificity in Xanthomonas: French Network on Xanthomonads (FNX). Annu. Rev. Phytopathol, 54(6), 1–25. https://doi.org/10.1146/annurev-phyto-080615-100147
dc.relation.referencesJi, Z., Ji, C., Liu, B., Zou, L., Chen, G., & Yang, B. (2016). Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nature Communications, 7(May), 1–9. https://doi.org/10.1038/ncomms13435
dc.relation.referencesJones, J., & Dangl, J. (2006). The plant immune system. Nature, 444, 3–9. https://doi.org/10.1038/nature05286
dc.relation.referencesJorge, V., Fregene, M., Duque, M., Bonierbale, M., Tohme, J., & Verdier, V. (2000). Genetic mapping of resistance to bacterial blight disease in cassava ( Manihot esculenta Crantz). TAG Theoretical and Applied Genetics, 101(October 2000), 865–872. https://doi.org/10.1007/s001220051554
dc.relation.referencesJorge, V., Fregene, M., Velez, C. M., Duque, M. C., Tohme, J., & Verdier, V. (2001). QTL analysis of field resistance to Xanthomonas axonopodis pv. manihotis in cassava. Theoretical and Applied Genetics, 102(4), 564–571. https://doi.org/10.1007/s001220051683
dc.relation.referencesKpemoua, K., Boher, B., Nicole, M., Calatayud, P., & Geiger, J. (1996). Cytochemistry of defense responses in cassava infected. Canadian Journal of Microbiology42, 1143(42), 1131–1143. https://doi.org/10.1139/m96-145
dc.relation.referencesKumari, S., & Ware, D. (2013). Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0079011
dc.relation.referencesLeal, L. G., Perez, Á., Quintero, A., Bayona, Á., Ortiz, J. F., Gangadharan, A., … López-Kleine, L. (2013). Identification of Immunity-related Genes in Arabidopsis and Cassava Using Genomic Data. Genomics, Proteomics and Bioinformatics, 11(6), 345–353. https://doi.org/10.1016/j.gpb.2013.09.010
dc.relation.referencesLi, L., Atef, A., Piatek, A., Ali, Z., Piatek, M., Aouida, M., … Mahfouz, M. M. (2013). Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. Molecular Plant, 6(4), 1318–1330. https://doi.org/10.1093/mp/sst006
dc.relation.referencesLi, T., Huang, S., Zhou, J., & Yang, B. (2013). Designer TAL Effectors Induce Disease Susceptibility and Resistance to Xanthomonas oryzae pv . Oryzae in Rice. Molecular Plant, 6(3), 781–789. https://doi.org/10.1093/mp/sst034
dc.relation.referencesLivi, M. (2008). One hundred thousand or ten million Taíno? In Conquest: The Destruction of the American Indios (pp. 96–98). Polity Press.
dc.relation.referencesLope, J. (1981). Antillanismos en la Nueva España. Anuario de Letras: Lingüística y Filología, (19), 75–88. https://doi.org/10.19130/iifl.adel.19.0.1981.445
dc.relation.referencesLópez, C., & Bernal, A. (2012). Cassava Bacterial Blight: Using Genomics for the Elucidation and Management of an Old Problem. Tropical Plant Biology, 5(1), 117–126. https://doi.org/10.1007/s12042-011-9092-3
dc.relation.referencesLópez, C., Jorge, V., Piégu, B., Mba, C., Cortes, D., Restrepo, S., … Verdier, V. (2004). A unigene catalogue of 5700 expressed genes in cassava. Plant Molecular Biology, 56(4), 541–554. https://doi.org/10.1007/s11103-004-0123-4
dc.relation.referencesLópez, C., Quesada, L., Bohorquez, A., Duque, M., Vargas, J., Tohme, J., & Verdier, V. (2007). Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihot esculenta. Genome, 50(12), 1078–1088. https://doi.org/g07-087 [pii]\r10.1139/g07-087
dc.relation.referencesLópez, C., & Restrepo, S. (2006). Limitaciones de la bacteriosis varcular de Yuca: Nuevos avances. Acta Biológica Colombiana, 11, 21–45.
dc.relation.referencesLópez, C., Soto, M., Restrepo, S., Piégu, B., Cooke, R., Delseny, M., … Verdier, V. (2005). Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Plant Molecular Biology, 57, 393–410. https://doi.org/10.1007/s11103-004-7819-3
dc.relation.referencesLópez, C., Zuluaga, A. P., Cooke, R., Delseny, M., Tohme, J., & Verdier, V. (2003). Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster in cassava. Molecular Genetics and Genomics, 269(5), 658–671. https://doi.org/10.1007/s00438-003-0868-5
dc.relation.referencesLozano, C. (1986). Cassava Bacterial Blight: A manageable disease. Plant Dis, 70, 1089–1093.
dc.relation.referencesLuján, M. (2017). Spanish in the Americas. A dialogic approach to lenguage contact. In Language Contact and Change in Mesoamerica and Beyond (pp. 395–402). John Benjamins Publishing Company.
dc.relation.referencesMa, Wenbo, Dong, F. F. T., Stavrinides, J., & Guttman, D. S. (2006). Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genetics, 2(12), 2131–2142. https://doi.org/10.1371/journal.pgen.0020209
dc.relation.referencesMa, Wenxiu, Zou, L., Zhiyuan, J. I., Xiameng, X. U., Zhengyin, X. U., Yang, Y., … Chen, G. (2018). Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice. Molecular Plant Pathology, 19(10), 2248–2262. https://doi.org/10.1111/mpp.12696
dc.relation.referencesMaeder, M. L., Linder, S. J., Reyon, D., Angstman, J. F., Fu, Y., Sander, J. D., & Joung, J. K. (2013). Robust, synergistic regulation of human gene expression using TALE activators. Nature Methods, 10(3), 243–245. https://doi.org/10.1038/nmeth.2366
dc.relation.referencesMak, A. N. S., Bradley, P., Cernadas, R. A., Bogdanove, A. J., & Stoddard, B. L. (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 335(6069), 716–719. https://doi.org/10.1126/science.1216211
dc.relation.referencesMcCallum, E. J., Anjanappa, R. B., & Gruissem, W. (2017). Tackling agriculturally relevant diseases in the staple crop cassava ( Manihot esculenta ). Current Opinion in Plant Biology, 38, 50–58. https://doi.org/10.1016/j.pbi.2017.04.008
dc.relation.referencesMedina, C., Reyes, P., Trujillo, C., Gonzalez, J., & Bejarano, D. (2017). The role of type three effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular Plant Pathology. https://doi.org/10.1111/mpp.12545
dc.relation.referencesMora, R. (2017). Identificación de genes de susceptibilidad en yuca, blancos de TALEs de Xam (Tesis de Maestría). Bogotá: Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia.
dc.relation.referencesMoscou, M. J., & Bogdanove, A. J. (2009). A Simple Cipher Governs DNA Recognition by TAL Effectors. Science (New York, N.Y.), 326(December), 1501. https://doi.org/10.1126/science.1178817
dc.relation.referencesMücke, S., Reschke, M., Erkes, A., Schwietzer, C. A., Becker, S., Streubel, J., … Boch, J. (2019). Transcriptional reprogramming of rice cells by Xanthomonas oryzae tales. Frontiers in Plant Science, 10(February), 1–19. https://doi.org/10.3389/fpls.2019.00162
dc.relation.referencesNoman, A., Aqeel, M., & Lou, Y. (2019). PRRs and NB-LRRs: From signal perception to activation of plant innate immunity. International Journal of Molecular Sciences, 20(8). https://doi.org/10.3390/ijms20081882
dc.relation.referencesOECD. (2016a). Cassava (Manihot esculenta). In Safety Assessment of Transgenic Organisms in the Environment (Volume 6, pp. 155–186). Paris: OECD Publishing. https://doi.org/10.1787/9789264253421-en
dc.relation.referencesOECD. (2016b). Safety Assessment of Transgenic Organisms in the Environment (Vol. 6). https://doi.org/10.1787/9789264253018-en
dc.relation.referencesOgunjobi, A., Fagade, O., & Dixon, A. (2006). Molecular variation in population structure of Xanthomonas axonopodis pv manihotis in the south eastern Nigeria. African Journal of Biotechnology, 5(20), 1868–1872. https://doi.org/10.4314/ajb.v5i20.55891
dc.relation.referencesOgunjobi, A., Fagade, O., & Dixon, A. (2007). Physiological studies on Xanthomonas axonopodis pv\nmanihotis (Xam) strains isolated in Nigeria. Electronic Journal of Environmental, Agricultural and Food Chemistry, 6, 10.
dc.relation.referencesPérez-Pinera, P., Ousterout, D. G., Brunger, J. M., Farin, A. M., Glass, K. A., Guilak, F., … Gersbach, C. A. (2013). Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nature Methods, 10(3), 239–242. https://doi.org/10.1038/nmeth.2361
dc.relation.referencesPérez-Quintero, A. L., Rodriguez-R, L. M., Dereeper, A., López, C., Koebnik, R., Szurek, B., & Cunnac, S. (2013). An Improved Method for TAL Effectors DNA-Binding Sites Prediction Reveals Functional Convergence in TAL Repertoires of Xanthomonas oryzae Strains. PLoS ONE, 8(7). https://doi.org/10.1371/journal.pone.0068464
dc.relation.referencesPérez-Quintero, A. L., & Szurek, B. (2019). A Decade Decoded: Spies and Hackers in the History of TAL Effectors Research. Annual Review of Phytopathology, 57(1), 459–481. https://doi.org/https://doi.org/10.1146/annurev-phyto-082718-100026
dc.relation.referencesPérez, D., Mora, R., & López, C. (2019). Conservation of the cassava diversity in the traditional cultivation systems of the Amazon. Acta Biologica Colombiana, 24(2), 202–212. https://doi.org/10.15446/abc.v24n2.75428
dc.relation.referencesPfeilmeier, S., Caly, D. L., & Malone, J. G. (2016). Bacterial pathogenesis of plants : future challenges from a microbial perspective Challenges in Bacterial Molecular Plant Pathology. Molecular Plant Pathology, 17(8), 1298–1313. https://doi.org/10.1111/mpp.12427
dc.relation.referencesPorto, M. S., Pinheiro, M. P. N., Batista, V. G. L., Dos Santos, R. C., De Albuquerque Melo Filho, P., & De Lima, L. M. (2014). Plant promoters: An approach of structure and function. Molecular Biotechnology, 56(1), 38–49. https://doi.org/10.1007/s12033-013-9713-1
dc.relation.referencesQuang, N., Quan, M. Van, Quang, L., Nguyen, D., & Xuan, T. (2019). Identification of cassava bacterial blight-causing Xanthomonas axonopodis pv. Manihotis based on rpoD and gyrB genes. Vietnam Journal of Science, Technology and Engineering, 61(1), 30–35. https://doi.org/10.31276/vjste.61(1).30-35
dc.relation.referencesRache, L., Blondin, L., Flores, C., Trujillo, C., Szurek, B., Restrepo, S., … Vernière, C. (2019). An Optimized Microsatellite Scheme for Assessing Populations of Xanthomonas phaseoli pv. Manihotis. Phytopathology, 109(5), 859–869. https://doi.org/10.1094/PHYTO-06-18-0210-R
dc.relation.referencesRamírez, E. (2019). Identificación y validación de genes ejecutores en yuca blancos de TALEs de la bacteria Xanthomonas axonopodis pv. manihotis. Tesis de Doctorado en Ciencias - Biología UNAL. Universidad Nacional de Colombia.
dc.relation.referencesRestrepo, S., Duque, M., & Verdier, V. (2000). Characterization of pathotypes among isolates of Xanthomonas axonopodis pv. manihotis in Colombia. Plant Pathology, 49(6), 680–687. https://doi.org/10.1046/j.1365-3059.2000.00513.x
dc.relation.referencesRestrepo, S., Valle, T., Duque, M., & Verdier, V. (1999). Assessing Genetic Variability Among Brazilian Strains of Xanthomonas axonopodis pv. manihotis Through RFLP and AFLP Analyses. Can J Microbiol, 45, 754–763.
dc.relation.referencesRestrepo, S., Verdier, V., Mosquera, G., Duque, M., Gerstl, A., & Laberry, L. (1998). Genetic and pathogenic variation of Xanthomonas axonopodis pv. manihotis in Venezuela. Plant Pathology, 47, 601–608.
dc.relation.referencesRinaldi, F. C., Doyle, L. A., Stoddard, B. L., & Bogdanove, A. J. (2017). The effect of increasing numbers of repeats on TAL effector DNA binding specificity. Nucleic Acids Research, 45(11), 6960–6970. https://doi.org/10.1093/nar/gkx342
dc.relation.referencesRogers, J. M., Barrera, L. A., Reyon, D., Sander, J. D., Kellis, M., Joung, J. K., & Bulyk, M. L. (2015). Context influences on TALE-DNA binding revealed by quantitative profiling. Nature Communications, 6(May), 1–10. https://doi.org/10.1038/ncomms8440
dc.relation.referencesRomer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., & Lahaye, T. (2009). Plant Pathogen Recognition Mediated by Promoter Activation of the Pepper Bs3 Resistance Gene. Science, 318(5850), 645–648. https://doi.org/10.1126/science.1144958
dc.relation.referencesRomer, P., Recht, S., & Lahaye, T. (2009). A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proceedings of the National Academy of Sciences, 106(48), 20526–20531. https://doi.org/10.1073/pnas.0908812106
dc.relation.referencesRoux, F., Voisin, D., Badet, T., Balagué, C., Barlet, X., Huard-Chauveau, C., … Raffaele, S. (2014). Resistance to phytopathogens e tutti quanti : placing plant Quantitative Disease Resistance on the map. Molecular Plant Pathology, 15(5), 427–432. https://doi.org/10.1111/mpp.12138
dc.relation.referencesRyan, R., Vorhölter, F., Potnis, N., & Jones, J. B. (2011). Pathogenomics of Xanthomonas : understanding bacterium – plant interactions. Nature Publishing Group, 9(5), 344–355. https://doi.org/10.1038/nrmicro2558
dc.relation.referencesSacristán, S., & García-Arenal, F. (2008). The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9(3), 369–384. https://doi.org/10.1111/j.1364-3703.2007.00460.x
dc.relation.referencesSaijo, Y., Loo, E. P. iian, & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant–microbe interactions. Plant Journal, 93(4), 592–613. https://doi.org/10.1111/tpj.13808
dc.relation.referencesSandoval, C. lorena, & Chavez, J. L. (2017). Uso alimenticio de especies vegetales por las comunidades indígenas de colombia: una revisión de literatura. Agroecología: Ciencia y Tecnología, 2(1), 18–24. Retrieved from http://revistas.sena.edu.co/index.php/agroeccyt/article/view/904/994
dc.relation.referencesSantaella, M., Suárez, E., López, C., González, C., Mosquera, G., Restrepo, S., … Verdier, V. (2004). Identification of genes in cassava that are differentially expressed during infection with Xanthomonas axonopodis pv. manihotis. Molecular Plant Pathology, 5(6), 549–558. https://doi.org/10.1111/J.1364-3703.2004.00254.X
dc.relation.referencesSchandry, N., Jacobs, J. M., Szurek, B., & Perez-Quintero, A. L. (2018). A cautionary TALE: how plant breeding may have favoured expanded TALE repertoires in Xanthomonas. Molecular Plant Pathology, 19(6), 1297–1301. https://doi.org/10.1111/mpp.12670
dc.relation.referencesSchneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012, July). NIH Image to ImageJ: 25 years of image analysis. Nature Methods. https://doi.org/10.1038/nmeth.2089
dc.relation.referencesSchwartz, A. R., Morbitzer, R., Lahaye, T., & Staskawicz, B. J. (2017). TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato. Proceedings of the National Academy of Sciences, 114(5), E897–E903. https://doi.org/10.1073/pnas.1620407114
dc.relation.referencesSchwartz, A. R., Potnis, N., Timilsina, S., Wilson, M., Patané, J., Martins, J., … Staskawicz, B. J. (2015). Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Frontiers in Microbiology, 6(JUN). https://doi.org/10.3389/fmicb.2015.00535
dc.relation.referencesShantharaj, D., Römer, P., Figueiredo, J. F. L., Minsavage, G. V., Krönauer, C., Stall, R. E., … Jones, J. B. (2016). An engineered promoter driving expression of a microbial avirulence gene confers recognition of TAL effectors and reduces growth of diverse Xanthomonas strains in citrus. Molecular Plant Pathology, 18(7), 976–989. https://doi.org/10.1111/mpp.12454
dc.relation.referencesSilva, M. S., Arraes, F. B. M., Campos, M. de A., Grossi-de-Sa, M., Fernandez, D., Cândido, E. de S., … Grossi-de-Sa, M. F. (2018). Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Science, 270(October 2017), 72–84. https://doi.org/10.1016/j.plantsci.2018.02.013
dc.relation.referencesSong, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., … Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science (New York, N.Y.), 270(5243), 1804–1806. https://doi.org/10.1126/SCIENCE.270.5243.1804
dc.relation.referencesSoto, J., Mora, R., Calle, F., & López, C. (2017). QTL identification for cassava bacterial blight resistance under natural infection conditions. Acta Biologica Colombiana, 22(1), 19–26. https://doi.org/10.15446/abc.v22n1.57951
dc.relation.referencesSoto, J., Mora, R., Mathew, B., Léon, J., Gomez, F. A., Ballvora, A., … Bart, R. (2017). Major Novel QTL for Resistance to Cassava Bacterial Blight Identified through a Multi-Environmental Analysis. Frontiers in Plant Science, 8(July), 1–13. https://doi.org/10.3389/fpls.2017.01169
dc.relation.referencesStreubel, J., Baum, H., Grau, J., Stuttman, J., & Boch, J. (2017). Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations. PLoS ONE, 1–24. https://doi.org/10.1371/journal.pone.0173580 March
dc.relation.referencesStreubel, J., Blücher, C., Landgraf, A., & Boch, J. (2012). TAL effector RVD specificities and efficiencies. Nature Biotechnology, 30(7), 593–595. https://doi.org/10.1038/nbt.2304
dc.relation.referencesTappiban, P., Sraphet, S., Srisawad, N., Smith, D. R., & Triwitayakorn, K. (2018). Identification and expression of genes in response to cassava bacterial blight infection. Journal of Applied Genetics, 59(4), 391–403. https://doi.org/10.1007/s13353-018-0457-2
dc.relation.referencesTaylor, R. K., Griffin, R. L., Jones, L. M., Pease, B., Tsatsia, F., Fanai, C., … Davis, R. I. (2017). First record of Xanthomonas axonopodis pv. manihotis in Solomon Islands. Australasian Plant Disease Notes, 12(1), 49. https://doi.org/10.1007/s13314-017-0275-0
dc.relation.referencesTomkins, J., Fregene, M., Main, D., Kim, H., Wing, R., & Tohme, J. (2004). Bacterial artificial chromosome (BAC) library resource for positional cloning of pest and disease resistance genes in cassava (Manihot esculenta Crantz). Plant Molecular Biology, 56(4), 555–561. https://doi.org/10.1007/s11103-004-5045-7
dc.relation.referencesToruño, T., Stergiopoulos, I., & Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology, 54(1), 419–441. https://doi.org/10.1146/annurev-phyto-080615-100204
dc.relation.referencesTriplett, L., Leach, J., & Gold, C. (2016). Host mechanisms for resistance to TAL effectors : Thinking outside the. Physiological and Molecular Plant Pathology, 95, 66–69. https://doi.org/10.1016/j.pmpp.2016.02.002
dc.relation.referencesTrujillo, C., Arias, N., Poulin, L., Medina, C., Tapiero, A., Restrepo, S., … Bernal, A. (2014). Population typing of the causal agent of cassava bacterial blight in the Eastern Plains of Colombia using two types of molecular markers. BMC Microbiology, 14(1), 161. https://doi.org/10.1186/1471-2180-14-161
dc.relation.referencesTrujillo, C., Ochoa, J., Mideros, M., & Restrepo, S. (2014). A Complex Population Structure of the Cassava Pathogen Xanthomonas axonopodis pv . manihotis in Recent Years in the Caribbean Region of Colombia, 155–167. https://doi.org/10.1007/s00248-014-0411-8
dc.relation.referencesÜstün, S., & Börnke, F. (2014). Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Frontiers in Plant Science, 5(DEC), 1–6. https://doi.org/10.3389/fpls.2014.00736
dc.relation.referencesVásquez, A., Soto, J., & López, C. (2018). Descifrando las moléculas ocultas en las sombras grises de la resistencia cuantitativa a patógenos. Acta Biologica Colombiana, 23(1), 5–16. https://doi.org/10.15446/abc.v23n1.66487
dc.relation.referencesVerdier, V., & Jorge, V. (2004). Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis–cassava interaction. Plant Molecular Biology, 56(December), 573–584. https://doi.org/10.1007/s11103-004-5044-8
dc.relation.referencesVerdier, V., López, C., & Bernal, A. (2011). Cassava Bacterial Blight (or Vascular Bacteriosis), Caused by Xanthomonas axonopodis pv. manihotis. La Yuca En El Tercer Milenio, (C), 200–212.
dc.relation.referencesWaddington, S. R., Li, X., Dixon, J., Hyman, G., & de Vicente, M. C. (2010). Getting the focus right: Production constraints for six major food crops in Asian and African farming systems. Food Security, 2(1), 27–48. https://doi.org/10.1007/s12571-010-0053-8
dc.relation.referencesWan, W. L., Zhang, L., Pruitt, R., Zaidem, M., Brugman, R., Ma, X., … Nürnberger, T. (2019). Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences. New Phytologist, 221(4), 2080–2095. https://doi.org/10.1111/nph.15497
dc.relation.referencesWang, J., Wang, J., Hu, M., Wu, S., Qi, J., Wang, G., … Chai, J. (2019). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science, 364(6435). https://doi.org/10.1126/science.aav5868
dc.relation.referencesWang, L., Rinaldi, F. C., Singh, P., Doyle, E. L., Dubrow, Z. E., Tu, T., … Bogdanove, A. J. (2017). TAL effectors drive transcription bidirectionally in plants. MOLECULAR PLANT. https://doi.org/10.1016/j.molp.2016.12.002
dc.relation.referencesWhite, F., Potnis, N., Jones, J., & Koebnik, R. (2009). The type III effectors of Xanthomonas. Molecular Plant Pathology, 10(6), 749–766. https://doi.org/10.1111/J.1364-3703.2009.00590.X
dc.relation.referencesWydra, K., Zinsou, V., Jorge, V., & Verdier, V. (2004). Identification of Pathotypes of Xanthomonas axonopodis pv . manihotis in Africa and Detection of Quantitative Trait Loci and Markers for Resistance to Bacterial Blight of Cassava. Phytopathology, 94(50), 1084–1093. https://doi.org/10.1094/PHYTO.2004.94.10.1084
dc.relation.referencesXu, Z. yin, Zou, L. fang, Ma, W. xiu, Cai, L. lu, Yang, Y. yang, & Chen, G. you. (2017). Action modes of transcription activator-like effectors (TALEs) of Xanthomonas in plants. Journal of Integrative Agriculture, 16(12), 2736–2745. https://doi.org/10.1016/S2095-3119(17)61750-7
dc.relation.referencesYamamoto, Y. Y., Ichida, H., Matsui, M., Obokata, J., Sakurai, T., Satou, M., … Abe, T. (2007). Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics, 8, 1–23. https://doi.org/10.1186/1471-2164-8-67
dc.relation.referencesYu, X., Feng, B., He, P., & Shan, L. (2017). From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annual Review of Phytopathology, 55(1), 109–137. https://doi.org/10.1146/annurev-phyto-080516-035649
dc.relation.referencesZárate, C. A. (2015). Diversity of TALE content in Xanthomonas axonopodis pv. manihotis strains is a valuable tool to improve target gene searching methodologies. Universidad de los Andes.
dc.relation.referencesZhang, J., Yin, Z., & White, F. (2015). TAL effectors and the executor R genes. Frontiers in Plant Science, 6(August), 1–9. https://doi.org/10.3389/fpls.2015.00641
dc.relation.referencesZhang, X., Dodds, P. N., & Bernoux, M. (2017). What Do We Know About NOD-Like Receptors in Plant Immunity? Annu Rev Phytopathol, 55(9), 1–25. https://doi.org/10.1146/annurev-phyto-080516- 035250
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalbiotecnología
dc.subject.proposalbiotechnology
dc.subject.proposalbacteriosis vascular de la yuca
dc.subject.proposalcassava bacterial blight
dc.subject.proposalresistencia de amplio espectro
dc.subject.proposalbroad-spectrum resistance
dc.type.coarhttp://purl.org/coar/resource_type/c_8042
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito